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Abstract: This article discusses the mean and variance of discounted total maintenance cost of a system intended to operate during the

finite time interval [0, t]. We implement the age replacement strategy under the assumption that the system deteriorates in accordance

with a stochastic gamma process. Laplace transforms for the mean and second moment of the total maintenance cost are obtained. We

apply the result to obtain an optimal period for preventive maintenance which minimizes the mean of the discounted total maintenance

cost in the time interval [0, t]. Standard deviation for the optimal period for preventive maintenance is also calculated.
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1 Introduction

Consider a system, for example a production machine, that is expected to operate continuously. Due to various factors
such as environmental conditions or aging, the system’s performance decreases over time and can even break down. To
ensure that the system works properly, system maintenance is required. An optimal system maintenance strategy is an
important topic because it can minimize the total maintenance cost of the system in some time period.

The simplest system maintenance strategy is to replace the system when it breaks down. This strategy is called a
replacement strategy. Assume that the system starts operating at time 0 and is immediately replaced with a new one when
it fails. We can model the number of system replacements in the time interval [0, t] with a renewal process. Furthermore, if
each system replacement is charged, then the total cost of system replacement can be modeled a renewal reward process.

Typically system performance degrades stochastically over time. Many researchers model the performance
deterioration of systems using a stochastic gamma process. In this model, it is usually assumed that the system will fail
when its deterioration exceeds a certain level. So the time to failure of the system equals epoch since the last replacement
until the system deterioration exceeds a specified level. For more information about the application of stochastic gamma
processes in maintenance see [11].

Replacing a failed system by the new one is often incurred high cost so that if we use the replacement strategy the
total replacement cost can be very high in some time interval. To reduce the total maintenance cost we may apply the
following alternative maintenance strategy. Soon after its failure the system is replaced by the new one. We call this type
of maintenance a corrective maintenance. If within some given fixed time period since the last maintenance action the
system did not fail, a preventive maintenance action is performed which brings the system performs as good as new. This
maintenance scenario is referred to as age replacement strategy, see [4].

In the age replacement strategy an interesting issue is to find an optimal period for preventive maintenance so that the
mean of the discounted total maintenance costs over some time interval is minimum. Some authors have paid attention to
this issue. Van Noortwijk [9] discussed optimal replacement decisions for structure under a gamma process deterioration
over unbounded time horizon where the time to failures are modeled as a discrete time renewal process, the corrective
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and preventive maintenance costs are constants, and a discount factor is included. In another article Van Noortwijk [10]
discussed the asymptotic variance of discounted total maintenance costs. In [9] and [10] it was assumed that the
maintenance actions performed such that the system like the new one. Suyono and Van der Weide [7] discussed the
expected value of the discounted total maintenance cost in a finite time interval [0, t] where the deterioration of the
system follows a gamma process, the maintenance times is modeled as a continuous-time renewal process, and the costs
for corrective and preventive maintenance are constants.

Since the publication of the article [7] as far as we know there is no article which discuss the variance of the discounted
total maintenance cost under assumptions as in [7]. In [8] the mean and variance of total discounted cost were discussed
but they did not consider the system deterioration. Cheng and Li [2] discussed an optimal replacement policy for a
degenerative system with two-types of failure states. They assume that the system cannot be as good as new after repaired,
and the deterioration process is stochastic. Corset, Fouladirad, Paroissin [3] considered a condition-based maintenance
policy with perfect corrective and an imperfect preventive actions where the degradation is modelled by a gamma process.
They derived the maintenance cost by using a Markov-renewal process. This paper discusses the mean and variance of the
discounted total maintenance cost in the finite time interval [0, t] where the system deterioration is modeled by a gamma
process, maintenance times is modeled as a continuous-time renewal process, and the corrective and preventive costs
are assumed to be random variables. This setting is different from those of Van Noortwijk [9]. This paper can also be
considered as a generalization of the model in [7] because we allow the corrective and preventive maintenance costs are
random variables.

