
JJMS 18, No. 2, 275-283 (2025 ) 275

Jordan Journal of Mathematics and Statistics.
Yarmouk University

DOI:https://doi.org/10.47013/18.2.11

On The Solvability Of The (SSIE)
(

s
(c)
R

)

B(r,s,t)
⊂ s

(c)
x ,

Involving The Infinite Triple Band Matrix B(r, s, t)

Bruno de Malafosse
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Abstract: In this article, we consider the infinite triple band matrix B(r,s, t), with r, s, t 6= 0. Then, under the condition ∆ = s2 −

4rt, t, −s and r > 0, we state an interesting characterization of the set I
(c)

R (r,s, t) of all positive sequences x = (xn)n∈N, such that
(

s
(c)
R

)

B(r,s,t)
⊂ s

(c)
x for R > 0. Then, we obtain some numerical applications, and results associated with the fine spectrum theory.

Finally, we consider the triple band matrix B
(

1,2s,as2
)

and we solve the (SSIE)
(

s
(c)
R

)

B(1,2s,as2)
⊂ s

(c)
x and we state some tauberian

results, using the Silverman-Toeplitz theorem. These results extend those stated in [37, 8, 9].
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1 Introduction.

The set of all complex sequences is denoted by ω , and c is the set of all convergent sequences. Also U+ denotes the set of

all positive sequences, and for R> 0, s
(c)
R denotes the set of all sequences y∈ ω such that (yn/Rn)n∈N ∈ c. In the same way,

for a ∈U+, we denote by s
(c)
a the set of all sequences y ∈ ω such that y/a ∈ c. Troughout this article, we use the notations

and definitions for the classical sequence spaces stated in [8, p. 3959] and [9] and the characterization of (c,c) stated in [9,
pp. 23-24]. We also refer the reader to the paper [11] on the spectrum of linear operators represented by triangle matrices,
and the recent text [1] devoted to summability theory with applications that contains the chapter titled, Spectrum of Some

Particular Matrices.
Then we use the known infinite tridiagonal matrix B(r,s, t), (cf. [2-5, 8]). This matrix is associated with the equation

rv2 + sv+ t = 0, (1)

where v is the unknown, and we write ∆ = s2 −4rt. Then, for given R > 0 we state some general results on the solvability
of the (SSIE)

(

s
(c)
R

)

B(r,s,t)
⊂ s

(c)
x , (2)

(cf. [9, Chapter 5, p. 229]), and we denote by I
(c)

R (r,s, t) the set of all positive sequences x = (xn)n∈N, such that the
(SSIE) in (2) holds. The solvability of this (SSIE) consists in determining the set of all sequences x ∈U+ for which

lim
n→∞

ryn + syn−1 + tyn−2

Rn
= l1 implies lim

n→∞

yn

xn

= l2,
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for some scalars l1, l2 and for all y. Then, for practical reasons we will denote by (δ ), the condition ∆ , t, −s and r > 0.

This paper is organized as follows. In Section 2, we state a characterization of the set I
(c)

R (r,s, t) in the case ∆ > 0.

In Section 3, we give a characterization of the set I
(c)

R (r,s, t) under condition (δ ). Finally, in Section 4, we determine the

set I
(c)

R

(

1,2s,as2
)

and we consider an application of the Silverman-Toeplitz theorem involving the triple band matrix

B
(

1,2s,as2
)

.

2 Characterization of the set I
(c)
R (r,s, t) in the case ∆ > 0

In this section, we assume that r, s and t are nonzero real numbers and we associate with the matrix B(r,s, t), the equation

in (1), whose the real or complex roots are v1 =
(

−s−
√

∆
)

/2r and v2 =
(

−s+
√

∆
)

/2r, if ∆ 6= 0, and v = −s/2r, if

∆ = 0. Note that all the roots of the equation in (1), are distinct from zero. For any given real R > 0 and r, s, t 6= 0, we

determine the set I
(c)

R (r,s, t). Using the inverse of B(r,s, t) stated in [8, Lemma 4.2, p. 3961], and the notation

v′nk = vn−k+1
2 − vn−k+1

1 for all k ≤ n and all n,

we obtain the following lemma.

