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Abstract: This paper introduces a novel method for the numerical approximation of the Lambert W function, W(x) = y, in the real

domain. By linearly approximating the natural logarithm, the function is transformed into a quadratic equation whose roots refine the

initial approximation. Iterative solving of this equation yields high precision, with iterations determined by the desired accuracy. Two

methods for positive x are proposed, the first expresses the function as (z1 + a1) ln(z1 + a1) = x, iteratively refining the approximation

of z, where z1, is the initial approximation and a1<<z1, while the second method is based on ln(y1 + a1) + y1 + a1 =ln(x), where y1

is the initial approximation, and a1<<y1. For x between 0 and 1/e, the method is extended to approximate W(-x) = -y. Unlike Newton

or Halley’s methods, this approach handles both branches without constraints on initial assumptions, covering a broad range of values.

Extensive examples and a software algorithm validate the method’s accuracy, offering a precise and flexible tool for numerical analysis.
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1 Introduction

The Lambert W function, denoted as W (x) , is the inverse function of y = x ex. It was first explored by Johann Heinrich
Lambert in 1758, who provided a series solution to the equation xex = y, which could be written

W (x) = y. (1)

He later refined it by including higher-order terms [17], [18]. In 1784, Leonhard Euler extended Lambert’s work by
deriving a series solution for a similar equation [12]. Euler simplified the equation by taking the limit as x tended to
infinity, ultimately arriving at a convergent series for W (x).
The Lambert W function is multivalued, meaning it has multiple branches. For real numbers, the function is solvable when
x >−1/e, with the principal branch W0(x) valid for x >−1/e and another branch W−1(x) existing for −1/e ≤ x < 0 .
These two branches are of particular importance in many scientific applications.

In recent years, the Lambert W function has found applications across diverse fields such as fluid dynamics, where it is
used to model flow in porous media, and chemical engineering [5], [7], in which it helps solve reaction rate equations. In
neuroimaging [27], it aids in analysing nonlinear signal transformations, and in epidemiology [30], it is employed in
modelling the spread of infectious diseases. A recent study in material science [6] applied the Lambert W function to
describe phase transitions in complex polymers. The function also plays a crucial role in quantum mechanics,
particularly in finding exact solutions to the Schrödinger equation [15] and expression of the corrections to the dispersion
relations of giant magnons, single spikes and GKP strings [13]. It can solve equation linked to Bernoulli numbers and
Todd genus by means of the two real branches W0 and W−1 [16]. The Lambert W function is widely used to solve
equations of the form xex = y and other equations that can be transformed into this form. In addition to the application
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already explained, use of the Lambert W function spans various disciplines, including, porous media [10], statistics, [23],
Michaelis-Menten kinetics [21], time-dependent flow in simple branch hydraulic systems [24], crystal growth [2],
pooling of tests for infectious diseases [3] [8] [14], exact solution of QCD coupling constant [11], resonance of the
delta-shell potential [19], phase separation of polymer mixtures [4], electromagnetic surface wave propagation [20], and
viscous flow [22]. It also finds use in thermodynamic equilibrium, Wein’s displacement law [9] and
Quantum-mechanical double-well Dirac delta function model for equal charges [26]. In this paper, a novel method for
the numerical approximation of both branches of the Lambert W function is presented. Unlike traditional methods such
as Newton’s method [1], [29] or Halley’s method [25], the approach used here is based on quadratic approximation.
Numerical approximations of both the branches of the function have been made by using a unique method that
transforms a real number say y into exponential form and vice versa as has been proved in a published paper [28]. Based
upon the theory, following identities were proved [28],

y/(y− 1) = e2/(2y−1) (2)

ln y = 2
y

∑
n=2

1/(2y− 1), (3)

provided y is appreciably large. These identities will be used to evaluate the values of Lambert W function. Since my
assumption requires y to be large and it is not always possible to have y with large value, therefore, repeated corrections
using recursive relation,

yn+1 = yn + an, (4)

will be applied to achieve precise approximations of y that will finally equal yn+1, where an is the root of the nth resultant
quadratic equation in variable an. In this paper, corrections three to four times, have been applied but more corrections may
be needed to enhance precision based on accuracy requirements. Unlike Newton’s and Halley’s methods, this quadratic
equation approximation does not require the differentiability or continuity of the function, nor does it impose conditions
on the function’s derivative at assigned values. This versatility allows the method to handle incorrect initial assumptions
without failing, making it applicable to a broader range of problems without the need for preprocessing steps to refine
guesses—issues that plague existing approximation methods.
The method features a self-correcting capability, minimising human error, whereas traditional methods can be hindered
by initial assumption errors, wasting time and resources. A significant advantage is its ability to converge within three to
four iterations, regardless of the initial guess, compared to other methods that require multiple iterations for high accuracy.
Further details are given in section 8 where a comparison has been made. The validation of this method includes solving
both branches of the Lambert W function, with comprehensive examples presented in tabular form. Additionally, an
algorithm along with its pseudocode are provided for the numerical approximation of W (x) for specified values, serving
as a practical computational tool.

2 Approximation, Convergence and Rate of Convergence

In this section, theory of approximation, convergence of iterated results and associated error will be taken up. Results
derived in this section will be verified in the sections that follow.

2.1 Quadratic Approximation of Lambert W Function W (x) = y

Assuming y equal to y1 +a1, where y1 is assigned an arbitrary initial value, the equation y ey = x takes the form y1 +a1+
ln(y1 + a1) = ln(x) . This equation is then transformed to a quadratic equation in a1 and the root of this equation yields
values a1 and the value of y is approximated as y1 +a1. In some cases, where y is considered equal to ln (z), the equation
y ey = x, then takes the form zln(z) = x and z is assumed equal to z1 +a1, where z1 is assigned an arbitrary initial value.
The equation (z1 + a1)ln(z1 + a1) = x is then transformed to a quadratic equation in a1 and its roots approximate the
value of z = z1 + a1. With this background, the detailed method is explained hereinafter.

It is proved in a published paper [28] that the exponential term e2/(2y−1−1/y3) can be approximated with y/(y − 1)

provided value of y is large, otherwise it will yield rough approximation. If y is assumed as −y, term e−2/(2y+1−1/y3) will
approximate term y/(y+ 1). Taking logarithm, term 2/(2y+ 1− 1/y3) will approximate term ln {(y+ 1)/y}.
Before continuing further, I clarify the use of signs of approximation (≃) and equality (=). Lambert W Function involves

exponential terms which are irrational and that needs use of approximation sign in stead of equality but as the paper

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JJMS 18, No. 2, 285-315 (2025 ) / 287

proceeds, it will be observed , equality sign has only been used. Such usages do not imply that results are exact but on the

other hand, mean, these are approximations of the actual results.

Coming to the approximation of 2/(2y+1−1/y3) to ln {(y+1)/y}, when y is a large quantity, term 1/y3 can be ignored
being small, then

ln {(y+ 1)/y}≃ 2/(2y+ 1). (5)

This Equation (5) will invariably be used in this paper. Lambert W function W (x) = y, can also be written y ey = x or
z ln (z) = x, where y = ln (z) and z is a real number neither equal to zero nor infinity. Assuming z = z1 + a1, it can be
written

ln z = ln(z1 + a1) = ln z1 + ln

(

z1/a1 + 1

z1/a1

)

. (6)

Simplifying Equation (6) with the use of Equation (5),

ln z ≃ ln z1 + 2a1/(a1 + 2z1). (7)

Therefore,

(a1 + z1) ln z1 + 2a1(a1 + z1)/(a1 + 2z1)≃ x. (8)

Multiplying both sides by (a1 + 2z1) and simplifying, a quadratic equation in a1 is obtained. This equation can be written
as

a2
1 − l1a1 −m1 ≃ 0, (9)

where coefficients,

l1 =−(3z1 ln z1 + 2z1 − x)/(ln z1 + 2) ,

m1 = 2z1 (x− z1 ln z1)/(ln z1 + 2) ,

Root a1 = l1/2+ 1/2

√

l2
1 + 4m1 of the quadratic equation will be used, since that finally gives positive real value of

zn + an, where zn+1 = zn + an. It is essential to have a positive value of zn + an otherwise, negative value will lead to
natural logarithm of a negative quantity and logarithm of a negative quantity does not exist in real domain.

Once the roots are determined, the positive value of z1 + a1 say z2 will approximate z. For obtaining fine approximation
of z, z3 will then be considered equal to z2 + a2 and value of a2 will be determined following the same procedure as that
of a1. When z2 +a2 has been determined, the process of approximation will be continued till zn +an is determined, where
n is number of times the correction is applied to obtain precise approximation. It should also be noted that z1 should be
assigned a value so that an should have a real value after iteration and zn + an should also have a real positive value after
iteration, but it should not be zero or infinity. How such a choice should be made, has been explained and illustrated with
exhaustive examples in forthcoming sections.

In some cases, approximation of value y has been made by taking natural logarithm of both sides of Lambert W Function,
yey = x. In such cases, y + ln y = ln x. Thereafter, y is considered equal to y1 + a1 and the equation takes the form
(y1 + a1)+ ln(y1 + a1) = ln x.
This equation can be written as (y1 + a1)+ ln y1 + ln(1+ y1/a1) = ln x. Applying Equation (5) derived in a published
paper [28], ln(1+ y1/a1) can be written 2a1/(a1 + 2y1) and equation, y+ ln y = ln x takes the form .

(y1 + a1)+ ln y1 + 2a1/(a1 + 2y1) = ln x. (10)

This equation on simplification is written in quadratic form in variable a1,

a2
1 − l1a−m1 = 0,

which has its coefficients,

l1 =−{3y1 + 2− ln(x/y1)},m1 =−2y1{y1 − ln(x/y1)}.

Out of the two roots of the quadratic equation, the root a1 = (1/2)
(

l1 +
√

l2
1 + 4m1

)

will be used. For determining precise

approximation, correction is applied n times to obtain yn + an, which will be equal to precise value of y.
Above said, quadratic approximations will be used to evaluate y, when value of x is given in equation yey = x.
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2.2 Convergence First Method

2.2.1 Convergence of ln z = y

In this section, convergence of ln z = y will first be proved and thereafter, convergence of Lambert W Function, z ln z = x,
will be taken up. In the first instance, considering z = z1 +a1 yields ln (z1 + a1) = y, where z is a positive real number and
z1 is an arbitrarily assigned positive real number. This equation on simplification yields ln z ≃ ln z1 + 2a1/(a1 + 2z1) = y

[28] and value of a1 is thus given by equation

a1 = 2z1 (y− ln z1 )/(2− y+ ln z1). (11)

Considering value of z2 = z1 + a1 and on simplification, yields

z2/z1 =−1+ 4/(2− y+ ln z1). (12)

Considering value of z3 = z2 + a2 and on simplification, yields

z3/z2 =−1+ 4/(2− y+ ln z2), (13)

and finally, value of zn+1 = zn + an is given by relation,

zn+1/zn =−1+ 4/(2− y+ ln zn), (14)

where n denotes the number of times the correction is applied. In ideal case, n is that number which yields zn+1/zn = 1.
For approximation of ln z, value to z1 is arbitrarily assigned so that values of z2, z3, z4, . . . ., zn+1 obtained are positive
and real. What value should be assigned to z1 has been explained in sections 3.1.2 and 3.2.2. Assignment of value to z1

will lead to two types of cases.

