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Abstract: In this paper, we consider a doubly m(x)-Laplacian equation

∂α(v)

∂ t
−div(|∇v|m(x)−2∇v)+F(v) = G, in Ω × (0,+∞),

with nonlinear boundary conditions and initial data given. Firstly, we use the regularization method to determine the existence and

uniqueness of weak solutions in the Sobolev space with variable exponents. Secondly, in the frame of the dynamical systems approach,

a standard limiting process and a method to generate a series of approximation solutions are used to study the long behavior of solutions

for the above problem (1.1). We formulate our problem as a dynamical system, and then, by using Hölder continuity solutions and

assuming appropriate hypotheses, we prove also the existence of a global attractor in L2(Ω).
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1 Introduction

This manuscript is concerned with a class of pseudo-parabolic equations involving Am(x) operators with nonlinearities of
variable exponents and with nonlinear boundary conditions:

∂α(v(x, t))

∂ t
+Am(x)v(x, t)+F(v(x, t)) = G(x), (x, t) ∈ QT ,

|∇v(x, t)|m(x)−2 ∂v(x, t)

∂η
+H(x,v(x, t)) = 0, (x, t) ∈ ST ,

α(v(x,0)) = α(v0(x)), x ∈ Ω ,

(1.1)

where Ω ⊂ R
d ,(d ≥ 2), is a regular bounded domain with a Lipschitz continuous boundary

∂Ω ;QT := Ω × ]0,T [ ; ST := ∂Ω × ]0,T [, m(.) is logarithm Hölder continuous, and the nonlinear term

Am(x)u = −
d

∑
i=1

∂
∂xi

(

|∇u|m(x)−2 ∂u
∂xi

)

is known as the m(x)-Laplacian, and when m(x) = p, it will be reduced to the

p−Laplacian. Precise conditions concerning α,F,G,H and v0 will be given hereafter.
Electrorheological fluids have been modeled using the m(x)-Laplacian operator, see [21,30,31]. In the field of elastic
mechanics, see [37], within the image restoration in [10,32,35], and in issues involving magnetostatics, see [9].
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Our demonstration proves the presence of global attractors in appropriate spaces under appropriate conditions on the
exponent m(.) and on α , F , G, and H.

The findings are demonstrated by applying a standard limiting process and a technique to create a series of
approximation solutions. In the last year, it has been possible to determine the presence of solutions and their asymptotic
behavior to these operator-related equations for Steklov boundary conditions. We cite the articles and references of [7,
12,27,34,38] as an example. Regarding the question for the asymptotic behavior to the Ap parabolic problem with
nonlinear boundary condition, we refer to [7,27], respectively, and the references therein, when m(.) = p.
Numerous findings about the existence and regularity of the attractors can be found in the cases α(.) = α and m(.) = p.
We just discuss the work of [7,11,12] to be exhaustive. Regarding the case m(.) = p and α is increasing locally
Lipschitz function with α(0) = 0, the author of [12,13] investigated the existence of a global attractor in Lr(Ω), with
(r = 2 and ∞). The current study also aims to create, in the spirit of articles [5,11,12,25,33], a variational technique in
the parabolic situation.

There are two steps in the proof. We first demonstrate that there is a global solution to the approximate problem, after
which we perform some uniform estimates for these solutions. Our primary tools are the approximation solution method
and the ability to estimate inequality. We determine that a problem of type (1.1) exists using a conventional limiting
procedure.

The sections of this article are organized as follows: In Section 2, it is shown that the bounded weak solutions to
problem (1.1) exist and are unique. Additionally, some fundamental Lebesgue and Sobolev spaces are introduced. In
Section 3, we prove the global attractor for the semigroup associated with the problem (1.1).

2 Preliminary results

We define for s ∈ R a continuous function α with α(0) = 0.

φ(s) =

∫ s

0
α(t)dt.

The Legendre transform of φ , φ∗ is then defined by

φ∗(t) = sup
z∈R

{tz−φ(z)} .