This article is organized as follows. In Section 2 we review the notion of the stochastic gamma process. In Section
3 we define mathematical models for the discounted total maintenance cost in the finite time interval [0, t] where the
system deterioration follows a gamma process defined in Section 2. Section 4 and 5 deal with the mean and variance of
the discounted total maintenance cost. In Section 6 we give an example where we can determined an optimal time period
for preventive maintenance action. The conclusion is given in the last section.

2 Gamma Process

Recall that a random variable X has a gamma distribution with shape parameter a > 0 and scale parameter b > 0, if its
probability density function (p.d.f.) is given by

fX (x) =
ba

Γ (a)
xa−1e−bx1[0,∞)(x) (1)

where 1A(x) = 1 if x ∈ A and zero otherwise, and

Γ (a) =

∫ ∞

0
ta−1e−tdt

is the gamma function for a > 0. Related to the gamma distribution we may define a gamma process as follows. Let
{X(t), t ≥ 0} be a continuous-time stochastic process having stationary increment property. The stochastic process
{X(t), t ≥ 0} is called a gamma process with the shape function a(t)> 0, t > 0, and scale parameter b > 0, if it satisfies
the following properties:

(i) X(0) = 0 with probability 1,
(ii) X(t)−X(s) is gamma distributed with the shape parameter a(t)> 0 and the scale parameter b > 0, for all t ≥ s ≥ 0,

(iii) X(t) has an independent increment property,

see [5] for example. The gamma process is widely used to model deterioration of systems.

If the gamma process {X(t), t ≥ 0} has the mean function E[X(t)] = µt and variance Var[X(t)] = σ2t, where µ > 0,
σ2 > 0, then we may write the p.d.f. of X(t) as

fX(t)(x) =
ba

Γ (a)
xa−1e−bx1[0,∞)(x) (2)

where a = µ
σ 2 t and b = µ2

σ 2 .

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JJMS 18, No. 2, 181-190 (2025 ) / 183

3 Modeling total maintenance cost

Suppose that a new system starts operating at time S0 = 0. Over time, the system performance decreases stochastically,
and eventually break down. We will model the system deterioration as a gamma process having the marginal distribution
defined in (2). We suppose that the system will fail if the deterioration exceeds a specified level y > 0. Thus, if the lifetime
of the system is denoted by T , then

T > s if and only if X(s)< y. (3)

In this paper we apply the age replacement strategy as follows. If no failure after a time period L since the time 0 or the
last maintenance, a preventive maintenance is carried out perfectly so that the system is back to a state as good as new. If
the system fails within the period L time units after the time 0 or the last maintenance action, a corrective maintenance is
performed by replacing the system with the new one. So after both types of maintenance actions the system is in a good
condition as a new one.

Let 0 < S1 < S2 < ... be the times at which maintenance actions, both preventive and corrective, take place. Since we
assume that after maintenance the system is as good as new, we model the sequence {S j : j ≥ 1} as a renewal process.
The times Tj between successive maintenance actions, i.e. Tj = S j–S j−1, j = 1,2,3, ... are are assumed to be i.i.d., strictly
positive random variables. Since we model the deterioration of the system by the gamma process defined in (2), it follows
from (3) that

P(Tj > s) = P(X(s)< y),s < L (4)

and P(Tj = 0) otherwise. We will denote by N(t) the number of maintenance actions during the time interval [0, t], that is

N(t) = sup{ j : S j ≤ t}.

Obviously,
N(t)≥ n if and only if Sn ≤ t.

We will denote by CP and CF the preventive and corrective maintenance costs respectively. We assume that (CP,CF)
is a random vector with non-negative components and independent of the sequence {S j : j ≥ 1} of maintenance times.
When Tj < L for some j the corrective maintenance cost CF has to be paid at time S j, and when Tj = L the preventive
maintenance cost CP is incurred at time S j. So the total maintenance costs during the time interval [0, t] is given by

K(t) =
N(t)

∑
i=1

[CP1{Ti=L}+CF1{Ti<L}]. (5)

If we apply the exponential discount rate r > 0 to each maintenance cost, then the amount of money that has to be deposited
at time 0 to cover the total maintenance cost during the bounded time interval [0, t] is formulated by

K(t,r) =
N(t)

∑
i=1

[CPe−rSi1{Ti=L}+CFe−rSi1{Ti<L}]. (6)

In the next sections we will derive the Laplace transforms of the mean and second moment of K(t) and K(t,r).