2.2.2 First Type

Referring to Equation (12), denominator 2− y+ ln z1 will have a value more than 2, when z1 is assigned a value such
that ln z1 > y. That results in z2 < z1 from Equation (12) has been satisfied, ln (z1 +a1) will approximate y more precisely

than ln z1.

Referring to Equation (13) and z2 < z1, denominator 2− y+ ln z2 will either be more than 2 or equal to 2 or even less
than 2. If it is equal to 2, no further correction is required and the result will be ln z2 = y. It is submitted such a situation
will only arise, when assumption of z1 is such that ln z1 closely approximates y otherwise magnitude of 2− y+ ln z2

will be more than 2 but less than 2− y+ ln z1 . Since Equation (13) has been satisfied, therefore, |z3 − z2| will be less
than |z2 − z1| and ln (z2 + a2) will approximate y more precisely than ln (z1 + a1)..In this way, with successive iterations,
|z4 − z3|< |z3 − z2|, |z5 − z4|< |z4 − z3| , . . . , |zn+1 − zn|< |zn − zn−1| .

2.2.3 Second Type, when ln z1 − y is negative but 2+ ln z1 − y is positive quantity:

In this type of cases, (2−y+ ln z1) is less than 2 but more than 0 and satisfaction of Equation (12), yields z2−z1 a positive
quantity or z2 > z1 and ln (z1 + a1) will aapriximate y more precisely than ln z1 ..
Referring to Equation (13) and z2 > z1, denominator 2− y+ ln z2 will either be less than 2 or equal to 2 or even more
than 2. If it is equal to 2, no further correction is required and the result will be ln z2 = y. Such a situation will only arise,
when assumption of z1 is such that ln z1 closely approximates y otherwise magnitude of 2− y+ ln z2 will be less than
2 but more than 2− y+ ln z1. Since Equation (13) has been satisfied, therefore, magnitude of z3 − z2 written as |z3 − z2|
will be less than |z2 − z1| and ln (z2 +a2) will approximate y more precisely than ln (z1 + a1). In this way, with successive
iterations, |z4 − z3|< |z3 − z2|, |z5 − z4|< |z4 − z3| , . . . , |zn+1 − zn|< |zn − zn−1| . Difference in this type of cases from first
type, is that here ln z1 − y which was initially negative, with each iteration get less negative and finally will reach zero.
Considering magnitudes of z2 − z1, z3 − z2, z4 − z3, . . . ,zn+1 − zn and the position explained above, it proves

|z2 − z1|> |z3 − z2|> |z4 − z3|> · · ·> |zn+1 − zn|, (15)

or
|a1|> |a2|> |a3|> · · ·> |an| ,
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or a1 + a2 + a3 + · · ·+ an is convergent and when n is appreciably large, zn+1/zn tends to unity. It is submitted, z1 is not
to be assigned a value that results in −1+ 4/(2− y+ ln z1) zero or a negative quantity as logarithm of zero or a negative
quantity is not determinable in real domain. In other words, −2 <−y+ ln z1 < 2.
Example: Let y = 0.8, in equation ln z = y. Assuming z1 = 3, and applying equations (11) to (15), values of
z2, z3, z4, . . . , zn+1 obtained are

z2 = 2.220541132,z3 = 2.225540931,z4 = 2.225540928,z5 = 2.225540928.

For the result correct up to nine places of decimals, it is observed, z5/z4 precisely approximates one, therefore, z5 is the
approximated value that yields lnz5 = 0.8. In terms of differences,

|z2 − z1|= 0.779458868, |z3 − z2|= 0.004999799,

|z4 − z3|= 3× 10−9, |z5 − z4|= 0.000000000

and these are in decreasing order. Therefore,

a1 + a2 + a3 + · · ·+ an,

is a convergent series and z1 + a1 + a2 + a3 + · · ·+ an sums up to zn+1, where n is 5.

2.2.4 Convergence of Lambert W Function using quadratic approximation

It has been proved that positive value of z in equation lnz = y obtained by approximation converges to z1 + a1 + a2 +
a3 + · · ·+ an, where z1 is arbitrarily assumed positive real number and

|a1|> |a2|> |a3|> .. . |an−1|> |an| .

Based on above proof, following deductions are made.

1.Since z in equation, ln(z) = y, converges to a positive nonzero value zn+1, therefore, z in product of z and ln z equal to
x or in z ln z = x, will also coverage to a positive value.

2.Since z in equation, ln(z) = y, converges to a positive nonzero value zn+1, therefore, z in division of ln z by z equal to
x or in (1/z) ln z = x, will also coverage to a positive value.

3.Since z in equation, ln(z) = y, converges to a positive nonzero value zn+1, therefore, z in sum of ln z and z equal to x

or in z+ ln z = x, will also coverage to a positive value.
4.Since z in equation, ln(z) = y, converges to a positive nonzero value zn+1, therefore, z in algebraic sum of ln z and −z

equal to x or in −z+ ln z = x, will also coverage to a positive value.

2.3 Convergence Second Method

2.3.1 Convergence of Lambert W Function Expressed As z ln (z) = x, Where z = ey

Referring to section 3.1, Lambert W Function is written as z ln z = x, where z = ey. Considering z = z1 + a1, it gets
transformed to a quadratic equation a2

1 − l1a−m1 = 0, where

l1 =−(3z1 ln z1 + 2z1 − x)/(ln z1 + 2) ,

m1 = 2z1 (x− z1 ln z1)/(ln z1 + 2) ,

and relevant root of quadratic equation is

a1 = (1/2)

(

l1 +
√

l2
1 + 4m1

)

.

Then

z2 = z1 + a1 = (1/2)

(

l1 +
√

l2
1 + 4m1

)

.

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



290 Narinder Kumar Wadhawan: Lambert W Function by Quadratic Approximation

For precise approximation, it is further iterated and value of z3 = (z2 +a2), z4 = (z3 +a3), . . . , zn+1 = (zn +an) are found.
Detail procedure is mentioned in section 3.1 and is not repeated here. It is reiterated, quadratic approximation is based on
formula

ln{(y+ 1)/y}≃ 2/(2y+ 1),

which has already been proved in a published paper [28], therefore, value of z2 = z1 + a1 will satisfy more precisely
equation z ln z = x as compared to z = z1. Similarly, z3 will satisfy more precisely equation z ln z = x than z = z2 and
finally zn+1 = zn + an will satisfy more precisely equation z ln z = x than zn. That leads to result

|z1 ln z1 − x|> |z2 ln z2 − x|> |z2 ln z2 − x|> · · ·> |zn ln zn − x| . (16)

Since according to Equation (27), l2 =−(3z2 ln z2 + 2z2 − x)/(ln z2 + 2) , and z2 ln z2 approximates x, considering z1 ≥
1, then l2 is a negative quantity and m2 = 2z2 (x− z2 ln z1)/(ln z2 + 2) can have positive or negative value depending
upon assumption of value of z1. That is whether z2ln z2 is less or more than x but since z2ln z2 approximates x, therefore,
quantity |x− z2ln z2| will be small as compared to |3z2ln z2 + 2z2 − x|. Let l2 =−L2, then on simplification,

a2 = (L2/2){−1+
(

1+ 4m2/L2
2

)1/2}= m2/L2. (17)

Since z2ln z2 approximates x, therefore, a2 on substitution of the values of L2, m2 and simplification, is given by equation,

a2 = 2z2 (x− z2 ln z1)/(3z2 ln z2 + 2z2 − x) = (x− z2 ln z2)/( ln z2 + 1) . (18)

Similarly,
a3 = (x− z3 ln z3)/( ln z3 + 1) , (19)

. . .
an = (x− zn ln z n)/( ln zn + 1) . (20)

According to inequality (16) and in view of the fact, slight change in values of z2, z3, z4, . . . .,zn+1 on iteration does not
affect appreciably the values of denominators (1+ ln z2), (1+ ln z3), (1+ ln z4), . . . , (1+ ln zn), therefore,

|a2|> |a3|> |a4|> · · ·> |an| ,
and thus, value of z converges to zn+1, where

zn+1 = z1 + a1 + a2 + a3 + · · ·+ an,

value of z1 is arbitrarily assumed, value of an = (1/2)
(

ln +
√

l2
n + 4mn

)

and value of ln and mn are given by Equations

(34) and (35).

2.3.2 Convergence of Lambert W Function Expressed as (1/z) ln (z) = x, Where z = ey

Following the same procedure as explained in section 2.3.1, it can be proved, |a2|> |a3|> |a4|> · · ·> |an| ,
and thus, value of z converges to zn+1, where

zn+1 = z1 + a1 + a2 + a3 + · · ·+ an,

value of z1 is arbitrarily assumed, value of an = (1/2)
(

ln +
√

l2
n + 4mn

)

and value of ln and mn are given by equations,

ln =−(3zn x− ln zn − 2 )/x,

mn = 2zn (ln zn − znx)/x.

Since Lambert W Function in this case, pertains to negative branch, therefore, it can be proved, its other value say z
′
also

converges to

z
′
n+1 = z1 + a

′
1 + a

′
2 + a

′
3 + · · ·+ a

′
n,

where value of a
′
n = (1/2)

(

l
′
n −

√

l‘2
n + 4m

′
n

)

,
∣

∣

∣
a
′
2

∣

∣

∣
>

∣

∣

∣
a
′
3

∣

∣

∣
>

∣

∣

∣
a
′
4

∣

∣

∣
> · · · >

∣

∣

∣
a
′
n

∣

∣

∣
and value of l

′
n and m

′
n are given by

equations.

l
′
n =−

(

3z
′
n x− ln z

′
n − 2

)

/x,

m
′
n = 2z

′
n

(

ln z
′
n − z

′
nx
)

/x.
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2.3.3 Convergence of Lambert W Function Expressed As ln (y)+ y = ln(x)

Referring to section 3.2, Lambert W Function yey = x is written as ln (y)+ y = ln(x) and continuing as explained in
section 2.3.1, value of a2 is given by equation a2 = m2/L2, where L2 =−l2 On substituting the values and simplifying it,

a2 =−2y2{y2 − ln(x/y2)}/{3y2 + 2− ln(x/y2)}= {ln(x/y2)− y2}/(1+ 1/y2) (21)

Similarly,

a3 = {ln(x/y3)− y3}/(1+ 1/y3), (22)

. . .

an = {ln(x/yn)− yn}/(1+ 1/yn). (23)

Since y2 approximates more precisely the equation ln (y)+ y = ln(x) than y1 and y3 approximates still more precisely
the equation ln (y)+ y = ln(x) than y2 and so on. This leads to result

|ln (x/y1)− y1|> |ln (x/y2)− y2|> |ln (x/y3)− y3|> · · ·> |ln (x/yn)− yn| (24)

According to inequality (24) and in view of the fact, there is extraordinarily slight changes in the values of
y2, y3, y4, . . . .,yn+1 and that does not affect appreciably the values of denominators (1+ 1/y2),
(1+ 1/y3),(1+ 1/y4), . . . ,(1+ 1/yn), therefore,

|a2|> |a3|> |a4|> · · ·> |an| ,

and thus, value of y converges to yn+1 where

yn+1 = y1 + a1+ a2 + a3 + · · ·+ an,

value of y1 is arbitrarily assigned, value of an = (1/2)
(

ln +
√

l2
n + 4mn

)

and value of ln and mn are given by Equations

(46) and (47).

