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Abstract: In this paper, three new estimation methods are proposed to fit a multiple structural measurement error model with two

independent variables when all variables are subject to errors. The first two procedures are modifications of the Theil and Siegel

estimators, where they involved the proposed Weighted Latent Variables method, while the third procedure is Iterative Weighted

Grouping, an extension of Wald estimation that involved the Weighted Grouping method. A Monte Carlo experiment is performed to

investigate the performance of the new estimators compared with the classical estimation methods; the Maximum Likelihood

Estimator and Method of Moment, in terms of root mean square error and its bias. The outcomes of the simulation demonstrated that

the suggested estimators are more effective than conventional estimators. In addition, real data analysis is discussed to examine the

relationship between national gross domestic product, unemployment rate, and human development index, after applying the proposed

estimation methods.
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1 Introduction

When modeling the relationship between two variables, one can use the structural Measurement Error Model (MEM)
[26,39] as an extension of the simple linear regression model by assuming both variables (response and predictor) are
measured with independent errors. This paper discusses linear MEMs with vector-valued explanatory variables, that is,
with more than one x variable. This is an extension of the simple MEM model.

Consider the equation error model as:

ηi = α + β ξii1 ++ β ξii2 + .....++ β ξiik i = 1,2, ...,n, j = 1,2, ....,n (1)

where

yi = ηi + εi and xi j = ξi j + δi j for i = 1,2, . . . ,n and j = 1,2, . . . ,k. (2)

The measurement errors (δi j ,εi) are independent and identically distributed random vectors, and the latent variable
ξi j is assumed to be independent and normally distributed in general. However, when there is skewness, outliers, or
multimodality, the true distribution of the latent variable ξi j deviates from normality. As a result, selecting more flexible
models can be a useful alternative to the standard one [14].

The main problem in Equation (1) is estimating the unknown parameters α and β , and comprehensive reviews of
relevant techniques can be found in [12]. The classical estimation method such as the Maximum Likelihood Estimation
(MLE) assumes that the measurement error is normally distributed and independent of the true value, and thus is not well-
suited for estimating measurement error models. Therefore, researchers seek to find alternative estimation procedures
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to solve the problem that occurs when using the MLE [13,26,39]. In this paper, an iterative estimation and weighted
grouping method are proposed to fit the multiple structural MEM.

Although there are numerous methods for correcting the effects of measurement error, they become unreliable when
their underlying assumptions are violated. When assumptions about the distribution of error terms are difficult or
impossible to test with the available data, the problem of inaccurate modeling is further compounded. In the literature on
measurement error, it is common to assume an additive model with normally distributed errors, which is a simple and
attractive assumption. However, in many practical applications, this assumption is frequently found to be incorrect [15].

Many authors have discussed several estimation methods to fit the structural MEM. The common ones are the least
squares and the MLE methods. After considering some prior assumptions, the MLE method is used in [36]. Also, [9]
wrote a long summary, detailing how to fit a straight-line problem by using MLE when both variables are measured with
errors. Additionally, [26] presented a general review of normal theory for the structural MEM. Moreover, [5] showed that
the General Maximum Entropy (GME) approach outperforms the Partial Least Squares (PLS) in terms of mean squares
of errors (MSE) when investigating the distributions without relying on the classical assumptions. According to [42],
adaptation to abnormal errors is a significant area of research, and the nonparametric or semiparametric methods are
substantial in providing flexible ways to correct the effects of measurement error because they avoid making assumptions
on the distribution of the error terms. [20,36,44] are among those who participated in this work. On the other hand,
[12] proposed the use of an empirical Bayesian approach with discretionary Expectation-Maximization (EM) algorithms
to compute MLE for MEMs with or without equation error. Similar results were obtained by [11] in utilizing the EM
algorithm for heteroscedastic MEM to derive iterative MLE formulas. However, [35] proposed a generalized method
of average grouping as another type of estimation approach. The approach suggests plotting the points of the first-third
and last-third means of the whole observations to get a more accurate estimate for the slope compared to the Walds
method. Meanwhile, [5,7] have recently used information theory concepts such as entropy and mutual information to
assess the quality of the information provided by the observed data and the extent to which it can be used to estimate
the true values of the underlying variables. The non-parametric approaches have also been proposed for modeling and
correcting for measurement error in several contexts, including measurement error models (MEMs) as in [3,4,6,34,44].
More information on various estimation methods in the context of the MEM can be further found in [16,22,23,26,31,41,
42].

This paper introduces three new non-parametric estimating approaches: an iterative weighted procedure (IWP) and
two modifications of Theil and Siegel. The IWP proposed is based on the multiplication of the weighted latent variables
by the observation to estimate parameters, which differs from [43], in which the estimation was based on a multivariate
median.

The rest of the paper is organized as follows: Section 2 reviews the two classical estimation methods; the MLE and
Method of Moments (MOM). Meanwhile, the three new procedures: the iterative weighted and the modifications of Theil
and Siegel are presented in Section 3. The performances of the new procedures are illustrated in Section 4 by conducting
a Monte Carlo simulation, and a real data application is presented in Section 5. Section 6 concludes the article.

2 Classical Estimation Methods for Multiple MEM

This section briefly discusses the common estimation techniques used for fitting a model with structural measurement
error. The techniques are the Maximum Likelihood Estimation and Method of Moment.

2.1 Maximum Likelihood Estimator

The MLE is a classical and widely used estimation method for MEMs. However, MLE may not always be the best
method for estimating parameters in MEMs, particularly if the assumptions of the model are not well-established or if the
measurement error distribution is not known [38,29]. Consider equations (1) and (2) that can be rewritten in matrix form
as:

η = ξ ′β ; Zt = zt + εt . (3)

where

Zt =

(

Xt

Yt

)

; εt =

(

δt

εt

)

.