Lemma 1.Assume that ∆ , R > 0 and let v1 and v2 be the roots of (1). Then we have x ∈ I
(c)

R (r,s, t) if and only if the next

conditions hold,

(a)

sup
n

(

1

xn

n

∑
k=1

∣

∣v′nk

∣

∣Rk

)

< ∞, (3)

(b)

lim
n→∞

1

xn

n

∑
k=1

v′nkRk = l, for some scalar l, (4)

(c)

lim
n→∞

1

xn

v′nkRk = lk, for some scalars lk and k = 1,2, .... (5)

Proof.We have x ∈ I
(c)

R (r,s, t) if and only if D1/xB−1 (r,s, t)DR ∈ (c,c), where

[

D1/xB−1 (r,s, t)D(Rn)n

]

nk
=

1√
∆xn

v′nkRk, for k ≤ n, and for all n.

From the characterization of (c,c), and by [8, Lemma 4.2, p. 3961], we obtain x ∈ I
(c)

R (r,s, t) if and only if each of the
conditions in (3), (4) and (5) hold. This completes the proof.

3 Determination of the set I
(c)
R (r,s, t), under condition (δ )

In this section, our aim is to give a simple determination of the set I
(c)

R (r,s, t), under the condition in (δ ). So we have
0 < v1 < v2 and we use the notation,

σn (x,R) =
1√
∆xn

n

∑
k=1

v′nkRk.
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3.1 Characterization of the sequence (σn (x,R))n∈N, under the condition in (δ )

In this part, we determine the sequence (σn (x,R))n∈N in each of the cases, v2 > R, v2 < R and v2 = R. We can state the
following lemma.

Lemma 2.Let x ∈U+ and R > 0 and assume that the condition in (δ ) holds. Then we have:

σn (x,R) ∼
1√
∆xn

vn+1
2

R

v2 −R
(n → ∞) (n → ∞) , for v2 > R, (6)

σn (x,R) ∼
Rn+1

√
∆xn

(

v2

R− v2

− v1

R− v1

)

(n → ∞) , for v2 < R, (7)

and

σn (x,R)∼
nRn+1

√
∆xn

(n → ∞) , for v2 = R. (8)

Proof.The condition in (δ ) implies 0 < v1 < v2, and we have

σn (x,R) =
1√
∆xn

[

vn+1
2

n

∑
k=1

(

R

v2

)k

− vn+1
1

n

∑
k=1

(

R

v1

)k
]

for all n.

So we are led to deal with the next cases,

(I) v2 > R, with (a) 0 < v1 < R < v2, (b) 0 < R < v1 < v2 and (c) 0 < R = v1 < v2.

(II) 0 < v1 < v2 < R and

(III) 0 < v1 < v2 = R.

Case (I) (a). We have 0 < R/v2 < 1 and

n

∑
k=1

(

R

v2

)k

∼
R

v2 −R
(n → ∞) .

Since R/v1 > 1 we have

n

∑
k=1

(

R

v1

)k

∼

(

R
v1

)n+1

R
v1
− 1

(n → ∞) ,

and

vn+1
1

n

∑
k=1

(

R

v1

)k

∼ Rn+1 v1

R− v1

(n → ∞) .

We deduce

σn (x,R) =
1√
∆xn

(

vn+1
2

R

v2 −R
ξn −Rn+1 v1

R− v1

ηn

)

for all n,

where ξ = (ξn)n∈N and η = (ηn)n∈N are two sequences tending to 1. Since v2 > R the statement in (6) holds.

Case (b). We have v1 > R and there are two sequences ξ and η tending to 1, such that

σn (x,R) =
1√
∆xn

(

vn+1
2

R

v2 −R
ξn − vn+1

1

R

v1 −R
ηn

)

for all n,

and again the condition in (6) holds.

Case (c). 0 < R = v1 < v2. By similar arguments as above, we have

σn (x,R) =
1√
∆xn

(

vn+1
2

R

v2 −R
ξn − nRn+1

)

for all n,

and again, the condition in (6) holds. This concludes the proof of Case (I).
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(II) Case when v2 < R. We have v1 < R and

vn+1
i

n

∑
k=1

(

R

vi

)k

∼
vi

R− vi

Rn+1 (n → ∞) for i = 1, 2. (9)

Thus, there are two sequences ξ and η tending to 1 such that,

σn (x,R) =
Rn+1

√
∆xn

(

v2

R− v2
ξn −

v1

R− v1
ηn

)

for all n.

So the statement in (7) holds. This concludes the proof of Case (II).
(III) Case when v2 = R. We have v1 < R and

n

∑
k=1

vn−k+1
2 Rk = nRn+1.