2.3.4 Convergence of Lambert W Function Expressed As ln (y)− y = ln (x)

Following the same procedure as explained in section 2.3.2, it can be proved, |a2|> |a3|> |a4|> · · ·> |an| ,
and thus, value of y converges to yn+1 where

yn+1 = y1 + a1+ a2 + a3 + · · ·+ an,

value of y1 is arbitrarily assigned, value of an = (1/2)
(

ln +
√

l2
n + 4mn

)

and values of l1 and m1 are given by equations

ln =−{3yn− 2+ ln(x/yn)},

mn =−2yn{yn + ln(x/yn)}.

Since Lambert W Function in this case, pertains to negative branch, therefore, it can be proved, its other value say y
′
also

converges to

y
′
n+1 = y1 + a

′
1 + a

′
2 + a

′
3 + · · ·+ a

′
n,

where

∣

∣

∣
a
′
2

∣

∣

∣
>

∣

∣

∣
a
′
3

∣

∣

∣
>

∣

∣

∣
a
′
4

∣

∣

∣
> · · · >

∣

∣

∣
a
′
n

∣

∣

∣
, value of a

′
n = (1/2)

(

l
′
n −

√

l
′2
n + 4m

′
n

)

and value of l
′
n and m

′
n are given by

equations,

l
′
n =−{3y

′
n− 2+ ln(x/y

′
n)},

m
′
n =−2y

′
n{y

′
n + ln(x/y

′
n)}.
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2.3.5 Graphical Presentation of Convergence

To further corroborate convergence of quadratic approximation, I refer to the data given in Table 1. Figures 1, 2, 3, 4 and
5 are drawn according to the data given in rows at serial numbers 2, 3, 4, 5 and 6 respectively in Table 1. In these Figures,
along x-axis, numerals 1, 2, 3, 4, 5 and 6 correspond to value of z1, z2, z3, z4 , z5 and z6, where z1 is an assumed value.
Applying correction four times results in approximation precise to ten decimal points.
Along y-axis, values of z1, z2 = z1 + a1, z3 = z2 + a2, z4 = z3 + a3 and z5 = z4 + a4 are plotted. It is clear from these
figures, the magnitudes of corrections i.e. |z2 − z1| , |z3 − z2| , |z4 − z3| and |z5 − z4| are in decreasing order and finally
magnitude for the last correction i.e. |z5 − z4| tends to zero.
Kindly compare heights of corrected value z2, z3 z4 and z5, also please note difference in height of z4 with z5. This
difference is negligible. The figures show visual presentation of decreasing magnitude of corrections that finally give
precise approximation of z as zn+1. In the Figures, number of iterations, n = 4, yielded precise approximation of y equal
to ln z, where W (x) = y.

2.4 Rate Of Convergence

To find how fast the approximation reaches its actual value, rate of convergence is evaluated. Rate of convergence of the
sequence a1, a2, a3, . . . , an is found by the relation,

|(an+1 − aL)|/|an − aL|k,

where aL is the limiting value and n tends to infinity. It is already explained in the foregoing sections that an+1 reaches

value zero, when (n + 1) tends to infinity i. e., aL = 0, therefore, |an+1 − aL)|/|an − aL|k = |an+1|/|ak|k but before
vanishing to zero at (n+ 1), an has negligibly small value and that results in |an+1|/|an| = 0 or rate of convergence

|(an+1 − aL)|/|an − aL|k = 0. Thus convergence of sequence ak is exponential [29].
In various methods of approximation, the rate of convergence can be classified as sub-linear, linear, super-linear, quadratic,
and cubic, in ascending order of efficiency. It is important to note that all these methods typically require an initial
assumption close to the actual value of the variable being approximated. An initial assumption that varies within 10 to
20 percent of the actual value is acceptable. Details are given in section 8. If this variation increases, the approximation
may fail to converge. This requirement ensures that the initial error (i.e., the difference between the initial assumption
and the actual value) is a fraction of the actual value and significantly less than one. The following relation defines the
characteristic nature of convergence,

En+1 ∝ C(En)
k,

where En+1 and En stand for the error after the (n+1)th and nth iteration and k is the order of convergence. This relationship
holds particularly when the initial assumption is close to the actual value. However, this formula is devised for methods

Fig. 1: Convergence of z1 + a1 + a2 + a3 + a4, when x = 0.1 and z1 assumed is 1
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Fig. 2: Convergence of z1 + a1 + a2 + a3 + a4, when x = 0.5 and z1 is assumed 1

Fig. 3: Convergence of z1 + a1 + a2 + a3+ a4 when x = 1 and z1 assumed is 1
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Fig. 4: Convergence of z1 + a1 + a2+ a3 + a4, when x = 100 and z1 assumed is 1

Figure 5 Convergence of z1 +a1 +a2 +a3 +a4, when x = 105 and z1 assumed is 1

requiring initial guesses in the vicinity of the actual value. If the initial assumption is far from the actual value—as is
the case in quadratic equation approximations—the error, defined as the difference between the initial assumption and
the actual value, may be too large for the relationship to hold accurately in cases of Newton’s and Halley’s methods but
saliently the quadratic equation approximation in spite of significant difference between initial assumption and actual
value, converges exponentially with in three to five iterations.

The Lambert W Function involves an exponential term. Since an exponential term can not be evaluated to an exact value,
the Lambert W Function can only be approximated. The precision of the result depends on how many times a correction is
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applied and how close the initial assumption of z1 or y1 is to the actual result in the first instance. If the initial assumption
is near the actual value, fewer corrections are needed. From the examples provided in the tables that follow, it will be
observed that after four or five corrections, precise results up to ten decimal points were obtained. If the calculation device
is highly precise, applying more than five corrections can yield results accurate to beyond ten decimal points.
The value of zn+1 has been approximated to yield precise value of y = ln (zn+1) where zn=1/zn approximates one.
Therefore, error equals to (z− zn+1)/z. Under ideal situation, z = zn+1 when n tends to infinity. Therefore, relation gives
error

E =
(an+1 + an+2 + an+3+ · · ·+ a∞)

z

It has already been proved that a1, a2, a3, . . . are in decreasing order i.e. |an+1|> |an+2| > |an+3| > .. . so on and their
magnitudes are so small that these can be neglected, therefore, percentage error for practical purposes is 100(an+1/zn+1).

3 Numerical Approximation of y, When Value of x Is Given in Equation, W0 (x)=y And

∞>x ≥ 0

3.1 First Method

In this method, yey = x will be written z ln (z) = x, where z = ey and z ln (z) = x, will be transformed to a quadratic
equation. The relevant root of the equation will approximate the value of z, hence y will be approximated as ln z.Details
are given hereunder.

3.1.1 Quadratic Approximation of W0 (x) = y

Equation W0 (x) = y or y ey = x, on substituting y with ln z, results in z ln z = x. Let at z = z1 + a, the following equation
holds good,

(z1 + a1) ln (z1 + a1) = x, (25)

where z1 is an assumed real positive number and a1 is a real number that will be found. What value should be assumed to
z1, will be taken up in section 3.1.2. Following the procedure as detailed in section 2, Equation (25) is written in quadratic
form, a2

1 − l1a1 −m1 ≃ 0, where
l1 =−(3z1 ln z1 + 2z1 − x)/(ln z1 + 2) , (26)

m1 = 2z1 (x− z1 ln z1)/(ln z1 + 2) , (27)

and roots of this quadratic equation are (1/2)
(

l1 ±
√

l2
1 + 4m1

)

. These roots will be complex if l2 + 4m happens to be

a negative quantity. Since solution of yey = x is being determined in real domain, therefore, complex values of the roots
will not be considered. If roots are found complex, then the value of z1 must be changed so that values of l2

1 + 4m1, l2
2 +

4m2, l2
3 + 4m3, . . . , l

2
n + 4mn are positive quantities. It is reiterated, out of the two roots, the root,

a1 = (1/2)

(

l1 +
√

l2
1 + 4m1

)

, (28)

is considered for approximation and its other root (1/2)
(

l1 −
√

l2
1 + 4m1

)

is ignored. Otherwise, after nth correction,

zn + an, will have a negative value. Noteworthy to add, n is a positive integer that corresponds to the number of times
correction is applied depending upon the precision of the result needed. Thus, after first correction, z1 + a1 is rough
approximation of z. Let z1 + a1 be equal to z2, then

z2 = z1 + a1 = z1 +(1/2)

(

l1 +
√

l2
1 + 4m1

)

. (29)

Approximation after second correction, will be given by the relation

z3 = z2 + a2 = z2 +(1/2)

(

l2 +
√

l2
2 + 4m2

)

, (30)
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where
l2 =−(3z2 ln z2 + 2z2 − x)/(ln z2 + 2) , (31)

m2 = 2z2 (x− z2 ln z2)/(ln z2 + 2) . (32)

Proceeding in this manner, approximation after nth correction will be given by relation

zn+1 = zn + an = zn +(1/2)

(

ln +
√

l2
n + 4mn

)

, (33)

where
ln =−(3zn ln zn + 2zn − x)/(ln zn + 2) , (34)

mn = 2zn (x− zn ln zn)/(ln zn + 2) . (35)

In this paper, except the cases dealt in section 5, after three times correction, (z3 + a3) yielded precise approximation of
z and once (z3 + a3) , was found, y was determined from the relation y = ln (z) = ln (z3 + a3). However, if the result
demands higher accuracy, the correction can be applied n times, where n depends upon the extent to which the accuracy
is required.

3.1.2 Assumption Of the Value Of z1

Since y can have any positive value including zero, therefore, z = ey can have minimum value 1 and maximum value
infinity. Also as yey = x or ln y+ y = ln x and if x has value more than e, then y = ln x− ln y. Since ln y is far smaller
than y, therefore, y roughly approximates ln x. In other words, z1 being equal to ey, roughly approximates x, when x > e.
Accordingly, when x ≥ e, assumption of value of z1, equal to or less than x can be made. Since z1 can have minimum
value one, therefore, z1 can be assumed any value between 1 and x.

In the same way, when x < e, assumption of value of z1 between 1 and e can be made. Care will also have to be exercised,
while assuming the value of z1 that z1+a1, z2+ a2, z3+a3, . . . , zn+an are all real and positive quantities. If root given
by Equation (28), is found complex, then assumption of value of z1 will have to be changed. Further, since y= ln(zn +an),
therefore, zn + an must be a positive real quantity. Although theory for assuming the value of z1 has been detailed, value

of z1 in this paper is assumed 1 for x, varying from 10−5 to 105 as is clear from the Table 1. But that does not mean,
the value of z1 should necessarily be assumed 1, it can be assumed any other value in consonance with theory already
explained. Also please peruse Table 5, it will be seen, for given x = 105 , the value of z1 assumed from 1 to 1012 yielded
correct results.

3.1.3 Veracity and Precision of Formulae Derived for approximation of y

Based upon quadratic approximation as explained in section 2, some examples are given in Table 1. Not only these
examples prove the veracity of quadratic approximation but also reveal no error after fourth correction.

Table 1: Displaying accuracy of quadratic approximation for y when W (x) = y is given

Sr.

