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Abstract: The global crisis triggered by the COVID-19 pandemic necessitated precise data monitoring and rigorous analysis efforts

from worldwide health authorities and governments, particularly during the pandemic’s initial surge. This study employs Newcomb

Benford’s Law specifically to identify potential anomalies in the reporting of COVID-19 data during the pandemic’s first wave. Our

methodology encompasses the application of Newcomb Benford’s Law to the first digit analysis focusing on three (3) key statistics [d∗,

α− statistic (α∗) and ω statistic (ω∗)] in conjunction with the Kolmogorov-Smirnov test to unveil possible inconsistencies within world

continental COVID-19 data reportage. By evaluating the actual distribution of leading digits across various COVID-19 data categories

such as cumulative confirmed cases, deaths, recoveries, and active cases against the theoretical distribution proposed by Newcomb

Benford’s Law, possible significant deviations were identified. We used the deviation from the Newcomb Benford’s law of anomalous

numbers as a proxy for data accuracy. The findings reveal that except for the Australia/Oceania continent which exhibited pronounced

deviations due to its unique data structure, the COVID-19 data from all other continents maintained a possible high level of reliability

during the initial outbreak. The study concludes that while Benford’s Law is a valuable tool for anomaly detection in diverse data, its

use in COVID-19 reportage data shows potential pitfalls. To enhance the effectiveness and reliability of detecting anomalies, the study

advocates for integrating additional anomaly detection strategies, like density and boundary based approaches encompassing the local

outlier factor and one-class SVM, alongside the Newcomb Benford analysis.
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1 Introduction

The World Health Organization (WHO) declared the COVID-19 outbreak a Public Health Emergency of International
Concern (PHEIC) on January 30, 2020 [1]. The WHO issued this declaration in response to COVID-19 spreading rapidly
outside of China and its potential threat to other nations. To contain the spread of COVID-19, the WHO declared
COVID-19 a PHEIC to mobilize countries and communities to act urgently and aggressively. A PHEIC declaration
allows WHO to provide technical and operational support to countries [2]. Additionally, it provides a means of
coordinating international efforts to battle outbreaks and mobilize resources. Furthermore, it advocated joint
coordination and information sharing among participating countries so that the spread of the virus could be minimized
and effective responses could be implemented [3]. On May 5, 2023, the WHO ended its declaration of COVID-19 being
a global heath emergency but continued to refer to it as a pandemic. Since COVID-19 became a pandemic, almost every
country adopted a comprehensive testing program and reported positive cases. Data on new cases and deaths reported by
health authorities on a daily basis was vital for analyzing disease dynamics.
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The impact of COVID-19 was felt globally, with far-reaching consequences across economies and disciplines. Many
of the world’s economies experienced shocks: businesses closing down, increasing unemployment rates, reduction in
global trade, disruptions in supply chains, and several loses in the service and manufacturing sector [4,5]. The
COVID-19 outbreak significantly impacted worldwide educational systems, including West African countries, driving
schools to close campuses [5]. School closures due to the pandemic affected more than 1 billion students worldwide. The
pandemic also led to a shift in the deployment of online learning, which resulted in uneven access to educational
resources, exacerbating existing educational inequalities [6]. Moreover, the closure of schools has had a significant
impact on the well-being of children and their families [7]. Furthermore, the COVID-19 pandemic had a significant
impact on the tourism industry, with travel restrictions and border closures leading to decreased demand and revenue loss
[8,9]. The pandemic has also led to a shift towards domestic tourism and an increased focus on sustainable tourism [10,
11]. The COVID-19 pandemic likewise highlighted existing health disparities and inequities, with marginalized
populations and low-income countries being disproportionately affected [12,13]. These disparities are linked to social
determinants of health, including poverty, discrimination, and inadequate access to healthcare [14,15]. The pandemic has
shed light on the importance of addressing these underlying factors to ensure equitable health outcomes for all.