Specifically, we have
φ∗(α(t)) = tα(t)−φ(t). (2.0)

One needs to understand the fundamentals of spaces Lm(.)(Ω) and W 1,m(.)(Ω) in order to examine problems involving
variable exponents. Here is a quick review of them for the benefit of the readers. [16,17] contains the basic result’s
properties of variable exponent and Lebesgue Sobolev spaces. The exponent m(x) should be in C(Ω). Additionally, m(x)
is logarithmic Hölder continuous, that is, a constant D exists such that :

|m(x1)−m(x2)| ≤
−D

log |x1 − x2|
,∀x1,x2 ∈ Ω , |x1 − x2|<

1

2
. (2.1)

For m− > 1, we designates the variable exponent Lebesgue space by

Lm(.)(Ω) :=
{

w : Ω →R; |ρm(x)(λ w)< ∞, f or some λ > 0
}

,

where,

ρm(x)(z) =

∫

Ω
|z(x)|m(x)

dx < ∞.

We regard this space as possessing the Luxemburg norm.

‖z‖m(.) = inf
{

λ > 0|ρm(x)(
z

λ
)≤ 1

}

.

The space Lm′(.)(Ω), stands for the dual space Lm(.)(Ω), such that 1
m(x) +

1
m′(x) = 1 ∀x ∈ Ω . The variable exponent Sobolev

space W 1,m(.)(Ω) is defined as

W 1,m(.)(Ω) =
{

z ∈ Lm(.)(Ω) : |∇z| ∈ Lm(.)(Ω)
}

,
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equipped with the norm
‖z‖

W1,m(.) (Ω) = ‖z‖m(.)+ ‖∇z‖m(.) .

We denote the closure of C∞
0 (Ω) in W 1,m(.)(Ω) by W

1,m(.)
0 (Ω). With these norms, the space Lm(.)(Ω), W

1,m(.)
0 (Ω) and

W 1,m(.)(Ω) are separable reflexive Banach spaces, see [17,18]. Proposition 1 contains some of the results we found about
the Luxembourg norm.

Proposition 1. ([17])

There is a positive constant C depending only on m and Ω such that for every w ∈W
1,m(.)
0 (Ω),

‖w‖m(.) ≤C‖∇w‖m(.) ,

this suggests that the equivalent norms of W
1,m(.)
0 (Ω) are ‖∇w‖m(.) and ‖w‖1,m(.).

The lemma that follows is practical and widely applied.

Lemma 1. (Ghidaghia Lemma, cf.[33])

Let Y be a positive absolutely continuous function on (0,∞) such that it satisfies

Y ′+ µ0Y β ≤ µ1,

with β > 1,µ0 > 0,µ1 ≥ 0. Then for s > 0

Y (s) ≤

[

µ1

µ0

]1/β

+
1

(µ0(β − 1)s)1/(β−1)
.

Lemma 2. (Uniform Gronwall Lemma)

Assume that z and h be non-negative locally integrable functions on (t0,+∞) such that

z′ ≤ h,∀s ≥ t0,
∫ s+ξ

s
z(y)dy ≤ b1,

∫ s+ξ

s
|h(y)|dy ≤ b2, ∀s ≥ t0,

where ξ , b1 and b2 are positive constants. Then

z(s+ ξ )≤
b1

ξ
+ b2, ∀s ≥ t0.

For a proof of the above lemma, see [33].
In the sense that follows, we thus present weak solutions of equation (1.1).

Definition 1. If v(x, t) satisfies the following, it is referred to as a weak solution of (1.1):

v(x, t) ∈ L∞(QT )∩Lm−
(0,T,W 1,m(x)(Ω)) such that

∫ T

0

〈

(α(v))t ,ψ
〉

+

∫∫

QT

|∇v|m(x)−2 ∇v∇ψ +

∫∫

ST

H(x,v)ψ +F(v)ψ =

∫∫

QT

G(x)ψ ;

for every function ψ ∈ L∞(QT )∩Lm−
(0,T,W 1,m(x)(Ω)).

