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Abstract: In this article, we consider the infinite triple band matrix B(r,s,t), with r, s, t # 0. Then, under the condition A = §2—

4rt, t, —s and r > 0, we state an interesting characterization of the set Jlgc) (r,s,1) of all positive sequences x = (x,),cn, such that

(sg)) (r5:) C s,(cc) for R > 0. Then, we obtain some numerical applications, and results associated with the fine spectrum theory.
st

Finally, we consider the triple band matrix B (1,2s,as2) and we solve the (SSIE) (sgf)>3(1 2vas?) C s)(f)
AN A

results, using the Silverman-Toeplitz theorem. These results extend those stated in [37, 8, 9].

and we state some tauberian
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1 Introduction.

The set of all complex sequences is denoted by @, and c is the set of all convergent sequences. Also U™ denotes the set of
all positive sequences, and for R > 0, sg) denotes the set of all sequences y €  such that (y,/R"), .y € c. In the same way,

fora € U™, we denote by s,(f) the set of all sequences y € @ such that y/a € c. Troughout this article, we use the notations

and definitions for the classical sequence spaces stated in [8, p. 3959] and [9] and the characterization of (¢, c¢) stated in [9,
pp- 23-24]. We also refer the reader to the paper [11] on the spectrum of linear operators represented by triangle matrices,
and the recent text [1] devoted to summability theory with applications that contains the chapter titled, Spectrum of Some
Particular Matrices.

Then we use the known infinite tridiagonal matrix B (r,s,t), (cf. [2-5, 8]). This matrix is associated with the equation

n?+sv+t=0, @))]

where v is the unknown, and we write A = s> —4rz. Then, for given R > 0 we state some general results on the solvability
of the (SSIE)

(S;C)>B(r,s,t) cs, @

(cf. [9, Chapter 5, p. 229]), and we denote by f,gc) (r,s,1) the set of all positive sequences x = (x,),cp, such that the
(SSIE) in (2) holds. The solvability of this (SSIE) consists in determining the set of all sequences x € U™ for which

SYn— ty,—
lim T¥n+ =1+ 1n—2 =[; implies lim In =1,

n—oo R" n—ee Xy,
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for some scalars [y, I, and for all y. Then, for practical reasons we will denote by (8), the condition A, t, —s and r > 0.
This paper is organized as follows. In Section 2, we state a characterization of the set ffgc) (r,s,t) in the case A > 0.
In Section 3, we give a characterization of the set f,gc) (r,s,t) under condition (). Finally, in Section 4, we determine the

set ffgc) (1,2s,as*) and we consider an application of the Silverman-Toeplitz theorem involving the triple band matrix
B (1,2s,as2).

2 Characterization of the set Jlgc) (r,s,t) in the case A > 0

In this section, we assume that r, s and ¢ are nonzero real numbers and we associate with the matrix B(r,s,t), the equation
in (1), whose the real or complex roots are v; = (757 \/Z) /2r and vy = (fer \/Z) /2r,if A #0, and v = —s/2r, if

A = 0. Note that all the roots of the equation in (1), are distinct from zero. For any given real R > 0 and r, s, t # 0, we

determine the set f,@ (r,s,t). Using the inverse of B (r,s,7) stated in [8, Lemma 4.2, p. 3961], and the notation

Vig =3 == for all k < nand all n,

we obtain the following lemma.
Lemma 1.Assume that A, R > 0 and let vi and v, be the roots of (1). Then we have x € flgc) (r,s,t) if and only if the next

conditions hold,

(a)
1 n
sup [ — Y [Vik| R* | <o, 3)
no A\ M =1
(b)
. 1 ¢ ! pk
lim — Z Vi R" =1, for some scalar I, 4)
e Xn k=
(c)
1
lim —v;kRk = Iy, for some scalars Iy and k = 1,2, .... 5)

n—seo X,
Proof.-We have x € féc) (r,s,t) if and only if DI/)CB_1 (r,s,t)Dg € (c,c), where

[DI/XB*I (r,5,1) D(gn) v;kRk, for k < n, and for all n.

1
"1 nk B \/an

From the characterization of (c,c), and by [8, Lemma 4.2, p. 3961], we obtain x € f,gc) (r,s,t) if and only if each of the
conditions in (3), (4) and (5) hold. This completes the proof.