Then, using the statement in (9), we deduce that there is a sequence η = (ηn)n∈N tending to 1, such that

σn (x,R) =
Rn+1

√
∆xn

(

n− v1

R− v1

ηn

)

for all n,

and the statement in (8) holds. This concludes the proof.

3.2 The main result. Determination of the set I
(c)

R (r,s, t) under the condition in (δ ).

In this part, we determine the set I
(c)

R (r,s, t) using the notation s
(c)
a =

{

x ∈U+ : 1/x ∈ s
(c)
a

}

, where a ∈ U+. From

Lemmas 1 and 2, we obtain the following theorem.

Theorem 1.Let R > 0. Under the condition in (δ ), we have:

I
(c)

R (r,s, t) =



















s
(c)
1/v2

if v2 > R,

s
(c)
1/R

if v2 < R,

s
(c)
(1/nRn)n∈N

if v2 = R.

(10)

Proof.Since t/r = v1v2 and −s/r = v1 + v2 > 0, we have 0 < v1 < v2. Then, by Lemma 1, the condition x ∈ I
(c)

R (r,s, t)
is equivalent to the statements in (3), (4) and (5). Then, the condition in (4) implies (3) since v′nk > 0, for k = 1,2, ...,n.

We conclude that x ∈ I
(c)

R (r,s, t) if and only if the conditions in (3) and (4) hold. Now we are led to deal with each of the
cases (a) v2 > R, (b) v2 < R and (c) v2 = R.

(a) Case v2 > R. Then, the statement in (6) of Lemma 2 holds. So the condition limn→∞ σn (x,R) = l for some scalar l

holds if and only if

lim
n→∞

vn
2

xn

= l
v2 −R

Rv2

√
∆ ,

that is, x ∈ s
(c)
1/v2

. Then, the condition in (5) holds, since

lim
n→∞

vn
1

xn

= lim
n→∞

(

v1

v2

)n
vn

2

xn

= 0.

(b) Case v2 < R. Then, the statement in (7) of Lemma 2 holds. Then we have limn→∞ σn (x,R) = l if and only if

lim
n→∞

Rn

xn

= lρ
√

∆
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for some scalar l, where
1

ρ
= R

(

v2

R− v2

− v1

R− v1

)

> 0,

and we have shown x ∈ s
(c)
1/R

. Then, the condition in (5) holds, since

vn
i

xn

=
(vi

R

)n Rn

xn

→ 0 (n → ∞) for i = 1, 2.

(c) Case when v2 = R. Then, the statement in (8) of Lemma 2 holds. Then, the condition limn→∞ σn (x,R) = l for some
scalar l, holds if and only if

lim
n→∞

nRn

xn

= l

√
∆

R
, (11)

and we have x ∈ s
(c)
(1/nRn)n∈N

. Then we have vn
i /xn ≤ Rn/xn for all n, and since limn→∞ Rn/xn = 0, by the condition in (11),

we obtain limn→∞ vn
i /xn = 0 (n → ∞), for i = 1, 2. So, the statement in (5) holds. This concludes the proof.

The set I
(c)

1 (r,s, t) may be rewritten using the results on the fine spectrum theory, stated in [4, 1]. Recall that in [1],
there is a chapter titled Spectrum of Some Particular Matrices. There is also a recent paper [11], on the spectra of triangles

over sequence spaces. In this way, we can connect the solvability of the (SSIE) cB(r,s,t) ⊂ s
(c)
x with the fine spectrum

theory, (cf. [6]), considering the polynomial (r−λ )X2 + sX + t = 0 associated with the operator B(r,s, t)− λ I, whose

roots depend on the complex number
√

s2 − 4(r−λ )t. Then, under the condition in (δ ), we may determine the solutions

of the (SSIE) cB(r,s,t) ⊂ s
(c)
x , using the point, the continuous and the residual spectra of the operator B(r,s, t) over c, (cf. [4,

Theorem 2.10, p. 997]), as follows. We have 0 /∈ σ (B(r,s, t) ,c) if and only if

v2 =
(

−s+
√

s2 − 4rt
)

/2r < 1.

Then we have v2 = 1 if and only if either of the conditions 0 ∈ σc (B(r,s, t) ,c) or r+ s+ t = 0 holds. Finally, the condition
v2 > 1 holds if and only if 0 ∈ σr (B(r,s, t) ,c) and r+ s+ t 6= 0. So we can state the following corollary.