Then, under the multivariate normal distribution assumption (i.e., εt ∼ NI(0,Σεε)), the variance-covariance matrix is
known and given as:

Σεε =ϒεε σ2
.
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The unknown parameters can be estimated by finding the first derivative of the logarithm of the likelihood function, which
is based on a random sample of size n. This is written as

logL = c−
n

2
log |2πϒεεσ2|−

1

2σ2

n

∑
t=1

(Zt − zt)
′ϒ−1

εε (Zt − zt). (3)

Solving the first-order conditions of the log-likelihood function, the unknown parameters can be estimated as:

β̂ =

[

MXX −

(

λ̂ −
1

n
α

)

Sδδ

]−1[

MXY −

(

λ̂ −
1

n
α

)

Sδε

]

.

where

Mzz =
1

n− 1
(Zt − Z̄)′(Zt − Z̄),

λ̂ is the smallest root of |MXX −λ Sεε |= 0, and Sεε is an unbiased estimator of Σεε .

2.2 Method of Moments

The method of moments (MOM) is an approach for estimating model parameters by equating sample moments, such
as mean and variance, to population moments and solving for unknowns. In measurement error models (MEM), MOM
effectively accounts for measurement error and potential biases, providing an estimate of the true variable value. Its
advantages include computational simplicity and broad applicability. Additionally, MOM shows greater resilience to non-
classical measurement errors compared to maximum likelihood estimation (MLE), as it does not assume independence
between the measurement error and the true value. The MOM was used in [33] by utilizing the sample and population
moments, while [17]utilized estimation of the parameters of a straight line and of the variances of the variables if they are
both subject to error. In more recent years, [24,25,27,30] have explored the use of moments to develop optimal estimators,
particularly those based on higher moments. [19] has developed several estimators of slope using the MOM but has not
provided information about estimators based on higher moments. Following [30] the MOM estimator of the model given
in eq. (1) can be derived by computing the deviation of all variables given in the model. This is written as:

η ′ = η − η̄; ξ ′
i = ξi − ξ̄i; y′ = y− ȳ; x′i = xi − x̄i. (4)

Also, if the error terms are assumed to be symmetrically distributed, then

E(y′x′2i ) =
k

∑
j=1

β jE(x
′
jx
′2
i ); i = 1,2, . . . ,m.

Therefore, from
Aβ = B,

we have
β = A−1B.

where
A =

(

ai j

)

with ai j = E(x′2i x′2j ),

B′ =
(

E(y′x′21 ),E(y
′x′22 ), . . . ,E(y

′x′2m)
)

,

and
β ′ = (β1,β2, . . . ,βm).

Finally, β̂ = Â−1B̂ is a consistent estimator provided that |A| 6= 0, where Â and B̂ are the sample estimates of A and B.
Therefore, unless additional information about the relationship beyond the observations is available, only MOM estimators
can be used, and the variances of such estimators remain unknown.

3 The New Proposed Procedures.

This section discusses the proposes three new procedures for fitting a multiple structural measurement error model. The
new procedures are modifications of the Theil and Siegel methods, which involved the Weighted Latent Variables
procedures; thirdly, the proposed Iterative Weighted procedure involves the weighted grouping method as opposed to the
Wald-type grouping method.
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3.1 The Weighted Latent Variables Method

The Weighted Latent Variable Method, on the other hand, assumes that the measurement error is non-classical and may be
correlated with the true value of the independent variable. It involves estimating a latent variable model that includes the
true value of the independent variable and the observed variable as well as their error terms. The model is then weighted
to account for the correlation between the error terms. The general idea of this procedure is summarized as follows:

Sort the y’s in ascending order from the smallest to the largest values with their associated (x1[i],x2[i]), i = 1,2, . . . ,n.

Compute the estimators, β̂i jk as:

β̂i jk = wk

(

y j − yi

x j − xi

)

, k = 1,2, . . . ,n, i, j = 1,2, . . . ,n, i < j, (4)

where wk is the weighted group.
Determine the weight wk for two cases:
**Case One**: The weight is computed as:

wk = cov(xk,y). (5)

**Case Two**: The weight is computed as:

wk =
σ2

xk

∑n
k=1 σ2

xk

. (6)

Theorem 1.Assuming that the models in eq. (1) and (2) are satisfied, then the estimator based on the Weighted Grouping

Method given in eq. (5) is a biased estimator depending on wk.

Proof.

β̂i jk = wk

(

y j − yi

x j − xi

)

α̂ = ȳ−
n

∑
k=1

β̂kx̄k

E(β̂i jk) = E

(

wk

(

y j − yi

x j − xi

))

= wkE(β̂i jk)

Then E(β̂i jk) = wkβi jk

with associated variance given as:

Var(β̂i jk) =
1

(wkx j −wkxi)2
Var(wky j,wkyi)

=
w2

kVar(y j)+w2
kVar(yi)− 2w2

kCov(y j,yi)

(wkx j −wkxi)2

Also,

E(α̂) = E

(

yi −
n

∑
k=1

β̂kxik

)

=

(

α +
n

∑
k=1

β̂kxik −
n

∑
k=1

β̂kxik

)

= α

with

Var(α̂) = Var

(

yi −
n

∑
k=1

β̂kxik

)

= Var(yi)+ xikVar(β̂k)− 2Cov(y j,yi)

This new proposed estimation procedure was then embedded in the Thiel and Siegel estimators (later called modified
Theil and modified Siegel estimators) as follows:
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3.1.1 Modified Theil Estimator

The estimator is based on the median of the slopes of all possible pairs of observations, and it is less sensitive to outliers
than the ordinary least squares (OLS) estimator. Thiel [21] has proposed a free distribution method without relying on the
classical assumption of the error terms in MEM by the repeated median method. In this method, the data are ordered in
pairs (xi,yi) by the yi’s. The modified procedure can be summarized as follows:

1.Sort the y’s in ascending order from the smallest to the largest values with their associated (x1[i],x2[i]), i = 1,2, . . . ,n.
2.Find all pairs of observations by assuming that all (x1[i],x2[i]) are distinct, and given that:

β̂i jk = wk

(

y j − yi

x j − xi

)

, i, j = 1,2, . . . ,n i < j,

which yields
(

n
2

)

slope values.
3.Find the median of the cross medians by:

β̂k = med(βi jk). (8)

4.Finally, the intercept can be computed as:

α = med

(

yi −
n

∑
k=1

β̂kxik

)

.

3.1.2 Modified Siegel Estimator

As proposed in [1], the method is based on the repeated median for estimating the unknown parameters in MEM. This
method can be used to estimate a real parameter β , whenever there is a positive integer k such that every subset of k data

point determines an estimate β̂ . The modified procedure can be summarized as follows: Sort the y’s in ascending order
from the smallest to the largest values with their associated (x1[i],x2[i]), i = 1,2, . . . ,n.