4 Mean of the total maintenance cost

The first result in this article is the Laplace transform of the mean of the total maintenance cost K(t,r) defined in (6) as
stated in the following theorem.

Theorem 1. For α > 0,

∫ ∞

0
E[K(t,r)]e−αtdt =

E[CP]e
−(α+r)LP(T1 = L)+E[CF ]E[e

−(α+r)T11{T1<L}]

α(1−E[e−(α+r)T1])
. (7)

Proof. Let Yi =CPe−rSi1{Ti=L}+CFe−rSi1{Ti<L}. Then we may write K(t,r) defined in (6) as

K(t,r) =
N(t)

∑
i=1

Yi. (8)
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The expected value of K(t,r) is

E[K(t,r)] = E

[

N(t)

∑
i=1

Yi

]

= E

[

∞

∑
i=1

Yi1{N(t)≥i}

]

= E

[

∞

∑
i=1

Yi1{Si≤t}

]

(9)

where we have used the relation N(t) ≥ i if and only if Si ≤ t in the last equality. Generally it is difficult to calculate
directly the expected value E[K(t,r)]. One way to overcome this difficulty is by taking the Laplace transform of E[K(t,r)]
considered as a function of t > 0. Since we assume Yi is nonnegative, by using Tonelli’s theorem, see for example [6], the
Laplace transform of E[K(t,r)] can be written as follows: for α > 0,

∫ ∞

0
E[K(t,r)]e−αtdt =

∫ ∞

0
E

[

∞

∑
i=1

Yi1{Si≤t}

]

e−αtdt =
∞

∑
i=1

E

[

∫ ∞

0
Yi1{Si≤t}e−αtdt

]

=
1

α

∞

∑
i=1

E[Yie
−αSi ]. (10)

Now,

E[Yie
−αSi ] = E[CPe−rSi1{Ti=L}e−αSi ]+E[CFe−rSi1{Ti<L}e−αSi ]

= E[CP]E[1{Ti=L}e−(α+r)Si ]+E[CF ]E[1{Ti<L}e−(α+r)Si ].

Writing Si = Ti + Si−1, and using the fact that Ti and Si−1 are independent, we have

E[1{Ti=L}e−(α+r)Si ] = E[1{Ti=L}e−(α+r)(Ti+Si−1)]

= E[1{Ti=L}e−(α+r)Ti ]E[e−(α+r)Si−1)]

= e−(α+r)LP(T1 = L)E[e−(α+r)Si−1)].

Note that

E[e−(α+r)Si−1)] = E[e−(α+r)(T1+T2+...+Ti−1)] = (E[e−(α+r)T1)i−1

since (Ti) are i.i.d. random variables. Thus

E[1{Ti=L}e−(α+r)Si ] = e−(α+r)LP(T1 = L)(E[e−(α+r)T1 ])i−1

Similar argument leads

E[1{Ti<L}e−(α+r)Si ] = E[e−(α+r)T11{T1<L}](E[e
−(α+r)T1 ])i−1.

It follows that

E[Yie
−αSi ] =

(

E[CP]e
−(α+r)LP(T1 = L)+E[CF ]E[e

−(α+r)T11{T1<L}]
)

(E[e−(α+r)T1 ])i−1. (11)

Substituting (11) into (10) we get

∫ ∞

0
E[K(t,r)]e−αtdt =

1

α

∞

∑
i=1

(

E[CP]e
−(α+r)LP(T1 = L)+E[CF ]E[e

−(α+r)T11{T1<L}]
)

(E[e−(α+r)T1 ])i−1.

Since 0 < e−(α+r)T1 < 1 with probability 1, and hence 0 < E[e−(α+r)T1 < E[1] = 1, it follows that

∫ ∞

0
K(t,r)e−αtdt =

E[CP]e
−(α+r)LP(T1 = L)+E[CF ]E[e

−(α+r)T11{T1<L}]

α(1−E[e−(α+r)T1 ])
.