To mitigate the impact of the pandemic, governments worldwide successfully employed various statistical
approaches to inform their decision-making. These spanned techniques aimed to forecast the spread of COVID-19 and
its impact on health care systems [16,17,18,19], determine the effectiveness of different mitigating strategies, such as
social distancing and mask mandates [20,21], monitoring the effectiveness of COVID-19 vaccines through clinical trials
and real-world data analysis [22,23,24,25].

Nonetheless, it is essential to note that several political and economic factors could influence the registration and
reporting of COVID-19 cases and deaths. Due to this, the reported data may be prone to errors, resulting in a biased
analysis of the spread of the disease [26]. This is due to the fact that some health authorities are likely to be influenced by
political pressures to under-report COVID-19 cases in order to calm the nerves of their citizens but this also has its own
implications in the long run. Besides, several researchers reported of many countries’ COVID-19 data on daily cases and
deaths having varying levels of accuracy and completeness due to challenges such as limited testing capacity, and
overwhelmed healthcare systems [27]. For example, many studies analyzing COVID-19 data from several continents
found evidence of under-reporting of COVID-19 cases and deaths, likely due to factors such as insufficient testing and
political interference in reporting: South America [28,29], Asia [30], Africa [31,32,33] and worldwide [34,35,36,37].
By not accurately communicating the extent of COVID-19 cases, individuals may underestimate the risk and fail to take
appropriate precautions, and this can result in more severe health outcomes and burden the healthcare system by
increasing the chances of virus transmission.

To scrutinize reported data, researchers have advocated for the use of anomaly detection techniques. Anomaly
detection techniques such as Newcomb Benford’s Law and Bayesian analysis have been employed practically and
technically to detect possible fraud or anomalies in most real-world datasets. Their applicability encompasses detecting
possible or suspected fraud in welfare programs [38], detection of fraud in accounting [39], image forensics [40],
election anomalies [41,42,43,44] and others. Newcomb-Benfors’s Law examines the distribution of first digits within
datasets, enabling statisticians to detect any discrepancies that might allude to deceitful or falsified figures [45]. For
example, if the first digit distribution of COVID-19 case counts deviates significantly from what is postulated by
Newcomb Benford’s Law, it could suggest that the data has been tampered with. While using Benford’s Law in fraud
detection is not foolproof and should be used in conjunction with other methods, it can be an effective tool for
identifying potential irregularities in COVID-19 data and warrants further investigation [26].

The study employs Newcomb Benford’s Law to the initial digit analysis, focusing on three (3) key statistics [d∗, α−
statistic (α∗), and ω statistic (ω∗)], in addition to the Kolmogorov-Smirnov test (defined in Section 2.1), to reveal
inconsistencies within continental COVID-19 data. By evaluating the actual distribution of leading digits across various
COVID-19 data categories—such as cumulative confirmed cases, deaths, recoveries, and active cases—against the
theoretical distribution proposed by Newcomb Benford’s Law, we were able to identify significant deviations.
COVID-19 data collection, compilation and reporting may be assisted by Benford’s law as an efficient screening method,
hence its applicability in the present study. The remainder of the paper is organized as follows: Section 2 discusses the
data and methods used for the study which include goodness of fit measures for Newcomb Benford’s Law. Section 3
presents and discusses the results of the investigation. Section 4 concludes the research and provides recommendations
for further work. Section 5 contains the appendix.
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2 Data and Methods

The study made use of secondary data of cumulative confirmed cases, cumulative confirmed deaths, cumulative
confirmed recovered cases and cumulative active cases between December 30, 2019 and August 4, 2020 (with data
collected during the first wave of the COVID-19 pandemic) retrieved from the website of John Hopkins University in the
COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) and the website of World
Health Organization. These data sources can be assessed via https://coronavirus.jhu.edu/region and
https://data.who.int/dashboards/covid19/data. Initially, the COVID-19 dataset was filtered out to remove all countries
that had less than 1,000 cases for most of the characteristics that were under consideration. The exception was for
countries in the Australia/Oceania region. This requirement was selected because data sets that span more than three
orders of magnitude are more likely to conform to Benford’s law than data sets spanning only one or two orders of
magnitude [46]. A function for the extraction of the first digits observed and expected proportions of cumulative
confirmed cases, cumulative confirmed deaths, cumulative confirmed recovered cases and cumulative active cases was
implemented with the help of R programming statistical software. Next, Benford’s Law was applied to the first digits of
the selected metrics, and the expected distribution was calculated continental-wise. Thus, the expected distribution for a
specific continent is computed by combining all countries that form part of the continent. Finally, euclidean distance
variations [47], such as the [48] d∗, [49] Statistic (α∗), [50] Statistic (ω∗) and statistical hypothesis test such as
Kolmogorov-Smirnov test were employed to evaluate the degree of conformity between the observed and Benford’s
expected distributions of COVID-19 reportage cases and deaths of all world continental data.