Find all pairs of observations, assuming that all (x1[i],x2[i]) are distinct, and given that:

β̂i jk = wk

(

y j − yi

x j − xi

)

, i, j = 1,2, . . . ,n with i < j;

which yields
(

n
2

)

slope values.
Find the median of the cross medians by:

β̂ik = med(βi jk).

Determine the estimate of the slope by taking:

β̂k = med(β̂ik). (9)

Finally, the intercept can be computed as:

α = med

(

yi −
n

∑
k=1

β̂kxik

)

.

3.2 The Weighted Grouping Method

The third new procedure proposed in this article involved the Weighted Grouping Method (WGM) where the measurement
error is assumed classical and uncorrelated with the true value of the independent variable. Therefore, this section gives
a brief introduction of the method. The method involves grouping the data by the values of the independent variable and
then estimating the slope of the regression line within each group. The estimates are then combined using weights based
on the size of each group. The general procedure of the WGM is summarized as follows: Order the data from the smallest
to the largest with their respective associated yi’s, i = 1,2, . . . ,n.

Divide the data into r subgroups of equal size (i.e., the sub-sample size is k) such that r ≤
⌊

n
2

⌋

.
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Compute the parameters, β̂i, as:

β̂i =
wimȳim −wi(m−1)ȳi(m−1)

wimx̄im −wi(m−1)x̄i(m−1)
, m = 1,2, . . . ,r, i = 1,2, . . . ,n. (10)

where wim is the weighted group.
Determine the weight wim for two cases:
(i) Case One: weight is computed as:

wi(m−1) = cov(xi(m−1),y(m−1)). (11)

wim = cov(xim,ym). (12)

(ii) Case Two: weight is computed as:

wim =
σ2

xim

∑k
i=1 σ2

xi

. (13)

wi(m−1) = 1−wim. (14)

where:

∑(wim +wi(m−1)) = 1.

Theorem 2.Assuming that the model in eq. (1) and (2) are satisfied, then the estimator based on eq. (10) is unbiased if

and only if wim = wi(m−1) in the first case and wim = wi(m−1) = 0.5 for the second case.

Proof.

β̂i =
wimȳim −wi(m−1)ȳi(m−1)

wimx̄im −wi(m−1)x̄i(m−1)
.

α̂ = ȳ−
k

∑
i=1

β̂ix̄i.

E(β̂i) = E

(

wimȳim −wi(m−1)ȳi(m−1)

wimx̄im −wi(m−1)x̄i(m−1)

)

=
wim(α + β̂ix̄im)−wi(m−1)(α + β̂ix̄i(m−1))

wimx̄im −wi(m−1)x̄i(m−1)
.

By using wim = wi(m−1), then:

E(β̂i) = βi.

The associated variance is given as:

Var(β̂i) =
1

(wimx̄im −wi(m−1)x̄i(m−1))2
Var(wimȳim,wi(m−1)ȳi(m−1)).

=
w2

imVar(ȳim)+w2
i(m−1)Var(ȳi(m−1))− 2wimwi(m−1)Cov(ȳim, ȳi(m−1))

(wimx̄im −wi(m−1)x̄i(m−1))2
.

Also,

E(α̂) = E

(

ȳ−
k

∑
i=1

β̂ix̄i

)

=

(

α +
k

∑
i=1

β̂ix̄i −
k

∑
i=1

β̂ix̄i

)

= α.
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with

Var(α̂) = Var

(

ȳ−
k

∑
i=1

β̂ix̄i

)

= Var(ȳ)+ x̄iVar(β̂i)− 2Cov(ȳim, ȳi(m−1)).

3.2.1 The Iterative Weighted Method

In this section, the proposed Iterative Weighted Method (IWM) is presented where it involves the modification of the
WGM presented earlier. The modification was suggested to account for the fact that the grouping procedure may introduce
bias in the estimation of the slope. The iterative procedure proposed is an extension of Walds iterative procedure described
in [32]. The general procedure of this new IWM can be summarized as follows: Sort the y’s in ascending order from the
smallest to the largest values with their associated (x1[i],x2[i]), i = 1,2, . . . ,n.

Divide the data into r subgroups of equal size (i.e., the sub-sample size is k) such that r ≤
⌊

n
2

⌋

.

Compute the mean for each subgroup
(

x̄1 j, x̄2 j, ȳ j

)

; j = 1,2, . . . ,r.
Compute the pairwise slopes continuously and gradually from each subgroup to another subgroup as illustrated in

Figure 1.
The i-th slope can be computed as:

β̂ik =
wimȳim −wi(m−1)ȳi(m−1)

wimx̄im −wi(m−1)x̄i(m−1)
, i = 1,2, . . . ,n, m = 1,2, . . . ,r, k = 1,2, . . . ,(r− 1). (15)

Fig. 1: An Illustration of the Pairwise Slope Between the Subgroups.

.
Finally, the unknown parameters of MEM can be estimated as:

β̂ik =
1

r− 1

r−1

∑
i=1

β̂ki; and α̂ = ȳ−
r−1

∑
k=1

β̂kx̄k. (16)

4 Monte Carlo Experiment

Two random samples: inlier and outlier samples, based on 10,000 random samples each of size n were generated from the
standard normal MEM of Equation (1). These samples were studied under the following procedures and assumptions.

Order the data from the smallest to the largest with their respective associated Yi’s, i = 1,2, . . . ,n, by using Eq. (1) and
(2).

Set the initial values as α = 1, β1 = 2, β2 = 3, σ2
ε = 1, σ2

δ1
= 1, and σ2

δ2
= 1.

Generate the error terms from a standard normal distribution.
Consider four different data sizes: n = 50, 100, 200, and 500.
Contaminate the data with outliers. The last observation was deleted and replaced with the outlier generated according

to the following different cases:

–Outliers only in y (εi ∼ N(0,σ2
ε )), σ2

ε = 16.
–Outliers only in x1 (δ1 ∼ N(0,σ2

δ1
)), σ2

δ1
= 16.