As a corollary, in case of no discounting, the Laplace transform of K(t) defined in (5) is

∫ ∞

0
E[K(t)]e−αtdt =

E[CP]e
−αLP(T1 = L)+E[CF ]E[e

−αT11{T1<L}]

α(1−E[e−αT1])
.
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5 Variance of the total maintenance costs

The second result in this paper is the Laplace transform of the second moment of the total maintenance costs defined in
(6) as stated in the following theorem.

Theorem 2. For α > 0,

∫ ∞

0
E[K(t,r)2]e−αtdt =

E[C2
P]A01 +E[C2

F ]A02

α(1−B)
+

2(E[C2
P]A1 +E[CPCF ]A2 +E[CPCF ]A3 +E[C2

F ]A4)

α(1−B)(1−C)
(12)

where

A01 = e−(α+2r)LP(T1 = L), A02 = E[1{T1<L}e−(α+2r)T1 ],

A1 = e−(2α+3r)LP(T1 = L), A2 = e−(α+2r)LP(T1 = L)E[1{T1<L}e−(α+r)T1 ],

A3 = e−(α+r)LP(T1 = L)E[1{T1<L}e−(α+2r)T1 ], A4 = e−(α+r)LP(T1 = L)E[1{T1<L}e−(α+2r)T1 ],

B = E[e−(α+2r)T1 ], and C = E[e−(α+r)T1 ].

Proof. Let Yi =CPe−rSi1{Ti=L}+CFe−rSi1{Ti<L}. Then from (6) we have

K(t,r)2 =

(

N(t)

∑
i=1

Yi

)2

=
N(t)

∑
i=1

Y 2
i + 2

N(t)−1

∑
i=1

N(t)

∑
j=i+1

YiYj (13)

Note that

Y 2
i = [CP1{Ti=L}+CF1{Ti<L}]

2(e−rSi)2

= [C2
P1{Ti=L}+ 2CPCF 1{Ti=L}1{Ti<L}+C2

F1{Ti<L}]e
−2rSi (14)

and

YiYj = [CP1{Ti=L}+CF1{Ti<L}]e
−rSi [CP1{Tj=L}+CF1{Tj<L}]e

−rS j

= [C2
P1{Ti=L}1{Tj=L}+CPCF 1{Ti=L}1{Tj<L}+CPCF 1{Ti<L}1{Tj=L}+C2

F1{Ti<L}1{Tj<L}]e
−rSie−rS j (15)

From (13) we get

E[K(t,r)2] = E

[

N(t)

∑
i=1

Y 2
i + 2

N(t)−1

∑
i=1

N(t)

∑
j=i+1

YiYj

]

= E

[

∞

∑
i=1

Y 2
i 1{N(t)≥i}+ 2

∞

∑
i=1

∞

∑
j=i+1

YiYj1{N(t)−1≥i}1{N(t)≥ j}

]

= E

[

∞

∑
i=1

Y 2
i 1{Si≤t}+ 2

∞

∑
i=1

∞

∑
j=i+1

YiYj1{Si+1≤t}1{S j≤t}

]

.

The Laplace transform of E[K(t,r)2] can be calculated as follows.

∫ ∞

0
E[K(t,r)2]e−αtdt =

∫ ∞

0
E

[

∞

∑
i=1

Y 2
i 1{Si≤t}+ 2

∞

∑
i=1

∞

∑
j=i+1

YiYj1{Si+1≤t}1{S j≤t}

]

e−αtdt

=
∞

∑
i=1

E

[

∫ ∞

0
Y 2

i 1{Si≤t}e−αtdt

]

+ 2
∞

∑
i=1

∞

∑
j=i+1

E

[

∫ ∞

0
YiYj1{Si+1≤t}1{S j≤t}e−αtdt

]

=
1

α

∞

∑
i=1

E
[

Y 2
i e−αSi

]

+
2

α

∞

∑
i=1

∞

∑
j=i+1

E
[

YiYje
−αS j

]

(16)