No

x As

z1

First time

corrected

z2 = z1 +a1

Second time

corrected

z3 = z2 +a2

Third time

corrected

z4 = z3 +a3

Fourth time

corrected

z5 = z4 +a4

Calculated y =
ln (z5)

Actual y %

Err

1 10−5 1 1.00000999995 Not needed Not needed Not needed 9.9999(10−6) 9.9999 X 10−6 0

2 0.1 1 1.0956356 1.0955719 Not needed Not needed .09127653 .09127653 0

3 0.5 1 1.4252391 1.4215299 Not needed Not needed .35173371 .3517337 0

4 1.0 1 1.7807764 1.7632227 1.7632228 Not needed .56714329 .56714329 0

5 100 1 51.962237 29.437158 29.536569 29.53659905 3.38563014 3.38563014 0

6 105 1 50001.99996 10510.1993 10770.5576 10770.55638 9.2845715 9.2845714 0

7 1020 1 5(1019) 2.297042(1018) 2.36324704

(1018)
2.363688732

(1018)
42.306755092 42.306755092 0

It is explicit from the data given at serial numbers 1, 2 and 3 that when z1 ≫ a1, only single correction was needed

and, when z1 was not at all comparable with z1 + a1, three times corrections were needed. Above detailed theory proves
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Lemma 3.1.
Lemma 3.1: When a positive value of x between 0 and infinity is given in Lambert W function W (x) = y, then numerical

value of y can be evaluated by quadratic approximation using relation y = ln (zn + an), where z1 is assumed 1 and n

pertains to number of times the correction is applied depending upon the extent of accuracy required and

z1 + a1 = z1 +(1/2)

(

l1 +
√

l2
1 + 4m1

)

,

l1 =−(3z1 ln z1 + 2z1 − x)/(ln z1 + 2) ,

m1 = 2z1 (x− z1 ln z1)/(ln z1 + 2) ,

z2 + a2 = z2 +(1/2)

(

l2 +
√

l2
2 + 4m2

)

,

l2 =−(3z2 ln z2 + 2z2 − x)/(ln z2 + 2) ,

m2 = 2z2 (x− z2 ln z2)/(ln z2 + 2) ,

. . . ,

zn + an = zn +(1/2)

(

l2 +
√

l2
n + 4mn

)

,

ln =−(3zn ln zn + 2zn − x)/(ln zn + 2) ,

mn = 2zn (x− zn ln zn)/(ln zn + 2) .

3.2 Second Method

In this method, y ey = x is written as ln (y)+ y = ln(x) and, then this equation is transformed to a quadratic equation.
Root of the quadratic equation will help approximating the required value of y. Details are given below.

3.2.1 Quadratic Approximation of W0 (x) = y

Let y be y1 + a1, then

(y1 + a1)+ ln (y1 + a1) = ln (x) . (36)

As explained in section 2, this equation is transformed to a quadratic equation,

a2
1 − l1a−m1 = 0, (37)

where

l1 =−{3y1+ 2− ln(x/y1)}, (38)

m1 =−2y1{y1 − ln(x/y1)}. (39)

Out of the two roots of the quadratic Equation (37) , root

a1 = (1/2)

(

l1 +
√

l2
1 + 4m1

)

, (40)

is taken into consideration and its other root (1/2)
(

l1 −
√

l2
1 + 4m1

)

is neglected on account of the fact that it leads to

a value zn + an which is a negative quantity. Thus, after first correction, y1 + a1 is the rough approximation of y and if
assumption of y1 happens to be such that y1 ≫ a1, then even after first correction, result will be accurate. Kindly refer to
Table 2. Let y1 + a1 be equal to y2, then

y2 = y1 + a1 = y1 +(1/2)

(

l1 +
√

l2
1 + 4m1

)

. (41)
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Approximation after second correction will be given by relation

y3 = y2 + a2 = y2 +(1/2)

(

l2 +
√

l2
2 + 4m2

)

, (42)

where
l2 =−{3y2 + 2− ln(x/y2)}, (43)

m2 =−2y2{y2 − ln(x/y2)}. (44)

Proceeding in this manner, approximation after nth correction will be given by the relation

yn+1 = yn + an = yn +(1/2)

(

ln +
√

l2
n + 4mn

)

, (45)

where
ln =−{3yn + 2− ln(x/yn)}, (46)

mn =−2yn{y2 − ln(x/yn)}. (47)

In this paper, correction is applied three times and (y3 + a3) yielded the precise approximation. For determining rate of
convergence, explanation given in section 2.4 is applicable and is not repeated for the sake of brevity.

3.2.2 Assumption Of the Value Of y1

Since y1 can have any positive value and y = ln x− ln y , therefore, it is true that 1 ≤ y < ln (x), when x ≥ e and y1 can
be assigned any value between 1 and ln x. When 0 ≤ x < e, then it is true that ln (x) ≥ ln (y) or 0 < y ≤ x, accordingly
assumption of value of y1 is made between 0 and x. Care will also have to be exercised while assuming the value of y1, so
that y1 +a1, y2 +a2, y3 +a3 , . . . , yn +an are all real and positive quantities, if these happen to be negative or complex,
then assumption of y1 will have to be changed. Although theory for assuming the value of y1 has been detailed above,
value of y1 in this paper is assumed as 1 when x ≥ 1 and equal to x when 0 < x < 1. Kindly peruse Table 2.

Table 2: Displaying accuracy of quadratic approximation for y when W (x) = y is given

S.

N.

Given

x

Assumed

y1

First time

corrected

y1 +a1

Second time

corrected

y1 +a1 +a2

Third time

corrected

y = y1 + a1 +
a2 +a3

Actual y % age Error

After

Correction

1 10−5 10−5 9.9999(10−6) Not needed Not needed 9.9999(10−6) 0.000000

2 10−2 10−2 .00990147305 .00990147384 Not needed .00990147384 0.00000

3 10−1 10−1 .09127122105 .09127653616 .0912765271 .09127652716 0.00000

4 1 1 .5615528128 .5671433197 .56714329 .56714329 0.000000

5 102 1 3.49503992 3.385628701 3.38563014 3.3856301403 8.86098(10−9)

6 105 1 9.880553811 9.28455331 9.284571428 9.2845714286 6.46233(10−9)

7 1010 1 21.20598257 20.02867132 20.02868541 20.028685413 1.49785(10−8)

8 1020 1 44.14031445 42.3067489 42.30675509 42.306755096 1.418213(10−8)

9 1050 1 113.16429118 110.4249176 110.4249188 110.42491883 2.71678(10−8)

10 10500 1 688.7813268 684.2625008 684.2472086 684.2472086 4.384380(10−9)

It is explicit from the data given at serial numbers 1 and 2 that correction was needed once or twice for approximating
value of y. Above detailed theory proves Lemma 3.2.
Lemma 3.2: When a positive value of x is given in Lambert W function W (x) = y, then numerical value of y can be

evaluated by the quadratic approximation using relation y = yn +an where y1 is assumed as 1, when x ≥ 1; as equal to x,
when 0 < x < 1; n pertains to number of times the correction is applied depending upon the extent of accuracy required

and

y1 + a1 = y1 +(1/2)

(

l1 +
√

l2
1 + 4m1

)

,
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l1 =−{3y1+ 2− ln(x/y1)},
m1 =−2y1{y1 − ln(x/y1)},

y2 + a2 = y2 +(1/2)

(

l2 +
√

l2
2 + 4m2

)

,

l2 =−{3y2+ 2− ln(x/y2)},
m2 =−2y2{y2 − ln(x/y2)}.

. . . ,

yn + an = yn +(1/2)

(

ln +
√

l2
n + 4mn

)

,

ln =−{3yn+ 2− ln(x/yn)},
mn =−2yn{y2 − ln(x/yn)}.

4 Numerical Approximation Of y, When Value Of −x Is Given In Equation W (−x)=−y,
Where 0 ≤ x ≤ 1/e

4.1 First Method

In this method,−ye−y =−x is written as (1/z) ln (z) = x, where z= ey and (1/z) ln (z) = x is transformed to to a quadratic
equation. The relevant root of the equation will help approximating the value of z and that will ease approximation of y.

4.1.1 Quadratic Approximation of W (−x) =−y

Equation W (−x) = −y or −y e−y = −x, on substituting y with ln z, results in (1/z)ln z = x, where x is a positive real
quantity excluding infinity. Let z be equal to z1 + a1, where z, and z1 are real positive quantities, then

ln(z1 + a1) = x(z1 + a1) . (48)

Term ln(z1 + a1) can be written ln z1 + ln(1+a1/z1). Using Equation (7), term ln(z1 + a1) can further be written ln z1 +
2a1/(2z1 + a1). Putting this value for ln(z1 + a1) in Equation (48), it takes the form,

ln z1 + 2a1/(2z1 + a1)− x(z1 + a1) = 0.

On simplification, it, yields a quadratic equation a2
1− l1a−m1 = 0 in variable a1, which has roots (1/2)(l1±

√

l2
1 + 4m1),

where
l1 =−(3z1 x− ln z1 − 2 )/x,

m1 = 2z1 (ln z1 − z1x)/x.

Therefore, after first correction,

z2 = z1 + a1 = z1 +(1/2)(l1 +
√

l2
1 + 4m1),

after second correction,

z3 = z2 + a2 = z2 +(1/2)(l2 +
√

l2
2 + 4m2),

l2 =−(3z2 x− ln z2 − 2 )/x,

m2 = 2z2 (ln z2 − z2x)/x.

. . . ,

after nth correction,

zn+1 = zn + an = zn +(1/2)(ln +
√

l2
n + 4mn),
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ln =−(3zn x− ln zn − 2 )/x,

mn = 2zn (ln zn − znx)/x.

Earlier while devising methods for numerical approximation of y in Lambert W function W0 (x) = y, where value of x

was given, one root, out of two roots of the quadratic equation was considered on account of the fact that the other root
yielded negative value of zn + an leading to a complex value of y and hence was rejected. But in the present case, both

roots a1 = (1/2)(l1 +
√

l2
1 + 4m1) and a

′
1 = (1/2)(l1 ±

√

l2
1 + 4m1), give positive values of zn + an, z

′
n + a

′
n, hence both

are being considered as is explicit from Table 3.

For second value of z, other root will be denoted, a
′
1 = (1/2)(l1 −

√

l2
1 + 4m1). Following the same procedure, after first

correction,

z
′
2 = z1 + a

′
1 = z1 +(1/2)(l1 −

√

l2
1 + 4m1),

after second correction,

z
′
3 = z

′
2 + a

′
2 = z

′
2 +(1/2)(l

′
2 −

√

l
′2
2 + 4m

′
2),

l
′
2 =−

(

3z
′
2 x− ln z

′
2 − 2

)

/x,

m
′
2 = 2z

′
2

(

ln z
′
2 − z

′
2x
)

/x.

. . . ,

after nth correction,

z
′
n+1 = z

′
n + a

′
n = z

′
n +(1/2)(l

′
n −

√

l
′2
n + 4m

′
n),

l
′
n =−

(

3z
′
n x− ln z

′
n − 2

)

/x,

m
′
n = 2z

′
n

(

ln z
′
n − z

′
nx
)

/x.