3 Determination of the set f,gd (r,s,t), under condition (5)

In this section, our aim is to give a simple determination of the set flgd (r,s,t), under the condition in (J). So we have
0 < vy < v, and we use the notation,
1 n
Gy (x,R) = —— Y v/ R,

\/an k=1
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3.1 Characterization of the sequence (0, (x,R)) under the condition in (§)

neN’

In this part, we determine the sequence (0, ()C,R))”EN in each of the cases, vo > R, vo < R and v, = R. We can state the
following lemma.

Lemma 2.Let x € U™ and R > 0 and assume that the condition in (8) holds. Then we have:

1 R
G, (X,R) ~ \/_Txnvgﬂvz—R (n—00) (n—o0), forvy >R, (6)
Rn+1 vy Vi
R) ~ — o), <R, 7
0, (x,R) an (R—vz R—vl) (n— o), for vy @)
d

an anJrl

o, (x,R) ~ n— o), forvo = R. (8)
1( ) \/an ( ) f 2

Proof.The condition in (&) implies 0 < v < v, and we have

1 oo/ R\ o R\
- +1 +1
0, (X,R) = N [vg k; <E> -V k; (V_1) ] for all n.

So we are led to deal with the next cases,
MDvy >R, with(AQ)0<v; <R<vy, b)) 0<R<vi<wvyand (c)0<R=v| <v,.
(II)0<v; <vy <Rand
D0 <vi <vy=R.
Case (I) (a). We have 0 < R/v, < 1 and

Since R/v; > 1 we have

=1 \V1 o1

and
n R k 1
n+1 Z (_) NRnJrI (I’t—) oo).

k=1 V1 R*V[
We deduce

1 1 R 1 V1

o, (x,R) = N (vng inRén—R” ﬁn,l for all n,

where & = (&), and ) = (1), are two sequences tending to 1. Since v, > R the statement in (6) holds.
Case (b). We have v; > R and there are two sequences £ and 1 tending to 1, such that

1
o (x,R):\/Zx (vgJrl
n

R
Vo —R

R
&, —vit! mW) for all n,

and again the condition in (6) holds.
Case (c). 0 < R =v; < v. By similar arguments as above, we have

1 R
o, (x,R) = i (ng - Rén — nR”H> for all n,

and again, the condition in (6) holds. This concludes the proof of Case (I).
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(IT) Case when v, < R. We have vi < R and
n+1 n+1
—R —o0) fori=1,2. 9
3 (5) ~ ok e for o)

Thus, there are two sequences £ and 1) tending to 1 such that,

Rn+l V) v
R — for all n.
o, (x,R) = N ( 7v2§n va”"> orall n

So the statement in (7) holds. This concludes the proof of Case (II).
(IIT) Case when v, = R. We have v; < R and

i k+1Rk Ri’l+1 .
Then, using the statement in (9), we deduce that there is a sequence 1 = (1,,),,cy tending to 1, such that

Rn+1 v
Oy (X,R) = \/_Txn <n — R—Ilnn> for all n,

and the statement in (8) holds. This concludes the proof.

3.2 The main result. Determination of the set flgc) (r,s,t) under the condition in ().

In this part, we determine the set ﬂlgc) (r,s,t) using the notation st = {x eU":1/)xe sﬁﬁ}, where a € U*. From
Lemmas 1 and 2, we obtain the following theorem.

Theorem 1.Let R > 0. Under the condition in (8), we have:

SEC/)V2 ifvo >R,

jlgd (I‘,S,l) = SEC/)R if vo <R, (10)
(l/an lfVZ

Proof.Since t/r = vivy and —s/r = v; +v; > 0, we have 0 < v| < v,. Then, by Lemma 1, the condition x € f,gc) (r,5,1)
is equivalent to the statements in (3), (4) and (5). Then, the condition in (4) implies (3) since v/, > 0, for k = 1,2,...,n

‘We conclude that x € f,@ (r,s,t) if and only if the conditions in (3) and (4) hold. Now we are led to deal with each of the
cases (a) vo > R, (b) v, <Rand (c) v, =R

(a) Case v, > R. Then, the statement in (6) of Lemma 2 holds. So the condition lim,_,. 0, (x,R) = [ for some scalar [
holds if and only if

n J—
im 2 = /2R /A

n—eo Xy Rv,

thatis, x € sgc/) . Then, the condition in (5) holds, since

.V . vi\” Vi
Iim —=Im(— ) —==0.
n—o0 _Xn n—yoo V2 _Xn
(b) Case vy < R. Then, the statement in (7) of Lemma 2 holds. Then we have lim,,_,. 6, (x,R) = [ if and only if