Now, from (14) we get

E[Y 2
i e−αSi ] = E[(C2

P1{Ti=L}+ 2CPCF 1{Ti=L}1{Ti<L}+C2
F1{Ti<L})e

−(α+2r)Si ]

= E[C2
P1{Ti=L}e−(α+2r)Si ]+ 2E[CPCF 1{Ti=L}1{Ti<L}e−(α+2r)Si ]+E[C2

F1{Ti<L})e
−(α+2r)Si ]
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Note that

E[C2
P1{Ti=L}e−(α+2r)Si ] = E[C2

P]e
−(α+2r)LP(Ti = L)E[e−(α+2r)Si−1 ] = E[C2

P]e
−(α+2r)LP(T1 = L)(E[e−(α+2r)T1])i−1.

Clearly,

E[CPCF 1{Ti=L}1{Ti<L}e−(α+2r)Si ] = 0

since 1{Ti=L}=1 and 1{Ti<L} = cannot occur at the same poin. The last term,

E[C2
F 1{Ti<L})e

−(α+2r)Si ] = E[C2
F ]E[1{Ti<L}e−(α+2r)Ti ]E[e−(α+2r)Si−1]

= E[C2
F ]E[1{T1<L}e−(α+2r)T1 ](E[e−(α+2r)T1 ])i−1.

So we have

E[Y 2
i e−αSi ] = E[C2

P]e
−(α+2r)LP(T1 = L)(E[e−(α+2r)T1])i−1 +E[C2

F ]E[1{T1<L}e−(α+2r)T1 ](E[e−(α+2r)T1 ])i−1

=
(

E[C2
P]e

−(α+2r)LP(T1 = L)+E[C2
F ]E[1{T1<L}e−(α+2r)T1 ]

)

Bi−1 (17)

where B = E[e−(α+2r)T1 ].
Next, using (15) we get

E[YiYje
−αSi ] = E[(C2

P1{Ti=L}1{Tj=L}+CPCF 1{Ti=L}1{Tj<L}+CPCF 1{Ti<L}1{Tj=L}+C2
F1{Ti<L}1{Tj<L})e

−rSie−rS j e−αS j ]

= E[C2
P]E[1{Ti=L}1{Tj=L}e−rSie−(α+r)S j ]+E[CPCF ]E[1{Ti=L}1{Tj<L}e−rSie−(α+r)S j ]

+E[CPCF ]E[1{Ti<L}1{Tj=L}e−rSie−(α+r)S j ]+E[C2
F ]E[1{Ti<L}1{Tj<L}e−rSie−(α+r)S j ]. (18)

Next, we calculate the expectations in (18) as follows.

First,

E[1{Ti=L}1{Tj=L}e−rSie−(α+r)S j ] = E
[

1{Ti=L}e−rSi1{Tj=L}e−(α+r)[Si+Ti+1+...+Tj ]
]

= E
[

1{Ti=L}e−(α+2r)Si1{Tj=L}e−(α+r)[Ti+1+...+Tj ]
]

= E
[

1{Ti=L}e−(α+2r)Tie−(α+2r)Si−11{Tj=L}e−(α+r)[Ti+1+...+Tj ]
]

= E[1{Ti=L}e−(α+2r)Ti ]E[e−(α+2r)Si−1]E[1{Tj=L}e−(α+r)[Ti+1+...+Tj ]]

= e−(α+2r)LP(Ti = L)(E[e−(α+2r)T1 ])i−1e−(α+r)LP(Tj = L)(E[e−(α+r)T1 ]) j−i−1

= e−(2α+3r)LP(T1 = L)2(E[e−(α+2r)T1 ])i−1(E[e−(α+r)T1 ]) j−i−1

= A1Bi−1C j−i−1

where A1 = e−(2α+3r)LP(T1 = L)2, B = E[e−(α+2r)T1 ], and C = E[e−(α+r)T1 ].
Second,

E
[

1{Ti=L}1{Tj<L}e−rSie−(α+r)S j

]

= E
[

1{Ti=L}e−rSi1{Tj<L}e−(α+r)[Si+Ti+1+...+Tj ]
]