–Outliers only in x2 (δ2 ∼ N(0,σ2
δ2
)), σ2

δ2
= 16.

–Outliers in both x1 and x2 (δ1 ∼ N(0,σ2
δ1
) and δ2 ∼ N(0,σ2

δ2
)), (σ2

δ1
,σ2

δ2
) = (16,16).
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–Outliers in each of y, x1, and x2, (σ2
ε ,σ

2
δ1
,σ2

δ2
) = (16,16,16).

The properties of these estimators were investigated by using the simulated bias and mean square error (MSE) defined
as:

Bias =
1

10000

10000

∑
i=1

(µ̂i −φ);

MSE =
1

10000

10000

∑
i=1

(µ̂i −φ)2 (17)

where µ̂i is the estimate given by one of the proposed estimators for the i-th sample.

Tables 1-6 present the bias and MSE values of α̂ and β̂ for each contaminated case with different sample sizes: n= 50,
100, 200, and 500. The simulated results indicate that the MSE decreases as the sample size increases.

n Parameter Statistic Weight

case 1

Weight

case 2

Classical

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

MLE MOM

50 α̂ Bias 0.0005 -0.0006 -0.0103 0.0001 0.0003 -0.0002 0.0939 -0.006 0.0218 0.2698

MSE 0.0006 0.0034 0.0202 0.0126 0.001 0.0035 0.0547 0.0232 0.8163 0.4960

β̂1 Bias -0.0259 -0.0311 0.9631 -0.0569 -0.0001 -0.0291 0.3986 -0.0579 0.6414 0.8068

MSE 0.0345 0.043 0.2909 0.1301 0.0074 0.0376 0.0353 0.0364 0.9786 0.9125

β̂2 Bias -0.0529 -0.0657 0.0239 -0.0784 -0.002 -0.0646 0.0265 -0.0784 -0.7697 -0.6759

MSE 0.1414 0.1768 0.1926 0.1104 0.0041 0.1695 0.0241 0.0221 0.946 0.7497

100 α̂ Bias -0.0002 -0.0001 0.0005 0.0001 0.0001 0.00002 0.0023 -0.001 -0.0014 -0.0495

MSE 0.0001 0.0004 0.0207 0.013 0.0002 0.0005 0.0518 0.0219 0.2334 0.3387

β̂1 Bias -0.013 -0.0156 0.0339 -0.02 -0.0009 -0.0136 0.0488 -0.0194 0.327 0.6429

MSE 0.0171 0.0224 0.201 0.1245 0.0015 0.0176 0.0279 0.0381 0.0782 0.5076

β̂2 Bias -0.0265 -0.0304 0.008 -0.0296 -0.0012 -0.0289 0.0066 -0.0296 -0.8378 0.2111

MSE 0.0707 0.0838 0.0915 0.0877 0.0014 0.0757 0.0209 0.0219 0.8187 0.6803

200 α̂ Bias 0.0001 -0.0001 -0.032 0.0024 0.0 -.00007 -0.0028 0.0021 0.0049 0.0218

MSE 0.0 0.0001 0.0092 0.0055 0.0001 .000063 0.0258 0.0356 0.0926 0.3036

β̂1 Bias -0.0066 -0.0077 0.0188 -0.0078 -0.0003 -0.0065 -0.0017 -0.0098 0.1817 0.3847

MSE 0.0086 0.0114 0.0707 0.0784 0.0004 0.0084 0.0206 0.0247 0.7759 0.4736

β̂2 Bias -0.0134 -0.0146 0.0037 -0.0131 -0.0005 -0.0137 0.0028 -0.0159 -0.8608 0.0768

MSE 0.0359 0.0406 0.0901 0.0743 0.0003 0.036 0.0198 0.0245 0.7925 0.5327

500 α̂ Bias 0.0011 -0.0001 0.051 -0.0014 0.0006 -.00006 -0.001 0.0006 0.0009 0.0034

MSE 0.0004 0.0001 0.0083 0.0028 0.0005 .000008 0.0109 0.0201 0.035 0.589

β̂1 Bias -0.0027 -0.003 0.0063 -0.0055 -0.0002 -0.0026 0.0067 0.0069 0.1203 0.9089

MSE 0.0036 0.0044 0.0172 0.0069 0.0001 0.0034 0.0160 0.0184 0.3831 0.3516

β̂2 Bias -0.0054 -0.0057 0.0026 -0.0013 -0.0003 -0.0053 0.0014 0.002 -0.8712 0.0332

MSE 0.0147 0.0158 0.0811 0.0579 0.0001 0.014 0.0096 0.0087 0.7791 0.424

Table 1: The Bias and MSE of α̂ and β̂ for samples without outlier.
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n Parameter Statistic Weight

case 1

Weight

case 2

Classical

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

MLE MOM

50 α̂ Bias -0.0013 -0.0003 -0.0059 -0.0033 0.0004 0.0002 -0.002 -0.0153 -0.2646 -0.5797

MSE 0.0032 0.004 0.3974 0.2555 0.0023 0.0030 0.6202 0.5925 0.9593 0.9694

β̂1 Bias -0.0271 -0.0289 0.0583 -0.0388 -0.0076 -0.0328 -0.0866 -0.0385 -0.7868 0.4156

MSE 0.0384 0.0381 0.1526 0.137 0.011 0.046 0.1901 0.1899 0.9497 0.8098

β̂2 Bias -0.0531 -0.0649 0.0304 -0.0581 -0.0114 -0.0673 0.0158 -0.058 0.2848 0.2565

MSE 0.143 0.1724 0.2508 0.1696 0.0134 0.1832 0.2543 0.2181 0.5711 0.3642

100 α̂ Bias -0.0002 -0.0001 0.0002 0.0047 0.0003 -0.0001 0.0034 0.0005 -0.009 0.1412

MSE 0.0004 0.0006 0.2862 0.2457 0.0003 0.0004 0.5892 0.5737 0.9498 0.5451

β̂1 Bias -0.0127 -0.0137 0.0326 -0.0195 -0.0034 -0.0149 0.0352 -0.0197 -0.8448 0.4498

MSE 0.017 0.0185 0.1179 0.1300 0.0032 0.0205 0.1461 0.1460 0.9722 0.7382

β̂2 Bias -0.0265 -0.0288 0.0148 -0.0296 -0.0048 -0.0298 0.0152 -0.0296 0.1294 0.1836