Corollary 1.Let r, s, t ∈ R. Under the condition in (δ ), we have

I
(c)

1 (r,s, t) =















s
(c)
(1/n)n∈N

if 0 /∈ σ (B(r,s, t) ,c) ,

c if 0 ∈ σc (B(r,s, t) ,c) and r+ s+ t 6= 0,

s
(c)
1/v2

if 0 ∈ σr (B(r,s, t) ,c) or r+ s+ t = 0.

Now, if we denote by (δ ′) the condition, ∆ , t, s and r > 0, we can state the next remark.

Remark.Under the condition in (δ ′), we have v1v2 = t/r > 0 and v1 + v2 = −s/r < 0 which imply v1 < v2 < 0. Then,
writing w1 =−v2 > 0 and w2 =−v1 > 0, we obtain 0< w1 <w2 and by Theorem 1, where R > 0, we obtain the following
result,

I
(c)

R (r,s, t) =



















s
(c)
−1/v1

if v1 <−R,

s
(c)
1/R

if v1 >−R,

s
(c)
(1/nRn)n∈N

if v1 =−R.

We can give some examples, that are direct consequences of Theorem 1.

Example 1.Let R > 0. We have (v−R/2)(v−R) = v2 −3/2Rv+R2/2, and by Theorem 1 with v2 = R we obtain the next
statement. The set of all x = (xn)n∈N ∈U+ that satisfy the condition

lim
n→∞

(

2yn − 3Ryn−1+R2yn−2

)

/Rn = l1 implies lim
n→∞

yn/xn = l2,

for some scalars l1, l2 and for all y, is determined by nRn/xn → L (n → ∞) for some scalar L.
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Example 2.Assume that the condition in (δ ) holds, with t = 1. Then, the condition v2 < 1 is associated with the inequality,

r+ s+ 1 > 0, and we have ∆ > 0 if and only s < −2
√

r. So, by Theorem 1 we have I
(c)

1 (r,s, t) = c, and since e ∈ c we
obtain the next tauberian result,

lim
n→∞

(ryn + syn−1 + yn−2) = l1 implies lim
n→∞

yn = l2,

for some scalars l1, l2 and for all y. For instance, if r = 6 and s =−5 we obtain the following statement,

lim
n→∞

(6yn − 5yn−1+ yn−2) = l1 implies lim
n→∞

yn = l2,

for some scalars l1, l2 and for all y.

Example 3.We may determine the set I
(c)

1 (1,−3,2) of all sequences x ∈ U+ such that cB(1,−3,2) ⊂ s
(c)
x . Since the roots

of the equation v2 − 3v+ 2 = 0 are v1 = 1 and v2 = 2, by Theorem 1, we obtain I
(c)

1 (1,−3,2) = s
(c)
2 . So, the set of all

sequences x ∈U+ that satisfy the statement

lim
n→∞

(yn − 3yn−1+ 2yn−2) = l1, implies lim
n→∞

yn/xn = l2,

for some scalars l1, l2 and for all y, is determined by (2n/xn)n∈N ∈ c.

Example 4.The roots of the equation 2v2−3v+1= 0, are v1 = 1/2, v2 = 1, and by Theorem 1 we obtain I
(c)

1 (2,−3,1)=

s
(c)
(1/n)n∈N

. So, the set of all sequences x ∈U+ that satisfy the statement

lim
n→∞

(2yn − 3yn−1+ yn−2) = l1, implies lim
n→∞

yn/xn = l2,

for some scalars l1, l2 and for all y, is determined by (n/xn)n∈N ∈ c.

3.3 On the solvability of the (SSIE) cB(r,s,t) ⊂ s
(c)
x , where only one real among r, s, t, is zero

The previous results can be extended to the (SSIE) cB(r,s,t) ⊂ s
(c)
x where only one real among r, s, t, is zero. We are led to

consider each of the (SSIE), cB(r,s,0) ⊂ s
(c)
x , cB(0,s,t) ⊂ s

(c)
x and cB(r,0,t) ⊂ s

(c)
x , and we assume that the roots of each of the

equations rv+ s = 0 and sv+ t = 0 are positive, that is, v0 =−s/r > 0, v′0 =−t/s > 0. Then, for the (SSIE) cB(r,0,t) ⊂ s
(c)
x

we have rv2 + t = 0 and, as in Theorem 1, we consider the upper root v′′0 =
√

−t/r with −t/r > 0 of this equation.
We can state the following results, that can be shown using similar arguments as given in the proof of Theorem 1.