2.1 Goodness-of-fit measures for Benford’s Law

To measure how well the data comply with the distribution posited by Benford Law, the following goodness-of-fit
measures were considered.

(a) d∗: This quantifies the deviation from Benford’s Law [48,51]. The d∗ is the euclidean distance between each world
continental probable COVID-19 cases and Benford’s posited/expected COVID-19 cases after standardization by the
maximum possible distance of 1.03606, the situation when there is only a peak at “9” and zero for other first digits.

The d∗ is given in (1) by

d∗ =

√

∑9
di=1

[

P(gi)− P̃(gi)
]2

1.03606
, (1)

where di ∈ (1,2, . . . ,9), P(gi) are the observed proportions of the first digits and P̃(gi) are the Benford’s postulated
proportions of the digits. A d∗ value of 0.0 indicates the exactness matching of a world continental COVID-19 data
(cumulative confirmed cases, cumulative confirmed deaths, cumulative confirmed recovered and cumulative confirmed
active cases) to the Benford’s curve; possible non-anomalous COVID-19 data reported. A higher d∗ value implies
lower “Benfordness,” thus d∗ closer to 1.0. A d∗ value higher than 0.25 implies higher “Non-Benfordness,” thus high
evidence of possible data manipulation [51]. Benford’s Law is justified for detecting possible anomalies of COVID-19
data with a low world d∗ of 0.03.

(b) Chi-Square Statistic, χ2
stat

χ2
stat = n ·

10k−1

∑
j=10k−1

(

f o
j − f e

j

)

f e
j

, (2)

where f o
j and f e

j are respectively the observed and expected Benford frequencies of digits j. However, for small sample

size, the χ2
stat in (2) has low statistical power relative to its enormous statistical power when used for larger sample

size [62].
(c) An alternative good of fit measure, less dependent on sample size n, a modified version of the [65] proposed by [64]

and [63] is recommended for use in extant literature defined in (3).

Kupier = (D++D−)

[√
n+ 0.155+

0.24√
n

]

, (3)

D+ = sup
−∞<x<+∞

[Fo(x)−Fe(x)] ,

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

https://coronavirus.jhu.edu/region
https://data.who.int/dashboards/covid19/data


264 Edmund F. Agyemang: How Dependable is COVID-19 Data During First Wave?

and
D− = sup

−∞<x<+∞
[Fe(x)−Fo(x)] ,

where Fo(x) is the observed cumulative density function (CDF) of leading digits and Fe(x) is the CDF of Benford’s
data.

(d) Kolmogorov-Smirnov Test

K∗
φ = sup

i=10k−1,...,10k−1

∥

∥

∥

∥

∥

i

∑
j=1

(

f o
j − f e

j

)

∥

∥

∥

∥

∥

·
√

n, (4)

where f o
j and f e

j are defined as above. Here, the null hypothesis is rejected if the test statistic, given by (4) exceeds the

critical values d, as provided by [61] and [60] given in (5) as;

d =
γκ√

n
, (5)

where γκ ∈{1.224,1.358,1.628}depends on the level of significance. Central to this study were statistical decisions on
the Kolmogorov-Smirnov test based on the p-value. Thus, a p-value greater than an indicated α level of 0.05 represents
possible “Benfordness” whilst a p-value less than an indicated α level of 0.05 represents possible “Non-Benfordness”.
With 10,000 iterations, the “simulate” method was used in calculating the p-value of the Kolmogorov-Smirnov test.