= E
[

1{Ti=L}e−(α+2r)Si1{Tj<L}e−(α+r)[Ti+1+...+Tj ]
]

= E

[

1{Ti=L}e−(α+2r)Tie−(α+2r)Si−11{Tj<L}e−(α+r)[Ti+1+...+Tj ]
]

= E[1{Ti=L}e−(α+2r)Ti ]E[e−(α+2r)Si−1 ]E[1{Tj<L}e−(α+r)[Ti+1+...+Tj ]]

= e−(α+2r)LP(Ti = L)(E[e−(α+2r)T1 ])i−1(E[e−(α+r)T1 ]) j−i−1E[1{Tj<L}e−(α+r)Tj ]

= e−(α+2r)LP(T1 = L)E[1{T1<L}e−(α+r)T1 ](E[e−(α+2r)T1 ])i−1(E[e−(α+r)T1 ]) j−i−1

= A2Bi−1C j−i−1

where A2 = e−(α+2r)LP(T1 = L)E[1{T1<L}e−(α+r)T1 ].
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Third,

E[1{Ti<L}1{Tj=L}e−rSie−(α+r)S j ] = E
[

1{Ti<L}e−rSi1{Tj=L}e−(α+r)[Si+Ti+1+...+Tj ]
]

= E
[

1{Ti<L}e−(α+2r)Si1{Tj=L}e−(α+r)[Ti+1+...+Tj ]
]

= E
[

1{Ti<L}e−(α+2r)Tie−(α+2r)Si−11{Tj=L}e−(α+r)[Ti+1+...+Tj ]
]

= E[1{Ti<L}e−(α+2r)Ti ]E[e−(α+2r)Si−1]E[1{Tj=L}e−(α+r)[Ti+1+...+Tj ]]

= E[1{T1<L}e−(α+2r)T1 ](E[e−(α+2r)T1 ])i−1e−(α+r)LP(T1 = L)(E[e−(α+r)T1 ]) j−i−1

= e−(α+r)LP(T1 = L)E[1{T1<L}e−(α+2r)T1 ](E[e−(α+2r)T1 ])i−1(E[e−(α+r)T1 ]) j−i−1

= A3Bi−1C j−i−1

where A3 = e−(α+r)LP(T1 = L)E[1{T1<L}e−(α+2r)T1 ].
Fourth,

E[1{Ti<L}1{Tj<L}e−rSie−(α+r)S j ] = E
[

1{Ti<L}e−rSi1{Tj<L}e−(α+r)[Si+Ti+1+...+Tj ]
]

= E
[

1{Ti<L}e−(α+2r)Si1{Tj<L}e−(α+r)[Ti+1+...+Tj ]
]

= E
[

1{Ti<L}e−(α+2r)Tie−(α+2r)Si−11{Tj<L}e−(α+r)[Ti+1+...+Tj ]
]

= E[1{Ti<L}e−(α+2r)Ti ]E[e−(α+2r)Si−1]E[1{Tj<L}e−(α+r)[Ti+1+...+Tj ]]

= E[1{T1<L}e−(α+2r)T1 ](E[e−(α+2r)T1 ])i−1E[1{T1<L}e−(α+2r)T1 ](E[e−(α+r)T1 ]) j−i−1

= E[1{T1<L}e−(α+2r)T1 ]E[1{T1<L}e−(α+r)T1 ](E[e−(α+2r)T1 ])i−1(E[e−(α+r)T1 ]) j−i−1

= A4Bi−1C j−i−1

where A4 = E[1{T1<L}e−(α+2r)T1 ]E[1{T1<L}e−(α+r)T1 ]. So we have

E[YiYje
−αS j ] = (E[C2

P]A1 +E[CPCF ]A2 +E[CPCF ]A3 +E[C2
F ]A4)B

i−1C j−i−1 (19)

Substituting (17) and (19) into (16) we get

∫ ∞

0
E[K(t,r)2]e−αtdt =

1

α

∞

∑
i=1

E
[

Y 2
i e−αSi

]