MSE 0.071 0.0758 0.2011 0.1989 0.0036 0.0804 0.1937 0.1901 0.3265 0.2918

200 α̂ Bias -0.0001 -0.0001 0.0311 -0.0018 0.0001 0.0001 0.0006 0.0058 0.055 0.0344

MSE 0.0001 0.0001 0.2349 0.2050 0.0001 0.0001 0.4022 0.3127 0.349 0.2656

β̂1 Bias -0.0063 -0.0068 0.0166 -0.0099 -0.0014 -0.0072 0.0249 -0.0099 0.2975 0.3279

MSE 0.0082 0.0092 0.1081 0.995 0.0007 0.0101 0.0841 0.0711 0.2775 0.583

β̂2 Bias -0.0132 -0.014 0.0042 -0.0149 -0.002 -0.0143 0.0036 -0.0149 0.0004 0.0733

MSE 0.0352 0.0376 0.1701 0.1544 0.0012 0.039 0.0914 0.0901 0.2263 0.2811

500 α̂ Bias 0.0001 -0.0001 0.0001 0.0021 -0.0001 -0.0001 0.0001 0.0002 0.0147 -0.0567

MSE 0.001 0.0001 0.2209 0.1998 0.0017 0.0023 0.1292 0.1234 0.2814 0.2213

β̂1 Bias -0.0027 -0.0027 0.0069 -0.004 -0.0004 -0.0029 0.0075 0.0069 0.2372 0.241

MSE 0.0036 0.0038 0.0920 0.0900 0.0002 0.0042 0.0332 0.0311 0.2645 0.2955

β̂2 Bias -0.0054 -0.0055 0.0011 -0.006 -0.0007 -0.0056 0.0011 0.0013 -0.5327 0.0138

MSE 0.0146 0.015 0.0804 0.0778 0.0003 0.0155 0.0687 0.0581 0.1875 0.1794

Table 2: The Bias and MSE for α̂ and β̂ when σ2
δ1
= 16 with outliers in x1.

n Parameter Statistic Weight

case 1

Weight

case 2

Classical

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

MLE MOM

50 α̂ Bias -0.0001 0.0002 -0.019 0.0085 0.0001 -0.0015 0.0959 -0.0379 0.3814 -0.4814

MSE 0.0036 0.0016 0.1201 0.0959 0.0045 0.0038 0.1022 0.1078 0.9134 0.7786

β̂1 Bias -0.0146 -0.0194 0.0752 -0.0361 0.0051 -0.0115 0.0671 -0.0401 0.1916 0.1372

MSE 0.0156 0.0235 0.1231 0.1229 0.0185 0.0116 0.4584 0.1591 0.6823 0.8392

β̂2 Bias -0.0458 -0.0583 0.0107 -0.0585 0.0057 -0.0536 0.0128 -0.0585 -0.8633 -0.1286

MSE 0.1109 0.1415 0.1536 0.1521 0.0087 0.1223 0.0861 0.0575 0.2544 0.5925

100 α̂ Bias -0.0001 -0.0002 -0.0662 -0.0040 -0.0004 -0.0004 0.0043 -0.0079 -0.0099 -0.3700

MSE 0.0004 0.0003 0.1185 0.0936 0.0007 0.0004 0.0714 0.0487 0.9089 0.6376

β̂1 Bias -0.0095 -0.0093 -0.0602 -0.0193 0.0022 -0.0052 0.0174 -0.0193 0.1614 0.1955

MSE 0.0108 0.0111 0.1209 0.1200 0.0036 0.0042 0.0415 0.0228 0.5679 0.7781

β̂2 Bias -0.0245 -0.0255 0.0059 -0.0296 0.0021 -0.0233 0.011 -0.0296 -0.0974 -0.8605

MSE 0.0612 0.0608 0.0148 0.0879 0.002 0.0503 0.0432 0.0416 0.2595 0.4314
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n Parameter Statistic Weight

case 1

Weight

case 2

Classical

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

MLE MOM

200 α̂ Bias 0.0029 0.0002 -0.0078 -0.0007 -0.0 0.001 0.0005 -0.0014 -0.0019 -0.2851

MSE 0.0022 0.0002 0.097 0.0026 0.0001 0.0001 0.0612 0.0324 0.8886 0.6183

β̂1 Bias -0.0052 -0.006 -0.1023 -0.0098 0.0011 -0.0039 0.0197 -0.0099 0.1596 0.1693

MSE 0.0061 0.0082 0.096 0.0911 0.0009 0.0036 0.0883 0.0197 0.4712 0.6722

β̂2 Bias -0.0126 -0.0134 0.0032 -0.0149 0.0033 -0.0116 0.0038 -0.0149 -0.0758 -0.6878

MSE 0.0321 0.0349 0.0023 0.0025 0.0007 0.0262 0.0213 0.0404 0.2179 0.3466

500 α̂ Bias 0.001 -0.0008 0.001 -0.0015 -0.0015 -0.0 0.041 -0.0011 0.0775 -0.1193

MSE 0.0007 0.0008 0.009 0.0076 0.0024 0.0 0.0302 0.0301 0.5917 0.4216

β̂1 Bias -0.0025 -0.0027 0.0078 -0.0085 0.0003 -0.0018 0.0071 -0.004 0.2358 0.1679

MSE 0.0032 0.0038 0.0513 0.0144 0.0019 0.0018 0.0282 0.0178 0.2825 0.6641

β̂2 Bias -0.0053 -0.0054 0.0014 0.0026 0.0003 -0.0047 0.0014 -0.006 -0.9269 -0.4754

MSE 0.0139 0.0145 0.0019 0.0013 0.0001 0.0109 0.0201 0.0169 0.1333 0.2971

Table 3: The Bias and MSE for α̂ and β̂ when σ2
δ2
= 16 with outliers in x2.

n Parameter Statistic Weight

case 1

Weight

case 2

Classical

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

MLE MOM

50 α̂ Bias 0.0011 -0.0022 -0.0062 -0.012 -0.0008 -0.0004 -0.0091 -0.0139 -0.3956 0.5016