R}’l
lim — = IpVA

n—yoo Xn
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for some scalar /, where

1
—R< LN >>O,
p R—vy R—v

(c) Then, the condition in (5) holds, since

and we have shown x € s, /R

\n R
v—’:(&) — =0 (n— o) fori=1,2.
R/ x,

(c) Case when v, = R. Then, the statement in (8) of Lemma 2 holds. Then, the condition lim,, . 0}, (x,R) = [ for some
scalar /, holds if and only if

lim — = [~—, (11)

(c)
and we have x € S(l/nR”),,e

we obtain lim, .V} /x, =0 (n — o), for i = 1, 2. So, the statement in (5) holds. This concludes the proof.

. Then we have v /x,, < R" /x, for all n, and since lim,_,.. R" /x, = 0, by the condition in (11),

The set fl(c) (r,s,1) may be rewritten using the results on the fine spectrum theory, stated in [4, 1]. Recall that in [1],
there is a chapter titled Spectrum of Some Particular Matrices. There is also a recent paper [11], on the spectra of triangles

over sequence spaces. In this way, we can connect the solvability of the (SSIE) cp(,,,) C s)(f) with the fine spectrum
theory, (cf. [6]), considering the polynomial (r— A)X? + sX +¢ = 0 associated with the operator B (7,s,t) — AI, whose
roots depend on the complex number /52 — 4 (r — A)¢. Then, under the condition in (8), we may determine the solutions

of the (SSIE) cp(,5) C s)(f), using the point, the continuous and the residual spectra of the operator B (r,s,f) over c, (cf. [4,
Theorem 2.10, p. 997]), as follows. We have 0 ¢ ¢ (B(r,s,t),¢) if and only if

vy = (—s+ sz—4rt) [2r < 1.

Then we have v, = 1 if and only if either of the conditions 0 € o, (B (#,s,7) ,¢) or r+ s+t = 0 holds. Finally, the condition
vy > 1 holds if and only if 0 € 6, (B (r,s,t),c) and r+ s+ # 0. So we can state the following corollary.
Corollary 1.Let r, s, t € R. Under the condition in (8), we have
(1, FOF O (B(rs1).c),
(C) A ")neN .
F,7 (s, t) =3 ¢ if0€ o, (B(r,s,t),c) andr+s+1t #0,
SEC/)VZ if0€ o, (B(rs,t),c) orr+s+1=0.

Now, if we denote by (8’) the condition, A, ¢, s and r > 0, we can state the next remark.

Remark.Under the condition in (8’), we have viv, =t/r > 0 and v + v, = —s/r < 0 which imply v; < v, < 0. Then,

writing w; = —v, > 0 and wy = —v; > 0, we obtain 0 < w; < w, and by Theorem 1, where R > 0, we obtain the following
result,
s 4y iV <R,
7 (st =4 s\ ifwi> R,
(e) : _
(1), o V1= 7R

We can give some examples, that are direct consequences of Theorem 1.

Example 1.Let R > 0. We have (v —R/2) (v —R) =v? —3/2Rv+ R?/2, and by Theorem 1 with v, = R we obtain the next
statement. The set of all x = (x,),cy € U™ that satisfy the condition
lim (2y, — 3Ryn—1 +R%,_2) /R" =1, implies lim y, /x, = b,
n—yo0 Nn—>o0

for some scalars /1, I, and for all y, is determined by nR" /x,, — L (n — o) for some scalar L.
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Example 2. Assume that the condition in (&) holds, with ¢ = 1. Then, the condition v, < 1 is associated with the inequality,

r+s+1 >0, and we have A > 0 if and only s < 72\/17. So, by Theorem 1 we have ﬂl(c) (r,s,t) =, and since e € ¢ we
obtain the next tauberian result,

lim (ry, + sy,—1 +yn—2) =1, implies lim y, = b,
n—o0 n—yo0
for some scalars /1, [; and for all y. For instance, if r = 6 and s = —5 we obtain the following statement,

lim (6y, — 5yy—1 + yn—2) =11 implies lim y, = b,
n—ro0

n—oo
for some scalars [, [, and for all y.