(e) Furthermore, both [49] and [50] proposed a distance measure criterion [the ω− statistic (ω∗) and the α− statistic (α∗)
respectively] to test the degree of similarity between the distribution of the digits analyzed and that of the Newcomb
Benford expected distribution expressed in (6) and (7) as

ω∗ =
9

max
g=1

∥

∥ f o
j − f e

j

∥

∥ , (6)

and

α∗ =

√

√

√

√

9

∑
g=1

(po
j − pe

j)
2, (7)

where po
j are the observed proportions of observations with first digits g and pe

j are the corresponding Benford

postulated proportions of first digits g. The ω∗ and α∗ statistics are less sensitive to sample size. Similar to the
decision criterion of the d∗, possible “Benfordness” and “Non-Benfordness” of both ω∗ and α∗ Euclidean distance
measures were decided accordingly.

For the purpose of this study, we report the results of the d∗, ω− statistic (ω∗), α− statistic (α∗) and the
Kolmogorov-Smirnov test statistic (K∗

φ ).

The marginal probability mass function (PMF) of the first digits (G1) is given in (8) by:

Pr(G1 = g1) = log

(

g1 + 1

g1

)

, g1 ∈ (1,2, . . . ,9). (8)
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The probability distribution for each number from 1 to 9 to be the first digit according to Benford’s Law is shown in
Table 1

Table 1: First digits distribution according to Benford’s Law

Digits, g1 1 2 3 4 5 6 7 8 9

P(g1) 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0452

This law was expanded by [59] to include digits other than the first given in (9) as follows;

P(G1 = g1, . . . ,Gk = gk) = log10

(

1+
1

∑k
i=1 10k−1gi

)

, (9)

where g1 ∈ {1, . . . ,9} and all other g j ∈ {0, . . . ,9} for j = 2, . . . ,k.

For the purpose of this study, in the case where there is a conflicting conclusion (either possible Benfordness or non-
Benfordness) between two or more goodness of fit tests, the general criterion to conclude is defined in (10) as follows.
Let P∗

φ : P-values of the Kolmogorov-Smirnov test. We define a criterion to decide between possible Benfordness and

non-Benfordness based on these values:

Criterion =

{

If at least two of d∗
,α∗ and ω∗ ≤ 0.25 and P∗

φ ≥ 0.05; Possible Benfordness;

Otherwise; Possible Non-Benfordness.
(10)

3 Results and Discussion

The empirical findings from the study are presented in this section.

3.1 Justification for the use of Benford’s Law

The application of Newcomb Benford’s Law to assess world continental COVID-19 data was explored in this study. The
d∗, α∗ and ω∗ values of the whole world data were approximately below 0.10. The results of the confirmatory analysis are
shown in the last row of Table 2, Table 3, Table 4 and Table 5. Moreover, the histogram showing the frequency distribution
depicts how well world continental COVID-19 data fits into the Newcomb Benford’s curve with little or no deviation from
the Benford’s posited distribution [see Figures 1(a), 1(b), 1(c) and 1(d)]. The p-values of the Kolmogorov-Smirnov test
are all greater than 0.05 indicating additional support for the use of Newcomb Benford’s Law analysis for the anomaly
detection of world continental COVID-19 data. These results validate the use of Newcomb Benford’s Law for the analysis
of world continental COVID-19 data, in all the four characteristics of interest (cumulative confirmed cases, cumulative
deaths, cumulative recorded cases and cumulative active cases) under consideration. The correlation between the three
Euclidean measures (d∗, α∗ and ω∗) were computed by fitting the first digit distribution of the four variables (cumulative
confirmed cases, cumulative confirmed deaths, cumulative recovered cases and cumulative active cases) of studied world
continents into the Benford’s distribution. The blue line in Figure 6(a), Figure 6(b), and Figure 6(c) in the appendix traces
the linear regression. With coefficient of determination (R2) values of 1.0, 0.9547 and 0.9547 as shown at the top right
corner in Figure 6(a), Figure 6(b), and Figure 6(c), the results suggest that d∗, α∗ and ω∗ combine to provide best fit to
the cumulative world continental COVID-19 data.
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(a) Distribution of first digits cumulative confirmed cases:

Whole World

(b) Distribution of first digits cumulative confirmed

deaths: Whole World

(c) Distribution of first digits cumulative recovered cases:

Whole World

(d) Distribution of first digits cumulative active cases:

Whole World

Fig. 1: First digits distribution between Benford and Whole World cumulative continental COVID-19 cases

The objective of this study is to gather meaningful insights through a comprehensive scrutiny of the outcomes
obtained using the Newcomb Benford’s law to evaluate the accuracy and reliability of COVID-19 data. By using
Benford’s Law to analyze COVID-19 data from different continents, this study gave room for comparative analysis to be
conducted on data reported by world continents during the first wave of the COVID-19 pandemic. Three prominent
scenarios emerged: adherence to Benford’s law principles; deviations thereof; or ambiguity surrounding such findings
altogether. Instances, where conformity existed per these principles, increased confidence levels regarding legitimacy and
reliability within COVID-19-related datasets analyzed are highlighted. Even though a good accordance and promising
degree of agreement between [48] d∗, [49] Statistic (α∗), [50] Statistic (ω∗) and Kolmogorov-Smirnov statistic (K∗

φ ) of

the analysis of data conformity of world continental COVID-19 related variables (cumulative confirmed cases,
cumulative confirmed deaths, cumulative recovered cases and cumulative active cases) to the Benford’s Law could be
observed, some divergence were noted for these four (4) analytical tools presented in this study. For example, data from
the Australia/Oceania continent presented d∗, α∗ and ω∗ values above the threshold of 0.25 for all the variables under
consideration though the K∗

φ test failed to reject the null hypothesis of possible conformity to Benford’s Law (with

P∗
φ > 0.05) as evident in Table 2, Table 3, Table 4 and Table 5.

On the other hand, data from the South American continent (cumulative confirmed COVID-19 cases) reported d∗ and
α∗ values above the Benford conformity threshold of 0.25 with a ω∗ value of 0.2177 less than 0.25 signalling possible
conformity to Newcomb Benford’s Law and a P∗

φ value of 0.2661 greater than 0.05 produced by the

Kolmogorov-Smirnov test indicating possible conformity to Benford’s Law. Using the criterion established in (10), the
cumulative COVID-19 confirmed cases for South America continent and all COVID-19 related variables of
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Austrailia/Oceania continent were adjudged not to conform to the distributional pattern postulated by Newcomb
Benford’s Law. Thus, data from these sources may be prone to possible data reportage issues including but not limited to
data manipulation, data input issues, and data reporting errors and are therefore subject to further scrutiny.

The results of this study suggest that d∗, α∗, ω∗ and K∗
φ converge to act together as preliminary statistical tools to

evaluate the conformity of world continental COVID-19 data to the Newcomb Benford’s Law during the first wave of
the COVID-19 pandemic. Furthermore, this work assessed the performance of two other distance measures namely [49]
Statistic (α∗) and [50] Statistic (ω∗) in addition to the originally used [48] statistic (d∗) to check for reliability of COVID-
19 data. The argument that the Euclidean distance is not a hypothesis test as argued by other researchers was addressed
accordingly in this work. In this study, the authors resort to the Kolmogorov-Smirnov Test for Benford’s Law which is a
hypothesis test to confirm the degree of COVID-19 data accuracy reported by the various continents of the world during
the first wave of the COVID-19 pandemic. A striking obseervation of the three euclidean measures considered was that
the [48] statistic (d∗) and the [49] Statistic (α∗) were found to produce approximately same Euclidean distance values.