If ψ ∈ Lm(x)(0,T ;W 1,m(x)(Ω))∩W 1,1(0,T ;L1(Ω)), with ψ(.,T ) = 0, then
∫ T

0

〈

(α(v))t ,ψ
〉

=−
∫∫

QT

(α(v)−α(v0))(ψ)t ,

where 〈., .〉 denote the duality product between W 1,m(.)(Ω) and W−1,m′(.)(Ω).
Throughout this work, the functions m(x),α(x),v0(x),F(s) and H(x,s) satisfy the following conditions:

(H1) v0 ∈ L∞(Ω)∩W 1,m(x)(Ω), G is a bounded function.
(H2) α is a function with α(0) = 0 that maps from R to R, satisfying the requirement 0 < α1 ≤ α(x)≤ α2.
(H3) The nonlinearity function satisfies a very general condition, F : R→R is Carathéodory mapping such that

L1 |s|
p(x)−L0 ≤ sF(s)≤ L2 |s|

p(x)+L0,

s → F(s)+L3α(s) is increasing

for some p(.) ∈C(Ω ), with 2 < p− ≤ p+ < ∞, and for some C0 ≥ 0,L1 ≥ 0,L2 ≥ 0,L3 ≥ 0.
(H4) s→H(x,s) is an increasing Lipschitz continuous function such that, ∀s∈R, ∀x∈Ω , H(x,s)s≥ 0 and H(x,s)α(s)≥ 0.
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2.1 Existence of Weak Solutions

The primary reason for our existence is as follows:

Theorem 1. Assuming that 2 ≤ m− ≤ m+ < ∞, let m(.) ∈C(Ω ). This will satisfy (2.1) and, under the given assumptions,

(H1) through (H4). There is just one bounded solution for equation (1.1) such that α(v) ∈C([0,T ) ;L1(Ω)).

Proof. A priori estimates are used in the theorem 1.

• Consider a sequence αε in C1(R) from α , in a way that αε(0) = 0, αε → α in Cloc(R) α1 ≤ αε ≤ α2, and |αε | ≤ |α|.
• Fε in C∞(R), Fε(s)→ F(s) in L1(Ω) ∀s in Cloc(R), Fε satisfies uniformly (H3).
• Hε in C∞(Ω ×R), Hε(x,s)→ H(x,s) in L1(Ω) ∀s in Cloc(R), x in Ω , Hε satisfies uniformly (H4).

• Assume that the sequence (v0ε)ε>0 in C3(Ω ), v0ε → v0 almost everywhere in L1(Ω), ‖v0ε‖L∞(Ω) ≤ ‖v0‖L∞(Ω)+1, and
fulfills the requirement for compatibility :

(|∇v0ε |
2 + ε)

(m(x)−2)
2

∂v0ε

∂η
+Hε(x,v0ε) = 0.

Let ε > 0, consider approximation solutions (vε) of problem (Pε)

∂αε (vε)

∂ t
− div

(

(|∇vε |
2 + ε)

m(x)−2
2 ∇vε

)

+Fε(vε ) = G(x), in QT , (2.2)

with

(|∇vε |
2 + ε)

m(x)−2
2

∂vε

∂η
+Hε(x,uε) = 0, on ST , (2.3)

and

αε(vε(x,0)) = αε (v0ε(x)), in Ω . (2.4)

Note that problems (2.2) - (2.4) have a unique classical solution, vε by the classical results of Ladyzenskaya et al.
[23,Chapter V ] .

Remark. We’ll use the same symbol, C, in the sequel to denote a few positive constants that may differ from one another,
showing up in different calculations and hypotheses and relying solely on the data rather than ε . In situations where we
must determine the exact value of a single constant, we will utilize a notation such as Mi, i = 1,2, ...,.
First, we offer a technical lemma that will be utilized numerous times in the following..