()

Example 3.We may determine the set fl(c) (1,—3,2) of all sequences x € U™ such that ¢B(1,-32) C sy . Since the roots

of the equation v —3y+2=0arev; =1and v, =2, by Theorem 1, we obtain ﬂl(c) (1,-3,2) = S;C). So, the set of all
sequences x € U™ that satisfy the statement

lim (v, —3y,—1+2y,—2) = 1, implies lim y, [xn = la,

n—se0

for some scalars /1, [, and for all y, is determined by (2" /x,,),,c € c.

Example 4.The roots of the equation 21> —3v+1=0, are v| = 1/2,v, =1, and by Theorem 1 we obtain fl(c) (2,-3,1)=

SE?/”) . So, the set of all sequences x € U that satisfy the statement
ne

lim (2y, — 3y,—1 +yn—2) =1, implies lim y,/x, = b5,
n—oo N—soo

for some scalars /1, I, and for all y, is determined by (n/x,),cy € c.

3.3 On the solvability of the (SSIE) cp(ys ) C s)(f), where only one real among r, s, t, is zero

)

The previous results can be extended to the (SSIE) cp(,.; ) C s/(f where only one real among r, s, ¢, is zero. We are led to

consider each of the (SSIE), cp(.s0) C s, CB(0,5.1) C s and CB(r0.) C s\, and we assume that the roots of each of the

equations rv+s = 0 and sv -+ = 0 are positive, that is, vo = —s/r > 0, vj = —t /s > 0. Then, for the (SSIE) CB(ro4) C SJ(VC)

we have rv2 4t = 0 and, as in Theorem 1, we consider the upper root vy = +/—t/r with —t /r > 0 of this equation.
We can state the following results, that can be shown using similar arguments as given in the proof of Theorem 1.

Proposition 1.Let r, s and t be real numbers. Then, the sets ﬂl(c) (r,5,0), fl(c) (0,s,t) and fl(c) (r,0,t) are determined by
(10) in Theorem 1, where v, is successively replaced by vo = —s/r > 0, v = —t /s > 0 and v = \/—t /r, with —t /r > 0.

Example 5.We have fl(c) (1,0,—1) = sg?/n) , since vy = 1. In a similar way, we have f,(c) (0,—1,2) = sgc/)z, and
ne
219 (1,-2,0) ==.

4 Some applications involving the triple band matrix B (1,2s,as?)

In this section, we apply the previous results to the solvability of the particular (SSIE)

(Sg))B(I,ZS,aSZ) = S)(CC)’

for R > 0and s < 0 < a < 1 and we give some examples. Then we state an application of the Silverman-Toeplitz theorem.
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4.1 Solvability of the (SSIE) (s,@)B (12mat) s

In this part, we consider the triple band matrix,

1
2s 1 0
B(1,2s,as’) = | as® 2s 1
0 as®2s1
Then, we study the solvability of the (SSIE) (SI(;))B (12505%) C s/(f), for R > 0, under the condition in (&), which is
,2s,as

equivalent to the condition, s < 0 < a < 1. Then, as above, this study consists in determining the set of all x € U™ for

which )
2Sy,— S“Y,—

fim 2= HASIn2 e oles Tim 2% = 1, (12)

n—oo R" n—e Xp

for all y and for some scalars /; and /. We denote by ffgc) (a,s), the set of all x € U™ for which the statement in (12)

holds. Here, we have b (v) = v> +2sv+as®> =0, withs <0 < a < | and A = 4s*> (1 —a) > 0. So, the equation b (v) =0
has two roots that satisfy the inequalities,

0<v :—s(l -1 —a) <vz:—s(1—|—\/1—a).
From Theorem | and Lemma 2, we can state the following result, where we write s, (R) = —R (1 —v1- a) /a.

Corollary 2.Let R > 0 and s <0 < a < 1. The set f,gc) (a,s) is determined in the following way,

s for s<s(R),
ffgd (a,s) = sgc/)R for s>s3(R),

Proof-We have v, > R if and only if

that is, s < s, (R). By Theorem 1, the condition s < s, (R) implies f,@ (a,s) = sgc/)vz

52 (R) is equivalent to v, < R and implies féc) (a,s) = si?)R, and the condition s = s, (R) implies féc) (a,8)=s

. In a similar way, the condition s >

(c)
(l/an)nEN ’

This concludes the proof.