4.1.2 Assumption Of the Value Of z1

In equation, −ye−y =−x, when y varies from 0 to minus infinity, x takes the value from 0 to 0 but it is not a flat straight
line, x = 0. When y rises above 0, value of −ye−y decreases and reaches minimum value and then increases and reaches
0. To find out the minimum value of −x, derivative of −ye−y is equated with zero and this yields −y =−1 or −x =−1/e.
When y = 0, then x = 0, when −y =−1, then −x =−1/e. In such situation z = ey will vary from 1 to e. When −y =−1,
then −x = −1/e, when −y = −∞, then x = 0. In such situation z = ey will vary from e to ∞. Therefore, one value of x

will correspond to values of y. Again value of z should be such that zn + an, z
′
n + a

′
n must be positive real number.

Referring to Table 6 in section 5, in equation W (−x) = −y, for value of −x assumed −.1, z1 was assigned values

0.3, 103 and 109 and such assignments yielded precise approximation of y = ln (z4 + a4) . If the calculator carrying out

the computations, happens to be precise, z1 can be assigned value more than 109. In equation W (−x) = −y, for value of
−x assumed −.1, z1 was assigned values .3 and 5 and such assignments yielded precise approximation of second value of

y = ln
(

z
′
4 + a

′
4

)

. However, in Table 3, value of z1 is assumed 2 and that facilitated approximation of both values of y.

It is pertinent to mention that serial numbers 1a, 2a, 3a and 4a correspond to data relating to root

(1/2)(l1 +
√

l2
1 + 4m1) and serial numbers 1b, 2b, 3b and 4b correspond to data relating to root (1/2)(l1 −

√

l2
1 + 4m1)

for both cases. It is not necessary that value of z1 should be assumed same for both roots, value of z1 pertaining to root

(1/2)(l1 +
√

l2
1 + 4m1) can be assumed different pertaining to root (1/2)(l1 −

√

l2
1 + 4m1). That proves Lemma 4.1.
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Table 3: Displaying accuracy of quadratic approximation for y when x is given in Equation W (−x) =−y

S.

N.

x Ass.z1 First time

corrected

z1 +a1

Second

time

corrected

z1 +a1+a2

Third time

corrected

z1 + a1 +
a2 +a3

Calculated

y = ln (z1 +
a1 + a2 +
a3)

Actual y Percentage

error after

correction

1a .365 2 2.956051512 3.097484097 3.09768805 1.130656043 1.1306553125 6.4608(10−5)

1b .365 2 2.422430039 2.410565801 2.410465598 .879819923 .879819986 7.1605(10−6)
2a .25 2 7.35020321 8.610707527 8.613169456 2.153292364 2.153292364 0.00000

2b .25 2 1.422385512 1.429611849 1.429611805 .3574029424 .3574029562 3.8612(10−6)

3a .10 2 23.83488834 35.94782488 35.77152074 3.577152067 110.42491883 2.7168(10−8)

3b .10 2 1.096588361 1.118326385 1.118325592 .1118325595 .1118325592 −2.5354(10−7)

4a 10−3 2 2689.157469 8974.76983 9118.006099 9.11800643 9.11800647 4.3870(10−7)

4b 10−3 2 .971574359 1.001003721 1.001001503 .0010010018 .0010010015 2.6667(10−5)

Lemma 4.1: When given value of x is such that x ≤ 1/e in −ye−y = −x or Lambert W function W (−x) = −y, then one

numerical value of y can be evaluated by the quadratic approximation and using relation y = ln(zn + an) , where

z2 = z1 + a1 = z1 +(1/2)(l1 +
√

l2
1 + 4m1),

l1 =−(3z1 x− ln z1 − 2 )/x,

m1 = 2z1 (ln z1 − z1x)/x,

z3 = z2 + a2 = z2 +(1/2)(l2 +
√

l2
2 + 4m2),

l2 =−(3z2 x− ln z2 − 2 )/x,

m2 = 2z2 (ln z2 − z2x)/x.

. . . ,

zn+1 = zn + an = zn +(1/2)(ln +
√

l2
n + 4mn),

ln =−(3zn x− ln zn − 2 )/x,

mn = 2zn (ln zn − znx)/x.

and second numerical value of y can be evaluated by quadratic approximation and using relation y = ln(z
′
n + a

′
n) where

z
′
2 = z1 + a

′
1 = z1 +(1/2)(l1 −

√

l2
1 + 4m1),

z
′
3 = z

′
2 + a

′
2 = z

′
2 +(1/2)(l

′
2 −

√

l
′2
2 + 4m

′
2),

l
′
2 =−

(

3z
′
2 x− ln z

′
2 − 2

)

/x,

m
′
2 = 2z

′
2

(

ln z
′
2 − z

′
2x
)

/x.

. . . ,

z
′
n+1 = z

′
n + a

′
n = z

′
n +(1/2)(l

′
n−

√

l
′2
n + 4m

′
n),

l
′
n =−

(

3z
′
n x− ln z

′
n − 2

)

/x,

m
′
n = 2z

′
n

(

ln z
′
n − z

′
nx
)

/x.

z1 is assumed as 2, and n pertains to number of times the correction is applied depending upon the extent of accuracy

required.
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4.2 Second Method

In this method, −ye−y = −x will be written as ln (y1 + a1)− y1 − a1 = ln(x) and, then this equation is transformed to a
quadratic equation in a1 . Root of quadratic equation will provide correction to y1.

4.2.1 Quadratic Approximation of W (−x) =−y

Let at y = y1 + a1, the following equation holds good,

−(y1 + a1)+ ln (y1 + a1) = ln (x) .

This equation can be written

−a+ ln (1+ a1/y1)+ ln (y1) = ln (x)+ y1.

Using Equation (7) and simplification yields

−a1 + 2/(2y1/a1 + 1)− ln(x/y1)− y1 = 0.

which is quadratic equation a2
1 − l1a1 −m1 = 0, where

l1 =−{3y1 − 2+ ln(x/y1)},m1 =−2y1{y1 + ln(x/y1)}.

Roots of this equation are (1/2)
(

l ±
√

l2 + 4m
)

and both roots will give corrections as explained in section 4.1.1.

Therefore,

y2 = y1 + a1 = y1 +(1/2)

(

l1 +
√

l2
1 + 4m1

)

,

y3 = y2 + a2 = y2 +(1/2)

(

l2 +
√

l2
2 + 4m2

)

,

l2 =−{3y2 − 2+ ln(x/y2)},m2 =−2y2{y2 + ln(x/y2)},

. . . ,

yn+1 = yn + an = yn +(1/2)

(

ln +
√

l2
n + 4mn

)

,

ln =−{3yn − 2+ ln(x/yn)},mn =−2yn{yn + ln(x/yn)}.

Similarly for second value y
′
n + a

′
n,

y
′
2 = y1 + a

′
1 = y1 +(1/2)

(

l1 −
√

l2
1 + 4m1

)

,

y
′
3 = y

′
2 + a

′
2 = y

′
2 +(1/2)

(

l
′
2 −

√

l‘2
2 + 4m

′
2

)

,

l
′
2 =−{3y

′
2 − 2+ ln(x/y

′
2)},m

′
2 =−2y

′
2{y

′
2 + ln(x/y

′
2)},

. . . ,

y
′
n+1 = y

′
n + a

′
n = y

′
n +(1/2)

(

l
′
n −

√

l‘2
n + 4m

′
n

)

,

l
′
n =−{3y

′
n − 2+ ln(x/y

′
n)},m

′
n =−2y

′
n{y

′
n + ln(x/y

′
n)}.
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Table 4: Displaying accuracy of quadratic approximation for y when x is given in Equation W (−x) =−y

S.

N.

Given

x

Ass.

y1

First time

corrected

y1 +a1

2nd time

corrected

y1 +a1 +a2

3rd time

corrected

y = y1 + a1 +
a2 +a3

Actual y % age error

after

correction

1a .365 1 1.129352923 1.130655313 1.130655313 1.130655313 0.0000

1b .365 1 0.7570090661 0.882015716 0.879820082 0.879820092 1.1365(10−6)
2a 0.1 1 3.39179597 3.57713465 3.577152064 3.577152064 0.0000

2b 0.1 0.1 0.1118472693 0.1118325592 No need 0.1118325592 0.0000

3a 10−3 10−3 8.486085012 9.117971815 9.118006532 9.11800647 6.7997(10−7)

3b 10−3 10−3 0.00100100150 No need No need 0.00100100150 0.00000

4.3 Assumption Of the Value Of y1

From table 4, it is clear, for a given value of −x, Lambert W function W (−x) = −y has two corresponding values of −y,
one value −y lies between −1 and 0 whereas other between −1 and −∞ and smaller value of −y is such that y ≥ x or
−y ≤ −x and larger value of y is such that y > 0 or −y < 0. That means for smaller value of y, assumption of y1 can be
made as if it were equal to or more than x and for larger value of y, assumption can be made as if y1 were more than zero.
Care will also have to be exercised, while assuming the value of y1 that roots y1 + a1, y2 + a2, y3 + a3, . . . , yn + an and

y1+a
′
1, y

′
2 +a

′
2, y

′
3 +a

′
3, . . . , y

′
n+a

′
n are all real and positive. If a root is found complex, then assumption of y1 will have

to be changed. Since numerical approximation of y in real domain is being found, that requires assumption of y1 must be

a real quantity such that it should result in value of roots a1, a2, a3 . . . , an and a
′
1, a

′
2, a

′
3 . . . , a

′
n in real domain. To prove

veracity of formulae derived for approximation of y, some examples are given in Table 4.
In the Table 4, abbreviation ‘Ass.’ denotes ‘Assumed.’ In some columns, it is mentioned, ‘No need,’ that says, there is

no necessity of applying correction. At serial 1b and 2a, small error in 10−6 is noted. This error can also be eliminated by
applying correction fourth time. Precision of formulae derived above, proves Lemma 4.2a and 4.2b.
Lemma 4.2a: When given value of x is such that x ≤ 1/e in −ye−y =−x or Lambert W function W (−x) =−y, then one

of numerical value of y can be evaluated by quadratic approximation and using relation y = yn +an where y1 is assumed

1, n pertains to number of times the correction is applied depending upon the extent of accuracy required,

y2 = y1 + a1 = y1 +(1/2)

(

l1 +
√

l2
1 + 4m1

)

,

l1 =−{3y1 − 2+ ln(x/y1)},m1 =−2y1{y1 + ln(x/y1),

y3 = y2 + a2 = y2 +(1/2)

(

l2 +
√

l2
2 + 4m2

)

,

l2 =−{3y2 − 2+ ln(x/y2)},m2 =−2y2{y2 + ln(x/y2)},
. . . ,

yn+1 = yn + an = yn +(1/2)

(

ln +
√

l2
n + 4mn

)

,

ln =−{3yn − 2+ ln(x/yn)},mn =−2yn{yn + ln(x/yn)}.
Lemma 4.2b: When a negative value of −x > −1/e is given in Lambert W function W (−x) = −y, then other numerical

value of y can be evaluated by quadratic approximation and using relation y = y
′
n + a

′
n where y1 is assumed equal to x, n

pertains to number of times the correction is applied depending upon the extent of accuracy required,

y
′
2 = y1 + a

′
1 = y1 +(1/2)

(

l1 −
√

l2
1 + 4m1

)

,

l1 =−{3y1 − 2+ ln(x/y1)},m1 =−2y1{y1 + ln(x/y1)}.

y
′
3 = y

′
2 + a

′
2 = y

′
2 +(1/2)

(

l
′
2 −

√

l‘2
2 + 4m

′
2

)

,
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l
′
2 =−{3y

′
2 − 2+ ln(x/y

′
2)},m

′
2 =−2y

′
2{y

′
2 + ln(x/y

′
2)},

. . . ,

y
′
n+1 = y

′
n + a

′
n = y

′
n +(1/2)

(

l
′
n −

√

l‘2
n + 4m

′
n

)

,

l
′
n =−{3y

′
n − 2+ ln(x/y

′
n)},m

′
n =−2y

′
n{y

′
n + ln(x/y

′
n)}.