Proposition 1.Let r, s and t be real numbers. Then, the sets I
(c)

1 (r,s,0), I
(c)

1 (0,s, t) and I
(c)

1 (r,0, t) are determined by

(10) in Theorem 1, where v2 is successively replaced by v0 =−s/r > 0, v′0 =−t/s > 0 and v′′0 =
√

−t/r, with −t/r > 0.

Example 5.We have I
(c)

1 (1,0,−1) = s
(c)
(1/n)n∈N

since v′′0 = 1. In a similar way, we have I
(c)

1 (0,−1,2) = s
(c)
1/2

, and

I
(c)

1 (1,−2,0) = c.

4 Some applications involving the triple band matrix B
(

1,2s,as2
)

In this section, we apply the previous results to the solvability of the particular (SSIE)

(

s
(c)
R

)

B(1,2s,as2)
⊂ s

(c)
x ,

for R > 0 and s < 0 < a < 1 and we give some examples. Then we state an application of the Silverman-Toeplitz theorem.
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4.1 Solvability of the (SSIE)
(

s
(c)
R

)

B(1,2s,as2)
⊂ s

(c)
x

In this part, we consider the triple band matrix,

B
(

1,2s,as2
)

=











1
2s 1 0

as2 2s 1

0 as2 2s 1
. . . . .











.

Then, we study the solvability of the (SSIE)
(

s
(c)
R

)

B(1,2s,as2)
⊂ s

(c)
x , for R > 0, under the condition in (δ ), which is

equivalent to the condition, s < 0 < a < 1. Then, as above, this study consists in determining the set of all x ∈ U+ for
which

lim
n→∞

yn + 2syn−1 + as2yn−2

Rn
= l1 implies lim

n→∞

yn

xn

= l2, (12)

for all y and for some scalars l1 and l2. We denote by I
(c)

R (a,s), the set of all x ∈ U+ for which the statement in (12)

holds. Here, we have b(v) = v2 + 2sv+ as2 = 0, with s < 0 < a < 1 and ∆ = 4s2 (1− a)> 0. So, the equation b(v) = 0
has two roots that satisfy the inequalities,

0 < v1 =−s
(

1−
√

1− a

)

< v2 =−s
(

1+
√

1− a

)

.

From Theorem 1 and Lemma 2, we can state the following result, where we write s2 (R) =−R
(

1−
√

1− a
)

/a.

Corollary 2.Let R > 0 and s < 0 < a < 1. The set I
(c)

R (a,s) is determined in the following way,

I
(c)

R (a,s) =



















s
(c)
1/v2

for s < s2 (R) ,

s
(c)
1/R

for s > s2 (R) ,

s
(c)
(1/nRn)n∈N

for s = s2 (R) .

In particular, if R = 1, then we let s2 = s2 (1) =−
(

1−
√

1− a
)

/a and the set I (c) (a,s) = I
(c)

1 (a,s) is determined by

I
(c) (a,s) =















s
(c)
1/v2

for s < s2,

c for s > s2,

s
(c)
(1/n)n∈N

for s = s2.

Proof.We have v2 > R if and only if

v2 =−s
(

1+
√

1− a

)

> R

that is, s < s2 (R). By Theorem 1, the condition s < s2 (R) implies I
(c)

R (a,s) = s
(c)
1/v2

. In a similar way, the condition s >

s2 (R) is equivalent to v2 < R and implies I
(c)

R (a,s) = s
(c)
1/R

, and the condition s = s2 (R) implies I
(c)

R (a,s) = s
(c)
(1/nRn)n∈N

.

This concludes the proof.

In the next examples, we apply Corollary 2, with a = 3/4, which implies s2 = −2/3. So we are led to state the
following examples, involving the next triple band matrices B(1,−2,3/4), B(1,−4/3,1/3) and B(1,−1,3/16).