MSE 0.0013 0.0024 0.4685 0.4056 0.0056 0.0018 0.6148 0.6134 0.8555 0.7255

β̂1 Bias -0.0217 -0.0179 0.0585 -0.0378 -0.0016 -0.0194 0.0139 -0.0145 -0.9812 0.5018

MSE 0.0277 0.0232 0.4048 0.4021 0.0128 0.0238 0.411 0.3994 0.7596 0.5468

β̂2 Bias -0.0507 -0.0487 0.0241 -0.0584 -0.0011 -0.048 0.011 0.0994 -0.718 -0.8048

MSE 0.1311 0.1247 0.2171 0.2099 0.0091 0.1197 0.7022 0.2095 0.7441 0.8049

100 α̂ Bias -0.0001 -0.0002 0.0071 -0.0075 0.0002 0.0001 0.041 -0.346 -0.3903 -0.1765

MSE 0.0002 0.0002 0.4007 0.3902 0.0006 0.0002 0.5009 0.4515 0.5573 0.4166

β̂1 Bias -0.0106 -0.0106 0.0615 -0.0195 -0.0012 -0.0095 0.022 -0.0197 -0.176 0.4669

MSE 0.0129 0.0131 0.2053 0.2008 0.0035 0.0118 0.1478 0.1066 0.6702 0.5008

β̂2 Bias -0.0252 -0.0249 0.0088 -0.0299 -0.0014 -0.0245 0.2589 -0.0372 0.6054 -0.7889

MSE 0.0645 0.0637 0.1908 0.1524 0.003 0.0619 0.3124 0.1946 0.6821 0.4622

200 α̂ Bias -0.0001 0.0 0.0007 -0.0097 0.0095 0.001 -0.0022 -0.0052 -0.2256 -0.1529

MSE 0.0025 0.0 0.2862 0.2481 0.0144 0.0001 0.3808 0.2526 0.377 0.3547

β̂1 Bias -0.006 -0.006 0.0211 -0.0101 0.0001 -0.0052 0.0244 -0.0099 -0.4022 0.3909

MSE 0.0076 0.0079 0.1944 0.1085 0.0031 0.0064 0.0955 0.0923 0.208 0.4425

β̂2 Bias -0.013 -0.0128 0.0038 -0.0149 -0.0004 -0.0121 -0.003 -0.0149 0.1096 -0.4725

MSE 0.0339 0.0332 0.1007 0.9444 0.0008 0.0302 0.0952 0.0944 0.5781 0.2472

500 α̂ Bias -0.0001 0.002 0.001 -0.0019 0.0001 0.0012 0.001 -0.0012 0.3113 -0.0946

MSE 0.0011 0.003 0.1992 0.1877 0.0055 0.0014 0.1933 0.1713 0.3353 0.2665

β̂1 Bias -0.0023 -0.0026 0.0770 -0.046 -0.0002 -0.0023 0.0079 -0.004 0.118 0.1777

MSE 0.0029 0.0036 0.1356 0.9979 0.0001 0.0029 0.0259 0.0184 0.173 0.2097

β̂2 Bias -0.0052 -0.0053 0.0026 -0.017 -0.0003 -0.005 0.0014 -0.006 0.1554 -0.2105

MSE 0.0135 0.0143 0.0622 0.0619 0.0002 0.0128 0.0728 0.0571 0.2385 0.1731

Table 4: The Bias and MSE for α̂ and β̂ when (σ2
δ1
,σ2

δ2
) = (16,16) with outliers in both (x1, x2).

n Parameter Statistic Weight

case 1

Weight

case 2

Classical

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

MLE MOM

50 α̂ Bias -0.0002 -0.0001 0.0809 -0.0023 0.0003 0.0012 -0.0069 -0.0346 0.3006 -0.383

MSE 0.0025 0.0026 0.295 0.2154 0.0031 0.0028 0.3917 0.3331 0.3515 0.9506

β̂1 Bias -0.0243 -0.0246 0.4935 -0.0363 -0.0018 -0.0233 -0.0325 -0.0425 0.0951 0.8197

MSE 0.0314 0.0335 0.5981 0.2887 0.007 0.03 0.3355 0.3562 0.4319 0.9823

β̂2 Bias -0.0519 -0.051 0.0243 -0.0584 -0.003 -0.052 0.0311 -0.0576 0.6224 0.1674

MSE 0.1366 0.134 0.1598 0.1526 0.0046 0.1373 0.1056 0.1902 0.5843 0.5905
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n Parameter Statistic Weight

case 1

Weight

case 2

Classical

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

MLE MOM

100 α̂ Bias -0.0002 -0.0003 0.0004 -0.0012 -0.0004 0.0001 0.0806 -0.3095 -0.0566 -0.3533

MSE 0.0004 0.0004 0.1921 0.1642 0.0005 0.0004 0.1321 0.1095 0.3392 0.8736

β̂1 Bias -0.0127 -0.014 0.0447 -0.0195 -0.0007 -0.0123 0.0276 -0.0373 0.2062 0.2733

MSE 0.0166 0.0202 0.258 0.1897 0.0015 0.0161 0.1709 0.1194 0.4143 0.3996

β̂2 Bias -0.0262 -0.0275 0.0095 -0.0296 -0.001 -0.0257 0.0123 -0.0296 -0.3901 0.1234

MSE 0.0691 0.0757 0.1606 0.1078 0.0012 0.0668 0.1004 0.1503 0.4639 0.2641

200 α̂ Bias 0.0024 -0.002 0.0201 -0.0303 0.0114 0.0001 -0.0004 -0.0073 -0.0235 0.0061

MSE 0.0001 0.0001 0.0941 0.0761 0.0051 0.0021 0.0822 0.0788 0.1122 0.1229

β̂1 Bias -0.0066 -0.0072 0.0201 -0.0099 -0.0004 -0.0061 0.02 -0.0103 0.0883 0.2431

MSE 0.0088 0.0106 0.123 0.1195 0.0004 0.0079 0.0723 0.0721 0.3886 0.2127

β̂2 Bias -0.0134 -0.0139 0.0042 -0.0149 -0.0006 -0.0129 0.0033 -0.0149 -0.330 0.0457