5 Wide Range of Initial Assumptions

Although this method gives details how to make initial assumptions in sections 3 and 4, it is practically observed that in
addition, a broad range of values can be considered for initial assumptions. Following sections 5.1) and 5.2 deal with such
assumptions.

5.1 Assignment of Different Values of z1 Yields Same Solution Of W (x) = y

In this section, it will be explained, how in equation W (x) = y, assumptions of different values of z1 leads to the same

precise result of y, where y = ln z and z = zn +an. In the Table 5, equation W (105) = y, is solved by assuming z1 equal to

1, 10, 102, 103, 104, 105,106, 1012 where z2, z3, . . . zn+1, l1, l2, , . . . , ln, m1, m2, . . . , mn are given by Equations (29),
(30),. . . , (33), (26), (31),. . . , (34), (27), (32),. . . , (34) respectively. It was also observed, when x > 1012, value of z2 which
is z1 + a1 calculates zero, using Desmos Scientific calculator and natural logarithm of 0 is not defined, hence subsequent
values of z3, z4, . . . , zn+1 can not be calculated, therefore, assumption of value of z1 can not be made more than 1012.
If the calculator happens to be precise, one can go beyond 1012. It is also noteworthy that z1 can be assigned any value
between 1 and 1012, when using Desmos Scientific calculator and the value of y = ln(zn+1) reaches precise value though
number of steps varies. This property adds playfulness and recreational elements to this method.

Table 5: Displaying assumptions of different values of z1 leading to same results

x Ass.

z1

First time

corrected z2

Second

time

corrected z3

Third time

corrected z4

Fourth

time

corrected

z5

Calculated

y = ln (z5)
Actual y Err.

105 1 50001.99996 10510.1993 10770.5576 10770.556389.284571429 9.284571429 0.00

105 10 49574.91369 10573.99124 10770.55692 10770.556389.284571429 9.284571429 0.00

105 102 15199.81914 10767.02713 10770.55638 No need 9.284571429 9.284571429 0.00

105 103 11639.69298 10770.51561 10770.55638 No need 9.284571429 9.284571429 0.00

105 104 10770.59206 10770.55638 No need No need 9.284571429 9.284571429 0.00

105 105 10120.89002 10770.57739 10770.55638 No need 9.284571429 9.284571429 0.00

105 106 8439.5434 10771.81686 10770.55638 No need 9.284571429 9.284571429 0.00

105 1012 12000 10770.44626 10770.55638 No need 9.284571429 9.284571429 0.00

5.2 Assignment Of Different Values of z1 Yields Same Solution Of W (−x)=−y

Now it will be shown, how in equation W (−x) = −y or −ye−y = −x, assumptions of different values of z1 leads to the
same precise results of y, where y = ln z and z = zn+1 = zn + an. It has already been proved that solution of equation
−ye−y = −x yields two values of y for a given single value of x, such that 0 < x ≤ 1/e and one value of −y lies between
0 and −1 and other between −1 and minus infinity. In Table 6, equation W (−0.1) =−y, is solved by assuming z1 equal

to 0.3, 103, 109, where values of z2, z3, . . . , zn+1, l1, l2, , . . . , ln, m1, m2, . . . , mn are given in section 4.1. Referring
to Table 6, it was also observed that when x > 109, value of z2 which is z1 + a1 calculates zero, using Desmos Scientific
calculator and natural logarithm of 0 is not defined, hence subsequent values of z3, z4, . . . , zn+1 can not be calculated,
therefore, assumption of value of z1 can not be made more than 109. If the calculator happens to be precise, one can go
beyond 109.
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Table 6: Displaying assumptions of different values of z1 leading to same results for −ye−y =−x and −y >−1

x Ass.

z1

First time

corrected

z2

Second

time

corrected z3

Third time

corrected z4

Fourth time

corrected z5

Calculated

y = ln (z5)
Actual y Error

0.1 0.3 6.07914091431.59402227 35.76931211 35.77152064 3.577152064 3.577152064 Nil

0.1 103 51.019259 35.82203151 35.77152064 No need 3.577152064 3.577152064 Nil

0.1 109 180 39.0621895 35.77230776 35.77152064 3.577152064 3.577152064 Nil

Table 7: Displaying assumptions of different values of z1 leading to same results for −ye−y =−x and 0 <−y <−1

x Ass.

z1

First time

corrected z2

Second

time

corrected z3

Third time

corrected z4

Fourth time

corrected z5

Calculated

y = ln (z5)
Actual y

0.1 0.3 1.58113103 1.113880206 1.118325962 1.118325598 0.1118325649 0.1118325592

0.1 5 0.641251085 1.137654313 1.118325064 1.118325591 0.1118325586 0.1118325592

Using formulae for z2, z3, . . . zn+1, l1, l2, , . . . , ln, m1, m2, . . . ,mn given in section 4.1, the equation W (−.1) =−y,
is solved by assuming z1 equal to 0.3 and 5.0. These solutions are entered in Table 7. The solutions depicted in Tables 5
and 6 prove different assignment of different values of z1 yield same results.

6 Algorithm For Solving Lambert W Function W (x)=Y And Demonstration Of Its Use for

Solving W
(

1020
)

=y

1. Check whether real value of x ≥ 0 or x < 0. If x < 0, go to 14.
2. If x = 0, go to 35.
3. Let z1 = 1.
4. Compute

l1 =−(3z1 ln z1 + 2z1 − x)/(ln z1 + 2)

=−{3(1) ln(1)+ 2(1)− 1020}/{ln(1)+ 2}= 5(1019)

m1 = 2z1 (x− z1 ln z1)/(ln z1 + 2)

= 2(1)
{

1020 − (1) ln (1)
}

/{ln(1)+ 2}= 5(1019)} = 1(1020)

5. Compute

z2 = z1 +(1/2)(l1+
√

l2
1 + 4m1)

= 1+(1/2)[5
(

1019
)

+ {
(

52)
(

1019
)2

+ 4(1)
(

1020
)

}1/2

= 5(1019)

6. Compute
l2 =−(3z2 ln z2 + 2z2 − x)/(ln z2 + 2) ,

=−[3(5)
(

1019
)

ln
{

5
(

1019
)}

+ 2(5)
(

1019
)

− 1020]/[ln
{

(5)
(

1019
}

+ 2
]

=−1.43665347(1020)

m2 = 2z2 (x− z2 ln z2)/(ln z2 + 2)

= 2(5)(1019)[1020 − (5)
(

1019
)

ln
{

(5)
(

1019
)}

]/[ln
{

(5)
(

1019
}

+ 2
]

=−4.57768981
(

1039
)

7. Compute

z3 = z2 +(1/2)(l2+
√

l2
2 + 4m2)

= 5(1019)+(1/2)[−(1.43665347
(

1020
)

+{
(

−1.43665347)2
(

1019
)2

+ 4(−4.57768982)
(

1039
)

}1/2

=2.297042(1018)
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8. Compute
l3 =−(3z3 ln z3 + 2z3 − x)/(ln z3 + 2)

=−[3(2.297042)
(

1018
)

ln
{

(2.297042)
(

1018
)}

+2(2.297042)
(

1018
)

−1020]/[ln
{

(2.297042)
(

1018
}

+ 2
]

=−4.45558155(1018)

m3 = 2z3 (x− z3 ln z3)/(ln z3 + 2)

= 2(2.297042)
(

1018
)[

1020 − (2.297042)
(

1018
)

ln
{

(2.297042)
(

1018
)}]

/[ln
{

(2.297042)
(

1018
)}

+2] = 2.99365075(1035)

9. Compute

z4 = z3 +(1/2)(l3+
√

l2
3 + 4m3)

= 2.297042
(

1018
)

+(1/2)
{

(−4.45558155)2
(

1018
)2

+ 4(2.99365075)
(

1035
)}1/2

=2.36324704(1018)

10. Compute
l4 =−(3z4 ln z4 + 2z4 − x)/(ln z4 + 2)

=−[3(2.36324704)
(

1018
)

ln
{

(2.36324704)
(

1018
)}

+2(2.36324704)
(

1018
)

−1020]/[ln
{

(2.36324704)
(

1018
}

+ 2
]

=−4.61938531(10

m4 = 2z4 (x− z4 ln z4)/(ln z4 + 2)

= 2(2.36324704)
(

1018
)[

1020 − (2.36324704)
(

1018
)

ln
{

(2.36324704)
(

1018
)}]

/[ln
{

(2.36324704)
(

1018
)}

+2] = 2.0405081(1033)

11. Compute

z5 = z4 +(1/2)

(

l4 +
√

l2
4 + 4m4

)

= 2.36324704
(

1018
)

+(1/2)
{

(−4.61938531)2
(

1018
)2

+ 4(2.0405081)
(

1035
)}1/2

=2.363688732(1018)

12. Compute ln (z5) . Let it be Y=42.306755092
13. Go to 34.
14. Let X =−x, check if ∞ > X > 1/e. If yes go to 36.
15. Let z1 = 2.
16. Compute

l1 =−(3z1X − ln z1 − 2 )/X ,

m1 = 2z1 (ln z1 − z1X)/ X .

17. Compute

z2 = z1 = z1 +(1/2)(l1 +
√

l2
1 + 4m1).

18. Compute
l2 =−(3z2 X − ln z2 − 2 )/X ,

m2 = 2z2 (ln z2 − z2X)/X .

19. Compute

z3 = z2 +(1/2)(l2 +
√

l2
1 + 4m2).

20. Compute
l3 =−(3z3 X − ln z3 − 2 )/X ,

m3 = 2z3 (ln z3 − z3 )/X .

21. Compute

z4 = z3 +(1/2)(l3 +
√

l2
n + 4mn).

22. Compute
l4 =−(3z4 X − ln z4 − 2 )/X ,

m4 = 2z4 (ln z4 − z4 )/X .

23. Compute

z5 = z4 +(1/2)(l4 +
√

l2
4 + 4m4).
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24. Compute ln (z5) . Let it be Y1.
25. Compute

z
′
2 = z1 +(1/2)(l1−

√

l2
1 + 4m).

26. Compute

l
′
2 =−

(

3z′2 X − ln z′2 − 2
)

/X ,

m
′
2 = 2z

′
2

(

ln z′2 − z′2X
)

/ X .

27. Compute

z
′
3 = z′2 +(1/2)(l

′
2 −

√

l
′2
2 + 4m

′
2.

28. Compute

l
′
3 =−

(

3z′3 X − ln z′3 − 2
)

/X ,

m
′
3 = 2z

′
3

(

ln z′3 − z3X
)

/ X .