Table 2: d∗, ω∗ Statistic, α∗ Statistic and Kolmogorov-Smirnov K∗
φ and its corresponding P-value (P∗

φ ) results

calculated from the first digit distribution of World Continental cumulative confirmed COVID-19 cases fitted into

the Benford’s distribution

Test Statistic Statistical Decision

Continent d∗ α− Stat. (α∗) ω− Stat. (ω∗) (K∗
φ ) P∗

φ d∗ α∗ ω∗ K∗
φ

Africa 0.0738 0.0765 0.0421 0.2482 0.9678 X X X X

Asia 0.1217 0.1260 0.0792 0.4979 0.6810 X X X X

Australia/Oceania 0.4279 0.4434 0.2990 0.8725 0.1940 × × × X

Europe 0.1516 0.1570 0.1106 0.7710 0.2902 X X X X

North America 0.1738 0.1801 0.0959 0.5423 0.6650 X X X X

South America 0.2935 0.3041 0.2177 0.8080 0.2661 × × X X

Whole World 0.1023 0.1060 0.0687 0.9429 0.1323 X X X X

d∗: [48]; α∗: [49] Statistic; ω∗: [50] Statistic; K∗
φ : Kolmogorov-Smirnov Statistic; P∗

φ : P-values of the Kolmogorov-Smirnov test; X

represent possible Benfordness and × represent possible Non-Benfordness.

Table 3: d∗, ω∗ Statistic, α∗ Statistic and Kolmogorov-Smirnov K∗
φ and its corresponding P-value (P∗

φ ) results

calculated from the first digit distribution of World Continental cumulative COVID-19 deaths fitted into the
Benford’s distribution.

Test Statistic Statistical Decision

Continent d∗ α− Stat. (α∗) ω− Stat. (ω∗) (K∗
φ ) P∗

φ d∗ α∗ ω∗ K∗
φ

Africa 0.1184 0.1227 0.1095 0.7817 0.2706 X X X X

Asia 0.1716 0.1778 0.1273 0.5071 0.6955 X X X X

Australia/Oceania 0.5403 0.5598 0.4906 0.7959 0.2501 × × × X

Europe 0.1004 0.1040 0.0760 0.5362 0.6094 X X X X

North America 0.2337 0.2421 0.1990 0.9377 0.1393 X X X X

South America 0.2180 0.2258 0.1343 0.5307 0.6826 X X X X

Whole World 0.0640 0.0663 0.0472 0.5848 0.5478 X X X X
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Table 4: d∗, ω∗ Statistic, α∗ Statistic and Kolmogorov-Smirnov K∗
φ and its corresponding P-value (P∗

φ ) results

calculated from the first digit distribution of World Continental cumulative recovered COVID-19 cases fitted into

the Benford’s distribution.

Test Statistic Statistical Decision

Continent d∗ α− Stat. (α∗) ω− Stat. (ω∗) (K∗
φ ) P∗

φ d∗ α∗ ω∗ K∗
φ

Africa 0.1322 0.2555 0.1370 0.0808 0.0589 X X X X

Asia 0.1350 0.1399 0.1005 0.4979 0.6946 X X X X

Australia/Oceania 0.3804 0.3941 0.2990 0.4874 0.6470 × × × X

Europe 0.1392 0.1442 0.0708 0.3760 0.8766 X X X X

North America 0.1714 0.1775 0.0954 0.4341 0.7308 X X X X

South America 0.1978 0.2049 0.1156 0.3254 0.9058 X X X X

Whole World 0.0518 0.0537 0.0331 0.5143 0.6637 X X X X

Table 5: d∗, ω∗ Statistic, α∗ Statistic and Kolmogorov-Smirnov K∗
φ and its corresponding P-value (P∗

φ ) results

calculated from the first digit distribution of World Continental cumulative active COVID-19 cases fitted into the

Benford’s distribution.