MSE 0.036 0.0385 0.0868 0.0844 0.0003 0.0337 0.0535 0.0445 0.2832 0.1022

500 α̂ Bias 0.0020 -0.001 0.011 0.0018 0.0034 -0.002 0.001 0.0028 -0.0182 0.0872

MSE 0.0001 0.001 0.0781 0.0551 0.0021 0.003 0.0383 0.0297 0.1081 0.1023

β̂1 Bias -0.0026 -0.003 0.0074 -0.008 -0.0003 -0.0025 0.0045 -0.006 0.0595 0.1686

MSE 0.0034 0.0044 0.0919 0.0910 0.0001 0.0033 0.0132 0.0119 0.1639 0.2108

β̂2 Bias -0.0055 -0.0056 0.0015 -0.01 -0.0003 -0.0052 0.001 0.008 -0.2901 0.0365

MSE 0.0141 0.0155 0.0212 0.0208 0.0011 0.0137 0.0106 0.0110 0.1553 0.0916

Table 5: The Bias and MSE for α̂ and β̂ when σ2
ε = 16 with outliers in y.

n Parameter Statistic Weight

case 1

Weight

case 2

Classical

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

Modified

Theil

Modified

Siegel

Iterative

r = 3

Iterative

r = 4

MLE MOM

50 α̂ Bias -0.0165 -0.0011 0.0133 0.0018 0.0235 -0.0004 0.0112 -0.0005 -0.1943 -0.4650

MSE 0.0027 0.0026 0.4631 0.3411 0.0059 0.0036 0.5644 0.5294 0.8673 0.8337

β̂1 Bias -0.0212 -0.0243 0.0568 -0.0375 -0.0003 -0.0196 0.1134 -0.0179 0.1463 0.8529

MSE 0.0264 0.0316 0.4363 0.2297 0.0119 0.0243 0.3692 0.293 0.9744 0.7704

β̂2 Bias -0.0522 -0.0517 0.0332 -0.057 -0.0043 -0.0478 0.0489 -0.0581 -0.199 -0.1227

MSE 0.14 0.1355 0.4058 0.3246 0.0073 0.1198 0.2573 0.187 0.728 0.3386

100 α̂ Bias -0.0003 -0.0002 -0.0042 -0.0001 -0.0002 -0.0003 -0.0242 -0.0001 0.1915 0.3141

MSE 0.0004 0.0004 0.4113 0.2068 0.0009 0.0005 0.5075 0.4072 0.8117 0.6594

β̂1 Bias -0.0105 -0.0128 0.0465 -0.0194 0.0002 -0.0097 -0.0532 -0.0192 -0.1953 0.7951

MSE 0.0126 0.0169 0.3683 0.2004 0.0032 0.0126 0.3336 0.1812 0.8682 0.6918

β̂2 Bias -0.025 -0.0263 0.022 -0.0296 -0.0007 -0.0239 0.0115 -0.0296 0.1169 -0.1741

MSE 0.0638 0.0695 0.2462 0.1877 0.0027 0.0592 0.1262 0.1106 0.6714 0.2756

200 α̂ Bias -0.0031 -0.005 0.0324 -0.013 0.0043 0.0034 0.0003 -0.0023 0.061 -0.3119

MSE 0.0001 0.0001 0.2899 0.1921 0.0001 0.0001 0.4970 0.1569 0.7348 0.5576

β̂1 Bias -0.0057 -0.0054 0.0215 -0.0148 -0.0006 -0.0052 0.0243 -0.0099 0.1463 0.6997

MSE 0.007 0.0071 0.2798 0.1442 0.001 0.0066 0.1210 0.1198 0.7709 0.4717

β̂2 Bias -0.0129 -0.0125 0.0041 -0.0199 -0.0008 -0.0122 0.0049 -0.0149 -0.103 -0.7063

MSE 0.0337 0.0318 0.1301 0.0992 0.0012 0.0307 0.0913 0.0445 0.415 0.2176

500 α̂ Bias -0.0001 -0.0025 0.0901 -0.0942 0.0001 -0.002 -0.001 0.003 -0.1491 0.2984

MSE 0.0009 0.0002 0.1093 0.1892 0.0009 0.0001 0.0574 0.0411 0.5395 0.2902

β̂1 Bias -0.0023 -0.0025 0.0074 -0.006 -0.0002 -0.0023 0.032 -0.054 0.097 0.4496

MSE 0.0029 0.0034 0.0998 0.0979 0.0003 0.0031 0.0247 0.0183 0.4286 0.3317

β̂2 Bias -0.0051 -0.0052 0.0014 -0.008 -0.0004 -0.005 0.0015 -0.006 -0.1713 -0.4424

MSE 0.013 0.0133 0.0938 0.0919 0.0004 0.0129 0.0318 0.0164 0.2774 0.1816

Table 6: The Bias and MSE for α̂ and β̂ when (σ2
δ1
,σ2

δ2
,σ2

ε ) = (16,16,16) with outliers in all (x1,x2,y).
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5 Real Data Application

In the past, a nation’s overall development levels were determined by its national income because it was believed that the
more a nation produced, the more progress it would make both economically and socially. However, we acknowledge that
there may be significant differences between societal progress or overall development and GDP growth. Over the past two
decades, there has been much discussion about the limitations of using GDP as a gauge of a country’s quality of life or
social well-being. The fact that a large portion of the population’s quality of life has not improved despite a high GDP
growth rate has led some people to believe that the GDP measure should be expanded to consider human well-being and
life quality. Unemployment is a critical issue for developing countries because it has a direct and significant impact on a
country’s economy. It is defined as someone who is willing and able to work but does not have a paid job. Meanwhile, the
unemployment rate is the most used indicator for assessing labor market conditions. It is the percentage of people in the
labor force who are out of work. Understanding the patterns of unemployment rates is critical these days, and it has piqued
the interest of researchers from all fields of study all over the world. For policymakers and researchers, unemployment
is important when planning a country’s monetary progress. An advanced modelling approach is required to efficiently
determine the effect of the unemployment rate. Several studies have recently relied on traditional testing methods to
estimate the effect of the unemployment rate. Furthermore, unemployment is typically non-stationary in nature. As a
result, using traditional methods to demonstrate them will yield unpredictable results. To address the issue associated with
traditional techniques, a better approach is required to deal with the effect of the unemployment rate [28]. The Human
Development Index (HDI), a multidimensional indicator of development, has proven to be more reasonable in comparison
to the measure of GDP growth, which is one-dimensional in income. This is in line with the general belief that well-being
is a multidimensional concept that cannot be measured by market production or GDP alone [16], so that the value of
all goods produced in a nation during a fiscal year is used to define its GDP. It is discovered to be one of the economic
growth and production indicators, and to play a crucial strategic role in employment, development, and the balance of
payments [37]. In this article, the new procedures were applied to determine relationships between GDP and HDI. Data
were collected from the yearly Jordans economic report (19902021) [45,46] and are presented in Table 7.