29. Compute

z
′
4 = z′3 +(1/2)(l

′
3 −

√

l
′2
3 + 4m

′
3.

30. Compute

l
′
4 =−

(

3z′4 X − ln z′4 − 2
)

/X ,

m
′
4 = 2z

′
4

(

ln z′4 − z′4X
)

/ X .

31. Compute

z
′
5 = z′4 +(1/2)(l

′
4 −

√

l
′2
4 + 4m

′
4.

32. Compute ln (z5) and ln(z
′
5) let these be Y1,Y2.

33. Print Y1, Y2 and go to 37.
34. Print Y=42.306755092 and go to 37.
35. Print 0 and go to 37.
36. Print ‘No solution in real domain.’
37. End.

This algorithm has been devised with the feature of four iterations for corrections, and the formulae used are based on the
first method using Equations (33), (34) and (32). Algorithms based on the multiple methods provided in the paper can be
easily framed using hints from this algorithm, but they are not explicitly written in the paper for the sake of brevity.
Although this algorithm is meant for the general solution of Lambert W functions, it also addresses a specific case,
W

(

1020
)

= y, with an initial assumption of z1 = 1. This proves its versatility compared to Newton’s and Halley’s methods,
which require initial assumptions within 10% to 20% of the actual values, thus necessitating guesses before solving for
a precise approximation. However, this method has solved the function even with an initial assumption that deviates
significantly {2.363688732

(

1018
)

p.c.} from the correct value.

6.1 Pseudocode for Solving Lambert W Function

1. Given x in equation W(x)= y.
2. If x < 0, go to step 16.
3. If x = 0, go to step 39.
4. Initialise z1 to 1.
5. Define the formulae:

ln = −{3 zn ln(zn) + 2 zn−x}/{ln(zn) + 2},
mn = 2 zn {x − zn ln(zn)}/{ln(zn) + 2),

zn+1 = zn + (1/2)
{

ln +
(

l2n + 4 mn

)1/2
}

.

6. Compute l1 and m1 using z1.
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7. Compute z2 using l1, m1, and z1.
8. Compute l2 and m2 using z2.
9. Compute z3 using l2, m2, and z2.

10. Compute l3 and m3 using z3.
11. Compute z4 using l3, m3, and z3.
12. Compute l4 and m4 using z4.
13. Compute z5 using l4, m4, and z4.
14. Compute ln(z5). Let it be Y.
15. Go to step 38.
16. Set X to −x. If 1/e < X < ∞, go to step 40.
17. Initialise z1 to 2.
18. Define the formulae:

ln = −{3 zn X − ln(zn) − 2}/X,

mn = 2 zn{ln(zn) − zn X}/X,zn+1 = zn+(1/2)
{

ln +
(

l2
n + 4 mn

)1/2
}

.

19. Compute l1 and m1 using z1.
20. Compute z2 using l1, m1, and z1.
21. Compute l2 and m2 using z2.
22. Compute z3 using l2, m2, and z2.
23. Compute l3 and m3 using z3.
24. Compute z4 using l3, m3, and z3.
25. Compute l4 and m4 using z4.
26. Compute z5 using l4, m4, and z4.
27. Compute ln(z5). Let it be Y1.
28. Compute z′2 using l1, m1 and z1:

z
′
2= z1 + (1/2){l1−

(

l21 + 4 m1

)1/2}
29. Define the formulae:

l
′
n = −{3 z

′
n X − ln(z

′
n) − 2}/X,

m
′
n = 2 z

′
n{ln(z

′
n) − z

′
n X}/X,

z
′
n+1= z

′
n+(1/2)

{

l′n −
(

l′2n − 4 m′
n

)1/2
}

.

30. Compute l
′
2 and m

′
2 using z2

′.
31. Compute z3

′ using l
′
2, m

′
2, and z′2:

z
′
3= z

′
2+ (1/2)

{

l2−
(

l
′2
2 + 4 m

′
2

)1/2
}

32. Compute l
′
3 and m

′
3 using z3

′.
33. Compute z

′
4 using l

′
3, m3

′, and z3‘:

34. Compute l
′
4 and m

′
4 using z4

′.
35. Compute z

′
5 using l

′
4, m4

′, and z4‘:

36. Compute ln
(

z
′
5

)

. Let it be Y2.

37. Print y equal to Y1 and Y2, then go to step 41.
38. Print y equal to Y and go to step 41.
39. Print 0 and go to step 41.
40. Print ’No solution in real domain.’
41. End.

7 Application of Lambert W Function

Lambert W Function assumes importance because it facilitates solution to many physical processes, where equations are
transformable to Lambert W Function. Kindly peruse introduction section. Some equations transformable to Lambert W
Function are taken up below to illustrate its applications.
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7.1 Determination of Of Value of y, When Value of m Is Given in Equation yy=m

Taking natural logarithm of yy=m and putting z=ln y, x =ln(m) transforms, y ln (y) =ln (m) to z ez=x or W (x)=z,
when x lies between 0 and infinity or between 0 and −1/e.

7.2 Determination Of Value of y, When Value of m Is Given In Equation y1/y=m

Substituting z=lny , x=ln(m) , yields W (−x)=−z which is solvable when −x lies between 0 and infinity or between 0
and −1/e.

7.3 Determination Of Value of x,When Values of p, q, r Are Given In Equation p ln x + q/x = r

Substitution of x=y(q/p), transforms the equation, p ln x + q/x = r to ln y + 1/y= r/p − ln (q/p), which can be

written as y e1/y=(p/q)er/p or −(1/y) e−1/y=−(q/p)e−r/p or W (−X)=−1/y where X=(q/p)e−r/p and −X lies
between 0 and infinity or between 0 and −1/e.

7.4 Determination Of Value Of x, When Real Values of p, q, r Are Given In Equation

p ln x + qx = r

Substitution of x=y(p/q), transforms the equationp ln x + qx = r to ln y + y= r/p − ln (p/q), which can be written as

y ey=(q/p)er/p or W (X)=y where X=(q/p)er/p and X lies between 0 and infinity or 0 and −1/e.

7.5 Determination Of Value of x,When Values of p, q, r Are Given In Equation p x + qerx = s

Substituting z=erz, equation p x + qerx = s, transforms to (p/r) ln z+qz=s and this equation is same as solved in section
7.4.

7.6 Determination Of Value of y,When Value Of x Is Given In Equation y=xxxx..
.x

Equation y=xxxx..
.x

can be written as, y=xy or y
1
y =x. This equation has been solved in section 7.2.

8 Comparison of the Present Method with Newton’s and Halley’s Method of Approximation

To emphasise the salient features and versatility of this method, I make comparison with Newton’s and Halley Methods.

8.1 Newton’s Method of Approximation

For approximation of a root of a function f (x), Newton’s Method assigns a value say x0 to be its solution and then
improves it to x1 using equation

x1 = x0 − f (x0)/ f ′(xn),

where f (x0) and f ′ (x0) are values of function and its derivative at x = x0. Iterating it n times, the error is appreciably
reduced and the equation in general is written

xn+1 = xn − f (xn)/ f ′(xn). (49)

With this background, I highlight some drawbacks with this method.
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8.1.1 Initial assumption

Newton’s method is highly dependent on the initial assumption for the value to be approximated. If the initial assumption
is far from the actual value, the method may fail to converge or converge to the wrong approximation. For example, if the

function has multiple roots, a poor choice of the starting point might lead to convergence to a different root than the one

intended. For example, consider the function

f (x) = x3 −− 2x + 2 .

This function has a real root near x = −1.769 and other complex roots. If I make initial assumption of x = 0, then
applying equation (49), I obtain, x1 = 1, x2 = 0, x3 = 1. Thus, the approximation oscillates between 1 and 0 and does not
converge and fails. That proves its high sensitivity to the choice of the initial assumption.

8.1.2 Non-Convergence for Non-Differentiable Functions

Newton’s method requires the function to be differentiable [29]. If the derivative at any point is zero or nearly zero, the

method may fail or produce excessive large iterations, leading to divergence. For example, f (x) = x1/3, the derivative at
x = 0 is undefined and tends to infinity. Starting with x = 0, the method fails to converge.

8.1.3 Slow Convergence for Poor Initial assumptions

Although Newton’s method converges quadratically, this fast convergence occurs only when the initial assumption is
close to the actual value. If the assumption is far from the actual value, the convergence can be slow. For example, with
the function f (x) = x2 − 2 , if the initial assumption is x = 100, the method may take many iterations to converge to the
correct value.

8.1.4 Failure at Critical Points of Zero Derivative Failure at Critical Points of Zero Derivative

If the derivative of the function f ′ (x) happens to be zero, the method fails. Function f (x) = x3 − 3x2 + 3x− 1, has
derivative f ′ (x) = 3x2 − 6x+ 3, and when x reaches1, then f ′ (1) = 0 and the method fails.

8.1.5 Requirement for Close Initial Assumption

There is no set single formula for assessing initial assumption close to actual value. In general, percentage variation of 10
to 20 from actual value in initial assumption can achieve for convergence of approximation, and that calls for adoption of
Bisection method, Heuristics and physical insight, Graphical methods. The process becomes cumbersome and untidy on
account of initial assumption and then final approximation by iterations.

8.2 Halley’s Method of Approximation

The iterative formula for Halley’s method is

xn+1 = xn −
2 f (xn) f ′ (xn)

2{ f ′ (xn)}2 − f (xn) f ′ ′ (xn)
, (50)

where f (xn) is the value of the function at xn, f ′(xn) is the first derivative of the function at xn and f ′′(xn) is the second
derivative of the function at xn. Although this method is a third-order convergence (cubic) method, meaning it converges
faster than Newton’s method in theory. However, it has its own set of drawbacks.

8.2.1 Complexity and Computational Cost

This method is complicated as it uses second order derivative besides first order derivative of the function as is explicit
from the Equation (50) and that requires additional second derivative which at times is difficult to compute or expensive to

evaluate, especially in higher-dimensional problems. For example, function f (x) = ex2
sin2x, is a bit difficult and tedious

for computing its second derivative.
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8.2.2 Non-Convergence Near Singularities

Halley’s method can fail to converge if the second derivative is zero or approaches zero. For example, the function
f(x) = x3 − 2x + 2 , has f ′ (x) = 3x2 − 2 and f ′ ′ (x) = 6x. At x = 0, or near zero, f ′′ (0) = 0. When f ′ ′(x) is small or

zero, the denominator in the Halley iteration formula can cause large iterations, leading to non-convergence or divergence
of the method.

8.2.3 Unnecessary for Simple Functions

For many simple functions, Halley’s method provides no real advantage over Newton’s method yet introduces additional
computational overhead.

8.2.4 More Complex to Implement:

Halley’s method is inherently more complicated due to the involvement of second-order derivatives. This makes its
implementation more difficult, especially for higher-dimensional systems or functions that are not easily differentiable.

8.2.5 Potential for Numerical Instability:

In cases, where higher-order derivatives show significant fluctuations, Halley’s method can suffer from numerical
instability. The method may introduce round-off errors, especially when working with finite precision, and this can lead
to divergence. For example, if f (x) = 1/x3, then f ′ (x) = −3/x4 and f ′ ′ (x) = 12/x5. If value of x is assumed zero or
near zero, then at these points, values of f ′ (x) and f ′ ′ (x) goes extremely high which can introduce rounding errors in
finite-precision computations. These rounding errors can propagate through the iterations, causing Halley’s method to
diverge or produce inaccurate results.