Test Statistic Statistical Decision

Continent d∗ α− Stat. (α∗) ω− Stat. (ω∗) (K∗
φ ) P∗

φ d∗ α∗ ω∗ K∗
φ

Africa 0.1191 0.1234 0.0966 0.3819 0.8484 X X X X

Asia 0.1586 0.1643 0.1091 0.5632 0.5483 X X X X

Australia/Oceania 0.4560 0.4725 0.3488 0.9574 0.0807 × × × X

Europe 0.0968 0.1003 0.0524 0.5149 0.6934 X X X X

North America 0.1887 0.1955 0.1027 0.8436 0.1904 X X X X

South America 0.2417 0.2500 0.1990 0.5787 0.5144 X X X X

Whole World 0.0615 0.0637 0.0384 0.9226 0.1630 X X X X

Here, we apply Benford’s first digits distributional pattern to the world continental COVID-19 data for cumulative
confirmed cases, cumulative deaths, cumulative recovered cases and cumulative active cases as shown in Figures 2, 3, 4
and 5. Based on the distribution of first digits, Figure 2(c), 3(c), 4(c) and 5(c) indicate that most observed proportions do
not conform to Benford’s posited proportions and hence Australia/Oceania continent display severe possible
nonconformity to Newcomb Benford’s law which is subject to further investigation. The distributional pattern of first
digits for South America continent’s cumulative confirmed cases [Figure 2(f)], cumulative recovered cases [Figure 4(f)],
cumulative confirmed deaths [Figure 3(f)] and North America’s cumulative recovered cases [Figure 4(e)] exhibited
minimal divergence from the Benford’s fitted curve. Nearly perfect conformity to Newcomb Benford’s Law are observed
for Africa’s cumulative confirmed cases [Figure 2(a)], cumulative confirmed deaths [Figure 3(a)] and cumulative active
cases [Figure 5(a)] and Asia’s cumulative confirmed cases [Figure 2(b)], cumulative recovered cases [Figure 4(b)].
Likewise, near conformity to Benford’s Law holds for European continent’s cumulative confirmed cases, cumulative
confirmed deaths, cumulative recovered cases and cumulative active cases as evident in Figures 2(d), 3(d),4(d), and 5(d)
respectively.
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(a) Distribution of first digits cumulative

confirmed cases: Africa

(b) Distribution of first digits cumulative

confirmed cases: Asia

(c) Distribution of first digits cumulative

confirmed cases: Australia

(d) Distribution of first digits cumulative

confirmed cases: Europe

(e) Distribution of first digits cumulative

confirmed cases: North America

(f) Distribution of first digits cumulative

confirmed cases: South America

Fig. 2: First digits distribution between Benford and World continental cumulative confirmed COVID-19 cases

(a) Distribution of first digits cumulative

confirmed deaths: Africa

(b) Distribution of first digits cumulative

confirmed deaths: Asia

(c) Distribution of first digits cumulative

confirmed deaths: Australia

(d) Distribution of first digits cumulative

confirmed deaths: Europe

(e) Distribution of first digits cumulative

confirmed deaths: North America

(f) Distribution of first digits cumulative

confirmed deaths: South America

Fig. 3: First digits distribution between Benford and World continental cumulative confirmed COVID-19 deaths

3.2 The case of Australia/Oceania continent

Benford’s Law when however, applied to small samples, the distribution of leading digits may deviate significantly from
the expected distributional pattern postulated by Benford [58]. As a result, there can be deviations from the expected
distribution in small samples due to the limited number of data points and the inherent randomness [57]. It is therefore
important to take into consideration the potential bias of limited data when applying Benford’s Law to small sets of
data, even though it can be useful when analyzing large datasets as noted by [26]. Based on the aforementioned, it is
prudent to argue that the C0VID-19 data reportage of Australia/Oceania-related variables is not completely fraudulent
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(a) Distribution of first digits cumulative

recovered cases: Africa

(b) Distribution of first digits cumulative

recovered cases: Asia

(c) Distribution of first digits cumulative

recovered cases: Australia

(d) Distribution of first digits cumulative

recovered cases: Europe

(e) Distribution of first digits cumulative

recovered cases: North America

(f) Distribution of first digits cumulative

recovered cases: South America

Fig. 4: First digits distribution between Benford and World continental cumulative confirmed recovered COVID-