Lemma 3. There exists a positive constant C depending on the problem data, but independent of ε

||vε(s)||L∞(Ω) ≤C,∀s > 0. (2.5)

Proof. Multiplying |αε(vε)|
kαε (vε) by the first equation in (2.2). We arrive at the conclusion that by applying the growth

condition on Fε ,Hε ,

Fε(vε) |αε (vε)|
k αε (vε)≥−C1 |αε(vε)|

p(x)+k , Hε(x,vε) |αε(vε )|
k αε (vε)≥ 0,

and

1

k+ 2

d

dt

∫

Ω
|αε (vε)|

k+2dx+C2

∫

Ω
|αε(vε )|

p(x)+kdx ≤C3

∫

Ω
|αε (vε)|

k+1dx. (2.6)

Setting yε,k(t) = ‖αε(vε)‖Lk+2(Ω) and on both sides of (2.6), applying Hölder’s inequality, there exist two constants such

that λ0 > 0 and λ1 > 0.
dyε,k(t)

dt
+λ1y

(p−−1)
ε,k (t)≤ λ0,

which suggests, according to Ghidaglia’s Lemma 2, that

yε,k(t)≤
(λ0

λ1

)1/(p−−1)
+

1

[λ0(p−− 2)t]1/(p−−2)
=C4∀t > 0. (2.7)
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For all t ≥ t1 > 0, and as k →+∞, we have

||αε (vε(t))||L∞(Ω) ≤C(t1). (2.8)

With assumption (H2), we obtain
||vε(t)||L∞(Ω) ≤C(t1). (2.9)

Remark. The estimates (2.5) are important to our work because they aid in various stages of the a priori estimate proof.

Lemma 4. The constants Ci exist under the hypotheses (H1)–(H4) such that the following estimates hold for any ε > 0
and any t1 > 0.

‖vε‖Lm(x)(0,T ;W 1,m(x)(Ω)) ≤C5(T ), (2.10)

‖vε‖W1,m(x)(Ω) ≤C6(t1), for any t ≥ t1 > 0, (2.11)
∫ T

t0

∫

Ω
α ′

ε (vε)(
∂vε

∂ t
)2dxds ≤C7(t1), for any t ≥ t1 > 0. (2.12)

Proof. Multiplying the first equation in (2.2) by vε , we obtain, after integrating over Ω

d

dt

(

∫

Ω
φ∗

ε (αε(vε ))dx
)

+

∫

Ω
(|∇vε |

2 + ε)
m(x)−2

2 |∇vε |
2dx+

∫

Ω
Fε(vε )vε dx

+

∫

∂Ω
Hε(x,vε )vε dx+

∫

Ω
G(x)vε dx. (2.13)

If we take assumptions (H3) and (H4), we have

∫

Ω
F(vε )vε dx ≥ L1

∫

Ω
|vε |

p(x)
dx−L0,

∫

∂Ω
Hε(x,vε )vε dx ≥ 0. (2.14)

Young’s inequality allows us to obtain

∫

Ω
|vε |

2
dx ≤

∫

Ω

2

p(x)
|vε |

p(x)
dx+

∫

Ω

p(x)− 2

p(x)
|1|

p(x)
p(x)−2 dx ≤

∫

Ω
|vε |

p(x)
dx+M1,

∫

Ω
G(x)vε dx ≤C8

∫

Ω
|G(x)|2 dx+C9

∫

Ω
|vε |

2
dx+M2. (2.15)

Putting the previously stated inequality into (2.13), we obtain:

d

dt

(

∫

Ω
φ∗

ε (αε(vε ))dx
)

+
∫

Ω
(|∇vε |

2 + ε)
m(x)−2

2 |∇vε |
2dx+

∫

Ω
|vε |

p(x)
dx ≤ M3. (2.16)

Lemma 3 and the equality (2.0) lead us to the conclusion that φ∗(α(v)) is bounded as well. By hypotheses (H1), we can
assume that:

∫

Ω φ∗
ε (αε (v0ε))dx converges to

∫

Ω φ∗(α(v0))dx ≤C.