8.3 Quadratic Equation Approximation

For approximating value of y in Lambert W Function, W (x) = y, also written as yey = x, ey is considered equal to z and
the resultant equation zln(z) = x, transforms to a quadratic equation a2

1 − l1a1 −m1 ≃ 0, on substituting z with z1 + a1,
where z1 is initial assumption and a1 ≪ z1. This quadratic equation has coefficients l1 and m1 given by Equations (26) and
(27). Value of zn+1 is approximated by recursive relation,

zn+1 = zn + an = zn +(1/2)

(

ln +
√

l2
n + 4mn

)

, (51)

where zn+1 is (n+1)th iterative approximation of z, an is a root of nth iterated quadratic equation, ln and mn are given by
Equations (34) and (35). This method has salient feature as listed below.

8.3.1 Insensitivity to Initial Assumptions

This method obviates the choice of initial assumption. A value out of a large spectrum depending upon the precision of
the calculating device, can be assigned and in each case, the result within four or five iterations come out accurate to nine
decimal points.

1. For given values of x equal to 10−5, 0.1, 0.5, 1.0, 100 and105, initial assumption of value of z = 1 has been made
in each case and number of iterations varying from two to four resulted in precise approximation of y = ln(zn) up to
ten decimal points with zero error. Kindly refer to Table 1.

2. Referring to Table 5.1, for approximation of y in equation ye−y= x, when the given value of x was 105 in each case,
initial assumptions of y equal to 1, 10, 102, 103, 104, 105, 106, 1012, have been made, that is initial assumptions of y
has been vastly varied from 1 to 1012, but still the method led to precise approximation of y without any error with in
three to four iterations. That conclusively proves, this method is immune and insensitive to initial assumptions of y.

I could not go beyond 10500 with initial assumption of y = 1 on account of limitation of precision of Desmos scientific
calculator used for approximation otherwise the limit of x would have gone beyond 10500 with same initial assumption of
y as 1 leading to precise approximation of y.
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8.3.2 No Requirement for Differentiability

A significant feature of this method is that, unlike Newton’s or Halley’s methods, it does not require the differentiability
or continuity of the function. Since no differentiation is involved, it eliminates the time-consuming and complex process
of determining first or second-order derivatives of the function.

8.3.3 Successful at Critical Points of Zero Derivative

This method does not impose the condition that the derivative of the function at the assigned or iterated value must not be
zero. It has an advantage over Newton’s and Halley’s methods, which fail when the first or second-order derivative of the
function is zero or tends towards zero.

8.3.4 Robustness

The ability to handle wildly incorrect initial assumptions without failing or slowing down makes this method extremely
versatile. This robustness is particularly valuable in real-world applications where initial assumptions are difficult to
ascertain, or where functions behave unpredictably.

8.3.5 Wider Applicability

As highlighted in section 9.2, this method can be applied to a broader range of problems without requiring preprocessing
steps to refine initial guesses—serious drawbacks that affect existing approximation methods.

8.3.6 Self-Correction and Reliability

This method has a standalone self-correcting feature, which is particularly valuable as it minimises human error. In
contrast, methods such as Newton’s or Halley’s can be derailed by errors in initial assumptions or calculation setup,
leading to wasted time and resources. A method that automatically corrects these errors adds a layer of reliability.

8.3.7 Fast Convergence

Converging within 3 to 4 iterations, regardless of the initial guess, is a major advantage over existing methods, many of
which require multiple iterations to achieve a high degree of accuracy.

9 Results And Conclusions

The crux of the numerical evaluation of Lambert W Function taken up in this paper is linear approximation of ln (y)
leading to quadratic approximation of y ln (y) . The value of ln (y) has been proved to approximate with 2/(2y−1−1/y3)
and when value of y is large and 1/y3 is negligible, ln (y) approximates with 2/(2y− 1) [28]. If y equals, y1 + a1, then
ln y = ln y1 + ln(1+ a1/y1) approximates ln y1 + 2/(2y1/a1 + 1) provided y1/a1 is large. That needs, assignment of
value of y1 in the vicinity of y or y− y1 = a1 should be exceedingly small. In that case, y ln y = x approximates with
(y1 + a1)ln y1 + 2(y1 + a1)/(2y1/a1 + 1). That is (y1 + a1)ln y1 + 2(y1 + a1)/(2y1/a1 + 1)− x approximates with zero.
This is a quadratic equation in a1 which gives two values of a1. Out of these two values, one that yields y1 + a1 positive
quantity is considered. If both roots yield y1 + a1 positive quantities, then both are considered. When y− y1 is small on
account of assignment of value of y1, then approximation of value of y = y1 + a1 is made in one go.
However, it may not be possible to assign value to y1 so that y− y1 is small, in such cases, y will roughly approximate
y1 + a1. Considering y = y1 + a1 + a2, value of a2 is determined by a root of subsequent quadratic equation. Continuing
in this fashion, it can be reiterated n times to yield, y = yn+1 = yn + an = y1 + a1 + a2 + a3 + · · ·+ an or y = y1 +∑

n
i=1 ai.

Value of n which is number of iterations, depends upon the precision of result required and it also depends upon the
assumption of value of y1. More precise the result required, larger the value of integer n would be. Also, better the
proximity of y1 with y, fewer iterations would be required. In this paper, in three iterations i.e. n = 3, precise results of y

could be determined, therefore, further iterations were not required. It was also observed, except in the number of
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iterations, variation in assigned value to y1 with in certain range did not matter. For example, for given x = 105

interestingly, variation from 1 to 1012 in assigned value of z1 did not make any difference in the calculated value of y

except the fact when value of y1 is quite away from actual y, number of iterations increased.

When ∞ > x ≥ 0, two methods have been used in approximation of yey = x. In the first method, it is assumed, z = ey

and that transforms the equation to zln(z) = x. Considering z = z1 + a1, where z1 is the initial approximation of z and
a1 ≪ z1, the equation zln(z) = x transforms to a quadratic equation in a1 and its roots provide the value of a1 and that
results in determining the value of z1+a1. For precise approximation, the process is repeated n times, when zn+1 = zn+an

is achieved and in that situation zn+1 converges exponentially to value of z.

In second method, y ey = x is written as ln (y)+y = ln(x) and, then this equation transforms to a quadratic equation in a1

considering y = y1 +a1, where y1 is the initial approximation of y and a1 ≪ y1. Roots of the equation provide the values
of a1 and that results in value of y1 +a1. For precise approximation, the process is repeated n times, when yn+1 = yn +an

is achieved and in that situation yn+1 converges exponentially to exact value of y.

For numerical approximation of y in W (−x) =−y or −ye−y =−x, when 0 ≤ x ≤ 1/e, same two methods as explained in
foregoing paragraphs are applicable with a slight difference, now the equation is −y e−y = −x and both the roots of the
quadratic equations are of positive sign making these useable for approximating two values in stead of one for y. In such
cases, yn+1 and y′n+1 both reach precise approximation of y. To avoid repetition, the procedure is not reiterated.

9.1 Self-Corrective Nature Of Quadratic Approximation

Because of wide range of values that can be assigned to y1, inadvertent error in calculations is self-corrected by subsequent
iterations provided the error is not fatal throwing the value of y1 or z1 as the case may be, out of permissible range. Inherent
self correction present in this type of quadratic approximation is akin to inherent presence of negative feedback in stable
electronic system. Needless to say, self corrective nature of approximation, in no way, calls for lackadaisical approach on
the part of the operator carrying out computations.

It is submitted that negative or complex values of y1 + a1 or z1 + a1 as the case may be, were ignored. The question that
arises is what had happened if these were duly considered in our evaluation. Interestingly, had these been considered, these
would have resulted in complex values of y. It was also considered, in equation−ye−y =−x, value of x should be such that
0< x≤ 1/e. Had the value of x been more than 1/e in equation,−ye−y =−x, the results in both the cases would have been
complex and multiple in numbers. This is the reason Lambert W Function has multiple solutions. Exhaustive examples
provided in tabular form in the paper, leaving nothing to imagination have proved the veracity of all the formulae derived.
The paper dealt with empirical and verifiable research by providing unique method of quadratic equation approximation.
This method is different from Newton method of approximation or Halley method of approximation, and it provided
precise results in as few as three iterations. It also provided algorithm for numerical evaluation of y in Lambert W Function
W (x) = y, where ∞ > x ≥−1/e.

9.2 Potential of Quadratic Equation Approximation for Future Use in Research

It is well known that many processes in the physical and life sciences make use of transcendental equations involving
exponential and logarithmic terms. Additionally, some processes rely on double exponentials. For example, in theoretical
biology for population growth, number theory for Fermat numbers, double Mersenne numbers, Sylvester’s sequence,
and k-ary Boolean functions. In computer science, double exponentials are employed in algorithmic complexities, and in
physics, for modelling systems like the Toda oscillator or dendritic macromolecules. Similarly, logarithmic, and double
logarithmic functions (i.e., the logarithm of a logarithm) are also integral to many physical processes.

Quadratic equation approximations can be applied to estimate the variables and outputs of processes involving such
functions. This approach is particularly relevant when using inverse functions of the form N(X) = y , where yeey

= X

as applied to various physical phenomena. A research paper discussing this has been written, accepted, and is soon to be
published. Notably, this inverse function can not be directly solved using the Lambert W function, and there appears to be
no straightforward solution to approximate its value for a given real input.

The method proposed in this paper has also been successfully applied to the solution of the Lambert W function W (a+
ib) = x+ iy, in the complex domain, where (x+ iy)ex+iy = a+ ib, and a and b are given real quantities, This method of
approximation shows potential for solving polynomial equations, particularly

x2n+1 − a x = b,

when a has a positive real value, b is real, and n is a positive integer.
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10 Author’s Contribution

Under this head, I would like to emphasise the following key aspects of my methodology.
The approximation of ln {(y)/(y − 1)} by 2/(2y − 1), when y is large, was developed and published in an earlier
article ‘Approximation Of Logarithm, Factorial And Euler - Mascheroni Constant Using Odd Harmonic Series, in journal
Mathematical Forum. This paper is also listed at serial number 23 in the references. Since the Lambert W function is the
inverse of the equation yey = x, where x is a given real quantity, this relationship can be written as y + ln(y) = ln(x).
By substituting y = y1 + a1, where y1 is an initial approximation, and applying my approximation of ln(y)/(y − 1), the
equation was transformed into a quadratic equation in terms of a1.
The roots of this quadratic equation were then used to approximate the value of y = y1 + a1. By iterating this process
using the formula yn+1 = yn + an, the solution converged to a highly precise value for y. This iterative approach, rooted
in a quadratic equation, was named ‘Quadratic Equation Approximation.’

The concept and methodology of this quadratic approximation are entirely original and have been developed solely by me.
I have contributed 100% to this paper, including the derivation of the approximation technique and the iterative refinement
process.
In addition to the work presented in this paper, the numerical approximation using quadratic equation approximation of
the special function eey

= X , where X is a given real value, has also been accepted for publication in another journal.
It is important to note that this special function is not solvable by the Lambert W Function, further emphasizing the
novelty of the proposed approximation method. This method also has the potential of approximating a real root of odd
degree polynomial equations.
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