Example 6.Case of the matrix B(1,−2,3/4). We have s =−1 < s2, then we obtain v1 = 1/2, v2 = 3/2 and as2 = 3/4. So,
by Corollary 2, the set of all x ∈U+, that satisfy the statement,

lim
n→∞

(4yn − 8yn−1+ 3yn−2) = l1 =⇒ lim
n→∞

yn/xn = l2,

for all y and for some scalars l1 and l2, is determined by 1/x ∈ s
(c)
2/3

that is, ((3/2)n /xn)n∈N ∈ c.
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Example 7.Case of the matrix B(1,−4/3,1/3). Here, we have s = s2 = −2/3 and as2 = 1/3. By Corollary 2, the set of
all x ∈U+, that satisfy the statement,

lim
n→∞

(3yn − 4yn−1+ yn−2) = l1 =⇒ lim
n→∞

yn/xn = l2,

for all y and for some scalars l1 and l2, is determined by (n/xn)n∈N ∈ c.

Example 8.Case of the matrix B(1,−1,3/16). We have s =−1/2 > s2 and by Corollary 2, the statement

lim
n→∞

(

yn − yn−1 +
3

16
yn−2

)

= l1 =⇒ lim
n→∞

yn/xn = l2,

for all y and for some scalars l1 and l2 holds if and only if 1/x ∈ c.

4.2 An application using the Silverman-Toeplitz theorem

In this section, we apply Corollary 2, to obtain a result which is a consequence of the Silverman-Toeplitz theorem, stated
in [10, Theorem 1.3.8] as follows.

Lemma 3.[10, Theorem 1.3.8] Let A ∈ (c,c) and z ∈ c. If limk→∞ ank = 0 for all k ≥ 1, then we have

lim
n→∞

zn = L =⇒ lim
n→∞

Anz = lL,

where limn→∞ ∑∞
k=1 ank = l.

We obtain the following result.

Proposition 2.Let a and s be real numbers, with s < 0 < a < 1 and assume

s > s2 =−
(

1−
√

1− a
)

/a.

Then we have

lim
n→∞

(

yn + 2syn−1 + as2yn−2

)

= L =⇒ lim
n→∞

yn =
1

1+ 2s+ as2
L,

for some scalar L and for all y.

Proof.Let A = B−1
(

1,2s,as2
)

= (ank)n,k∈N and let zn = yn +2syn−1+as2yn−2 for any sequence y ∈ ω , in Lemma 3. Then

we have y = Az. Since s > s2, by Corollary 2 we have I (c) (a,s) = c, which implies e ∈ I (c) (a,s) = c. Then, as we have
seen in the proof of Corollary 2, the condition s > s2 is equivalent to v2 < 1. So, by Lemma 2 with R = 1, we have

l = lim
n→∞

n

∑
k=1

ank = lim
n→∞

σn (e,1) ,

and

l =
1√
∆

(

v2

1− v2

− v1

1− v1

)

=
1√
∆

v2 − v1

(1− v2) (1− v1)
.

By elementary calculations, we have

(1− v2) (1− v1) = 1+ as2 + 2s,

and since
√

∆ =−2s
√

1− a = v2 − v1, we obtain

l =
1

1+ 2s+ as2
.

Since 0< v1 < v2 < 1 we have A∈ S1, (cf. [8, p. 3959]) and limn→∞ ank = limn→∞ v′nk = 0 for all k ≥ 1. We obtain A∈ (c,c)
and we conclude by Lemma 3. This completes the proof.

This result can be illustrated by the next example.

Example 9.In Example 8, where a = 3/4, s =−1/2, s2 =−2/3, we have s2 < s < 0 < a < 1 and 1+2s+as2 = 3/16. So
we can apply Proposition 2, which gives

lim
n→∞

(

yn − yn−1 +
3

16
yn−2

)

= L =⇒ lim
n→∞

yn =
16

3
L,

for some scalar L and for all y.

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JJMS 18, No. 2, 275-283 (2025 ) / 283

5 conclusion

In this article, we have stated some general results on the solvability of the (SSIE)
(

s
(c)
R

)

B(r,s,t)
⊂ s

(c)
x . Then, under the

condition in (δ ), we have stated some practical results on the solvability of this (SSIE), that have been illustrated by some
examples. In future, it should be interesting to state similar results on this solvability, replacing the condition in (δ ), by
another condition on r, s and t, that may belong to C, and considering each of the case ∆ = 0 and ∆ 6= 0. Then, as it has
been suggested in Corollary 1, some results on the fine spectrum of the operator B(r,s, t) over the spaces c and c0, could
be associated with the solvability of each of the (SSIE) of the form

Dx ∗XB(r,s,t)−λ I ⊂ Y , with λ ∈ C,

on ω , where X and Y are any of the sets c0, c or ℓ∞.
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