+
2

α

∞

∑
i=1

∞

∑
j=i+1

E
[

YiYje
−αS j

]

=
1

α

∞

∑
i=1

(

E[C2
P]e

−(α+2r)LP(T1 = L)+E[C2
F ]E[1{T1<L}e−(α+2r)T1 ]

)

Bi−1

+
1

α

∞

∑
i=1

∞

∑
j=i+1

(E[C2
P]A1 +E[CPCF ]A2 +E[CPCF ]A3 +E[C2

F ]A4)B
i−1C j−i−1

=
E[C2

P]e
−(α+2r)LP(T1 = L)+E[C2

F ]E[1{T1<L}e−(α+2r)T1 ]

α(1−B)

+
2(E[C2

P]A1 +E[CPCF ]A2 +E[CPCF ]A3 +E[C2
F ]A4)

α(1−B)(1−C)

=
E[C2

P]A01 +E[C2
F ]A02

α(1−B)
+

2(E[C2
P]A1 +E[CPCF ]A2 +E[CPCF ]A3 +E[C2

F ]A4)

α(1−B)(1−C)
(20)

where A01 = e−(α+2r)LP(T1 = L) and A02 = E[1{T1<L}e−(α+2r)T1 ].

As a corollary, in case of without discounting, the Laplace transform of E[K(t)2] can be obtained by simply replacing
r with 0 in (20). The mean E[K(t,r)] and the second moment E[K(t,r)2] can be obtained by inverting their Laplace
transforms as stated in Theorem 1 and 2, and then we can calculate Var[K(t,r)] using the well known formula.
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6 A numerical example: optimal maintenance strategy

Suppose that performance of a system deteriorates in accordance with a stochastic gamma process (X(t), t ≥ 0) with the
mean function E[X(t)] = µt = 6t and the variance Var[X(t)] = σ2t = 2t. Hence, µ = 6 and σ2 = 2. Suppose also that
the failure of the system occurs when the deterioration level exceeds a specified level y = 15. We assume that the cost for
preventive maintenance CP and the cost for corrective maintenance CF are independent random variables with E[CP] = 1
currency unit and E[CF ] = 3 currency unit. Setting the discount factor r = 0.1 we will calculate the mean and variance of
K(t,r) in the finite time interval [0,50].

Recall from (7) that for α > 0,

∫ ∞

0
E[K(t,r)]e−αtdt =

E[CP]e
−(α+r)LP(T1 = L)+E[CF ]E[e

−(α+r)T11{T1<L}]

α(1−E[e−(α+r)T1])
. (21)

The Laplace transform of E[K(t,r) can be calculated as follows. Firstly, note that T1 = L if and only if X(L)≤ y. It follows
that

P(T1 = L) = P(X(L)≤ y) =

∫ y

0

ba1xa1−1e−bx

Γ (a1)
dx =

1

Γ (a1)

∫ by

0
za1−1e−zdz = G(b1,a1) (22)

where a1 = µ2L/σ2 = 18L, b1 = by = µy/σ2 = 3y, and

G(x,a) =
1

Γ (a)

∫ x

0
za−1e−zdz

is the regularized lower incomplete gamma function.
Next,

E[e−(α+r)T11{T1<L}] =
∫ L−

0
e−(α+r)zdF(z)

where F(z) = P(T1 ≤ z). We need a numerical integration method to calculate this integral. Using the trapezoidal rule we
get

∫ L−

0
e−(α+r)zdF(z)≈

n

∑
j=1

e−(α+r)( j−0.5)L/n[F( jL/n)−F(( j− 1)L/n)].

Since T1 > s if and only if X(s)< y, it follows that

F( jL/n) = P(T1 ≤ jL/n) = 1−P(T1 > jL/n) = 1−P(X( jL/n)≤ y)

= 1−

∫ y

0

ba2xa2−1e−bx

Γ (a2)
dx = 1−

1

Γ (a2)

∫ by

0
za2−1e−zdz = 1−G(b1,a2)

where a2 = µ2 jL/(nσ2) = 18 jL/n. Similarly

F(( j− 1)L/n) = 1−G(b1,a3)

where a3 = µ2( j− 1)L/(nσ2) = 18( j− 1)L/n. So we get

E[e−(α+r)T11{T1<L}]≈
n

∑
j=1

e−(α+r)( j−0.5)L/n[G(b1,a3)−G(b1,a2)]. (23)

The expected value E[e−(α+r)T1 ] in the denominator of (21) can be calculated as follows.