In the next examples, we apply Corollary 2, with a = 3/4, which implies s, = —2/3. So we are led to state the
following examples, involving the next triple band matrices B(1,—2,3/4), B(1,—4/3,1/3) and B(1,—1,3/16).

Example 6.Case of the matrix B(1,—2,3/4). We have s = —1 < s,, then we obtain v; = 1/2, v = 3/2 and as®> = 3 /4. So,
by Corollary 2, the set of all x € U™, that satisfy the statement,

lim (4y, —8yy—1 4+ 3yn—2) =) = ,}er;y”/x" =1,

n—oo

for all y and for some scalars /1 and /,, is determined by 1/x € sg% that is, ((3/2)" /xu),en € ¢
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Example 7.Case of the matrix B (1,—4/3,1/3). Here, we have s = s = —2/3 and as®> = 1/3. By Corollary 2, the set of
all x € U™, that satisfy the statement,

lim (3yn —4yu1 +)’n—2) =l = JE}EOyn/xn =1,

n—oo
for all y and for some scalars /; and I, is determined by (n/x,),cy € .
Example 8.Case of the matrix B(1,—1,3/16). We have s = —1/2 > s, and by Corollary 2, the statement
3

lim <yn —Yn—1+ _yn2> =l = limy,/x, = b,
n—oo 16 n—oo

for all y and for some scalars /; and /; holds if and only if 1/x € c.

4.2 An application using the Silverman-Toeplitz theorem

In this section, we apply Corollary 2, to obtain a result which is a consequence of the Silverman-Toeplitz theorem, stated
in [10, Theorem 1.3.8] as follows.

Lemma 3./10, Theorem 1.3.8] Let A € (c,¢) and z € ¢. If limg_yeo ayn = 0 for all k > 1, then we have

limz,=L— limA,z=1L,
n—yoo n—oo
where limy_eo Y 0| Gpr = L.
We obtain the following result.

Proposition 2.Let a and s be real numbers, with s < 0 < a < 1 and assume
S>52:7<17\/17(J)/(J.

Then we have

1
. 2 _ : — -~
lim (3o +25v5-1 +as'yn-2) = L= lim y, = [T 2stas?

for some scalar L and for all y.
ProofLetA=B"! (1,23,asz) = (@nk)n ken and let z, =y, + 28y, +as?y,_, for any sequence y € , in Lemma 3. Then
we have y = Az. Since s > s,, by Corollary 2 we have .# () (a,s) =, which implies e € .#(¢) (a,s) = . Then, as we have
seen in the proof of Corollary 2, the condition s > s; is equivalent to v, < 1. So, by Lemma 2 with R = 1, we have

n

/= fim 3" ane = Jim o3 e 1).

and

lL( v L)LL
VA\l=vy 11— VA (=) (1—vp)’
By elementary calculations, we have
(1=v2) (1 =vy) =14 as*+2s,
and since VA = —2sv/1 —a = v, — v}, we obtain
=
1+2s+as?’

Since 0 < v < vy < 1wehaveA €8, (cf. [8, p. 3959]) and lim,, e @y = lim,, e v/, =0 for all k > 1. We obtain A € (c,¢)
and we conclude by Lemma 3. This completes the proof.

This result can be illustrated by the next example.

Example 9.In Example 8, where a =3/4,s = —1/2,5p = —2/3, we have s <s <0< a < 1 and 142s+as?= 3/16. So
we can apply Proposition 2, which gives

. 3 . 16
lim <yn —Yn-1+ _yn2> =L= limy,= —L,
n—oo 3

n—yoo 16

for some scalar L and for all y.
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5 conclusion

In this article, we have stated some general results on the solvability of the (SSIE) (S%))B( ) C S)(CC). Then, under the
rs,t

condition in (8), we have stated some practical results on the solvability of this (SSIE), that have been illustrated by some
examples. In future, it should be interesting to state similar results on this solvability, replacing the condition in (J), by
another condition on r, s and ¢, that may belong to C, and considering each of the case A = 0 and A # 0. Then, as it has
been suggested in Corollary 1, some results on the fine spectrum of the operator B(r,s,t) over the spaces ¢ and ¢y, could
be associated with the solvability of each of the (SSIE) of the form

Dy % Xp(r51)—21 C Y, with A eC,

on @, where X and Y are any of the sets ¢, ¢ Or {w.
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