Year HDI GDP Unemployment Rate Year HDI GDP Unemployment Rate

1990 0.625 1166.611 16.810 2006 0.741 2513.029 14.000

1991 0.636 1155.234 19.513 2007 0.744 2735.379 13.100

1992 0.657 1335.288 19.274 2008 0.745 3455.770 12.700

1993 0.668 1334.229 19.700 2009 0.743 3559.692 12.900

1994 0.679 1414.339 17.171 2010 0.737 3736.645 12.500

1995 0.693 1466.045 14.600 2011 0.734 3852.890 12.900

1996 0.695 1463.888 13.700 2012 0.735 3910.347 12.200

1997 0.699 1494.511 13.686 2013 0.729 4044.427 12.600

1998 0.702 1600.398 13.703 2014 0.729 4131.447 11.900

1999 0.706 1619.536 13.707 2015 0.730 4164.109 13.080

2000 0.711 1651.622 13.700 2016 0.729 4175.357 15.280

2001 0.717 1720.361 14.700 2017 0.726 4231.518 18.140

2002 0.715 1802.055 15.300 2018 0.728 4308.151 18.270

2003 0.720 1876.259 14.500 2019 0.729 4405.487 16.810

2004 0.726 2044.964 14.580 2020 0.729 4282.766 19.026

2005 0.738 2183.395 14.800 2021 0.730 4405.839 19.252

Table 7: Yearly Dataset of HDI, GDP and Unemployment Rate of Jordan (19902021)

A descriptive analysis of the data is tabulated in Table 8. It could also be noted that there is a strong positive and
significant correlation between GDP and HDI (r = 0.739, p < 0.001) and a strong negative and significant correlation
between the unemployment rate and HDI (r = -0.538, p < 0.001).

Variable Min Max Mean STDEV

Unemployment Rate 11.9 19.7 15.1 2.5

GDP 1155.2 4405.8 2726.3 1242.6

HDI .63 .75 .71 .03

Table 8: Descriptive Statistics
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The trend of the variables within the study period are given in Figure 2, 3 and 4.

Fig. 2: The trend of the HDI within 1990-2021.

Fig. 3: The trend of the national GDP within 1990-2021.

Fig. 4: The trend of the unemployment rate within 1990-2021.

Moreover, the scatter plots in Figure 5 and 6 suggests that there is almost a linear relationship between the variables.
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Fig. 5: The line plot of HDI and Unemployment rate.

Fig. 6: The line plot of HDI and GDP.

Also, the scatter plots in Figure 7 indicate that there is heteroscedasticity problem in fitting the model.

Fig. 7: The line plot of HDI and GDP.

These analyses suggest that the GDP, unemployment rate, and HDI can be modeled as linear relationships; however,
it is believed that all variables are subject to error because its value is affected by several other factors. As a result, it is
suggested to consider MEM for studying the relationship between HDI, unemployment rate, and GDP. The model under
consideration can therefore be reformulated as follows:

HDI = α +β1 × (GDP− δ1)+β2 × (Unemployment Rate− δ2)+ ε. (18)

Table 9 displays the outcomes of the estimation methods for each the Weighted Latent Variables, Iterative Weighted,
MLE and MOM. The results indicate that based on mean square error (MSE), the proposed Weighted Latent Variables
(the modified Theil and Siegel estimators) procedures produced more accurate estimators for each weight case than the
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other estimation methods. Meanwhile, results from the iterative weighted procedure show that the weight from case 2
produces a more accurate estimator compared to the weight from case 1. Also, from the residual plots in Figure 8 and
9 suggests that the proposed Weighted Latent Variables and the Iterative Weighted procedures are more efficient than
classical procedures (MLE and MOM) for fitting the model.

Weight case Method Criterion β̂1 β̂2 α̂ MSE

1 Modified Thiel 2.7e-05 -0.0051 0.6979 0.0003

Modified Siegel 4e-06 -0.0013 0.7024 0.0009

Iterative weighted r = 3 0.0002 0.0459 -0.4868 0.0527

r = 4 0.0003 0.0461 -0.6882 0.0949

2 Modified Thiel 2.7e-05 -0.0051 0.6967 0.0003

Modified Siegel 4e-06 -0.0013 0.7024 0.0009

Iterative weighted r = 3 0.0002 0.0244 -0.2951 0.0801

r = 4 0.0001 0.0433 -0.3008 0.0334

Classical MLE 1.6e-05 0.0026 0.651 0.1926

MOM 1.15e-05 0.00624 0.3481 0.1083

Table 9: Parameter Estimation of HDI vs GDP and Unemployment rate.

Fig. 8: Residual of each estimation method for Case 1.

Fig. 9: Residual of each estimation method for Case 1.

6 Concluding Remarks

To fit the multiple structural MEM, this study proposed three new nonparametric estimation procedures: The Iterative
Weighted Grouping and the modifications of Theil and Siegel. Monte Carlo simulations illustrate the superiority of the
proposed estimation procedures over the classical methods (MLE and MOM) for each sample size. Furthermore, the
results for the Iterative Weighted procedure in weight case 2 are better than the results for weight case 1, suggesting that
the new proposed procedures are more efficient for fitting multiple SMEM, and they are better than MLE and MOM
results. Furthermore, real data were used to investigate the effect of GDP and the unemployment rate on HDI. Results
suggested that the GDP and HDI have a strong positive relationship, while there is a strong negative relationship between
the unemployment rate and HDI. It is recommended that further research be undertaken to consider other sources of
measurement error such as ultra-structural and functional MEM and dividing the data into four groups or more.
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