E[e−(α+r)T1 ] = E[e−(α+r)T11{T1<L}]+E[e−(α+r)T11{T1=L}]+E[e−(α+r)T11{T1>L}]. (24)

The first term can be approximated by (23). The second term is

E[e−(α+r)T11{T1=L}] = e−(α+r)LP(T1 = L). (25)

Clearly the last term is equal to zero. So we get

E[e−(α+r)T1 ]≈
n

∑
j=1

e−(α+r)( j−0.5)L/n[G(b1,a3)−G(b1,a2)]+ e−(α+r)LG(b1,a1). (26)
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Substituting (22), (23), and (26) into (21) we get

∫ ∞

0
E[K(t,r)]e−αtdt ≈

E[CP]e
−(α+r)LG(b1,a1)+E[CF ]∑

n
j=1 e−(α+r)( j−0.5)L/n[G(b1,a3)−G(b1,a2)]

α
(

1−∑n
j=1 e−(α+r)( j−0.5)L/n[G(b1,a3)−G(b1,a2)]+ e−(α+r)LG(b1,a1)

) . (27)

Next we calculate the Laplace transform of E[K(t,r)2]. We have from (12) that

∫ ∞

0
E[K(t,r)2]e−αtdt =

E[C2
P]A01 +E[C2

F ]A02

α(1−B)
+

2(E[C2
P]A1 +E[CPCF ]A2 +E[CPCF ]A3 +E[C2

F ]A4)

α(1−B)(1−C)

where

A01 = e−(α+2r)LP(T1 = L), A02 = E[1{T1<L}e−(α+2r)T1 ],

A1 = e−(2α+3r)LP(T1 = L), A2 = e−(α+2r)LP(T1 = L)E[1{T1<L}e−(α+r)T1 ],

A3 = e−(α+r)LP(T1 = L)E[1{T1<L}e−(α+2r)T1 ], A4 = e−(α+r)LP(T1 = L)E[1{T1<L}e−(α+2r)T1 ],

B = E[e−(α+2r)T1 ], and C = E[e−(α+r)T1 ].

We need to calculate P(T1 = L) and expectations of the form E[e−β T1 ] and E[1{T1<L}e−β T1 ] where β = α + r or

β = α + 2r. But we can use the results in formulae (22), (23), and (26).

To calculate E[K(t,r)] and E[K(t,r)2] we use the numerical inversion algorithm in [1] to invert their Laplace
transforms. As an ilustration we calculate E[K(50,0.1)] for several values of L, and the result is graphed in Figure 1.

Fig. 1: The graph of E[K(50,0.1)]

From Figure 1 we see that the optimal period L for preventive maintenance which minimize the expected value
E[K(50,0.1)] over the bounded time interval [0,50] is approximately 2. Setting L = 2 and the other parameters remain the
same we get E[K(50,0.1)] = 5.1901, E[K(50,0.1)2] = 27.618. So we get the variance Var[K(50,0.1)] = E[K(50,0.1)2]−
(E[K(50,0.1)])2 = 27.618–5.19012 = 0.681, and hence the standard deviation of K(50,0.1) is equal to 0.825.

7 Conclusion

In this paper we derived the formulae for the Laplace transforms of the mean and second moment of the discounted
total maintenance cost of a system in the time interval [0, t] defined in (6) where the system degradation is modelled
by a gamma stochastic process. Using these results we may obtain an optimal period for the preventive maintenance
period which minimizes the mean of the discounted total maintenance cost in the time interval [0, t], and also calculate the
variance (or standard deviation) of the discounted total maintenance cost. An example is given to illustrate how to find the
optimal period of the preventive maintenance. For further research one may consider the probability distribution of the
discounted total maintenance cost and its limiting properties.
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