19 cases

(a) Distribution of first digits cumulative

active cases: Africa

(b) Distribution of first digits cumulative

active cases: Asia

(c) Distribution of first digits cumulative

active cases: Australia

(d) Distribution of first digits cumulative

active cases: Europe

(e) Distribution of first digits cumulative

active cases: North America

(f) Distribution of first digits cumulative

active cases: South America

Fig. 5: First digits distribution between Benford and World continental COVID-19 active cases

but rather due to its smaller sample size (with limited number of data points of 6 for each variable considered). Per
the results of this study, COVID-19 reported data of individual countries constituting the Australia/Oceania continent
including Australia, New Zealand, Papua New Guinea, French Polynesia, Fiji and New Caledonia, were inspected to
ascertain the shocking revelations of this study. A careful examination of the cumulative confirmed cases, cumulative
deaths, cumulative recovered cases and cumulative active cases has it that except for Australia and New Zealand, which
had five variables with four or more digits, all the other countries had three or fewer digits as of August 4, 2020, which is
not ideal data to achieve Benford’s conformity.
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4 Conclusions and Recommendations

In this study, Newcomb Benford’s Law for first digits with focus on the [48] d∗, [49] Statistic (α∗), [50] Statistic (ω∗)
and Kolmogorov-Smirnov test to detect inconsistencies in daily COVID-19 reportage cases and deaths during the first
wave of the pandemic of all world continents were considered. Likewise, histograms depicting density distributions of
first digits were built and plot together to Newcomb Benford’s density distribution of first digits. We used the deviation
from the Newcomb–Benford law of anomalous numbers as a proxy for data accuracy. Although the applicability of
Benford’s Law to assess world continental COVID-19 data has been established by other researchers, this study however
provided a confirmatory test to determine its validity. In this study, approximately one-sixth of the world’s continents, we
document some evidence of deviations from the Newcomb Benford’s Law which is subject to further investigation or
data verification. In general, the results presented in this study indicate that there are possible no or minimal indications
of world COVID-19 data reportage alteration during the first wave of the pandemic. Except for the Australia/Oceania
continent where there is strong evidence that the data structure was not a good fit for Newcomb Benford’s Law analysis
at the time of data acquisition (with less than four digits data counts for a host of related variables during the first wave of
the COVID-19 pandemic) as noted by [51] that small samples may have insufficient power to meaningfully detect or
confirm conformance with Benford’s law. In general, the study found that world continental COVID-19 data reportage
during the first wave of the COVID-19 pandemic was dependable though these findings are subject to further scrutiny.
However, it is necessary to carry out further studies on the individual countries that constitute the Australia/Oceania
continent in order to confirm possible anomalies/manipulation as suggested by Benford’s Law in this study or otherwise
as recommended by [54].

The continental results presented in this study are in perfect agreement with other country-specific results by other
researchers using Newcomb Benford’s law. For example, in Indonesia (see [56]), in China (see [55]), in European countries
like Bulgaria, Croatia, Lithuania and Romania (see [53]), in South American countries like Mexico and Brazil (see [52]).
This study has established that the transparency and integrity of COVID-19 data reporting across all world continents
were consistently maintained during the first wave of the COVID-19 pandemic when the world was in search of a reliable
vaccine to combat the pandemic. For anomaly detection, the Benford test can be a valuable statistical technique. While
the data from other continents exhibited conformity to Benford’s Law, it is important to note that Benford’s Law is
not infallible and should be used as a complementary tool rather than the sole determinant of data reliability. There
may be legitimate reasons for data to deviate from Benford’s Law, such as variations in testing capabilities, reporting
protocols, and different levels of transparency among countries. Therefore, to assess the validity and reliability of a
dataset, researchers and analysts should start with the examination of the distribution of leading digits using the Newcomb
Benford test. When a dataset complies with Benford’s Law, then it can be confidently used, while deviations require
further investigation. To improve the accuracy and reliability of anomaly detection processes, other anomaly detection
methods and domain-specific knowledge must be combined with the Benford test using at least the first two digits. Thus,
to establish a more definitive conclusion when the Benford test provided inconclusive results, additional analyses and
complementary anomaly detection methods such as density-based techniques including local outlier factor and isolation
forests adopted by [66] are recommended.
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5 Appendix

(a) Correlation between d∗ and α∗: Whole World (b) Correlation between d∗ and ω∗: Whole World

(c) Correlation between α∗ and ω∗: Whole World

Fig. 6: Correlation between d∗, α∗ and ω∗ computed by fitting of the first digits distribution of studied world
continental COVID-19 data into the Benford’s distribution in Equation 8.
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