By hypotheses (H3) and using the boundedness of vε , we obtain after integrating (2.16) from 0 to T

∫ T

0

∫

Ω
|∇vε |

m(x)
dxdt ≤

∫ T

0

∫

Ω
(|∇vε |

2 + ε)
m(x)−2

2 |∇vε |
2dxdt ≤C. (2.17)

The result (2.10) is obtained instantaneously. Now multiplying the first equation of (2.2) by (vε)t and integrating over Ω

∫

Ω
α ′

ε (vε)(
∂vε

∂ t
)2 +

d

dt

( 1

m(x)

∫

Ω
(|∇vε |

2 + ε)
m(x)

2 )
)

+

∫

Ω
F(vε)

∂vε

∂ t

+

∫

∂Ω
H(x,vε )

∂vε

∂ t
=

∫

Ω
G(x)

∂vε

∂ t
. (2.18)

We set
fε (s) =

∫ s
0 Fε(y)dy and hε(x,s) =

∫ s
0 Hε(x,y)dy, From assumption (H3), we have

C1 |s|
p(x)−C ≤ f (s) ≤C2 |s|

p(x)+C. (2.19)
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By the hypothesis of Hε and the boundedness of (vε ), we can determine that there is a constant M2 such that, based on
assumption (H3), we deduce

∫

∂Ω
hε(x,s)ds+M2 ≥ 0. (2.20)

Putting the previously stated inequality into (2.18), we obtain

d

dt

( 1

m(x)

∫

Ω
(|∇vε |

2 + ε)
m(x)

2 )dx+
∫

Ω
|vε |

p(x)
dx+

∫

∂Ω
hε(x,s)ds+M2

)

≤C. (2.21)

Let us fix T0 > 0, now integrating (2.21) on [s,s+T0], we can derive

∫ s+T0

s

[ 1

m(x)

∫

Ω
(|∇vε |

2 + ε)
m(x)

2 )
]

dxdy ≤C10(T0),

∫ s+T0

s

(

∫

Ω
|vε |

p(x)
dx+

∫

∂Ω
hε(x,s)dx

)

dsdy ≤C11(T0).

Therefore, (2.11) is true according to the uniform Gronwall Lemma 3.
After integrating (2.18) across (T0,T ), we arrive at

∫ T

T0

∫

Ω
α ′

ε (vε)(
∂vε

∂ t
)2dxds ≤

1

m(x)

∫

Ω

(

(|∇vε(T0|
2 + ε)

m(x)
2 − (|∇vε(T |

2 + ε)
m(x)

2

)

dx

+
∫

Ω
( fε (T0)− fε(T ))dx+

∫

∂Ω
(hε(x,T0)− hε(x,T ))dx+C12(T −T0). (2.22)

Thus, we can infer using the uniform Gronwall Lemma 3.

∫ T

T0

∫

Ω
αε (vε)(

∂vε

∂ t
)2dxds ≤C(T0,T ), for any T ≥ T0 > 0.

By hypothesis of (H2), we obtain

∫ T

T0

∫

Ω
(

∂αε (vε )

∂ t
)2dxds ≤C11(T0,T ), for any T ≥ T0 > 0.

Lemma 4 is fully proved, and this (2.12) is demonstrated.

There exists a subsequence of vε (again indicated by itself) and v by (2.5), (2.10), (2.11), and (2.12), such that as
ε →+∞:

vε → v weakly star in L∞(QT ),

vε → v weakly in Lm(x)(0,T ;W 1,m(x)(Ω)),

vε → v weakly star in L∞(T0,T ;W 1,m(x)(Ω)),∀T0 > 0,

∂vε

∂ t
→

∂v

∂ t
in L2(QT ),

|∇vε |
m(x)−2 ∇vε → χ weakly in L2(0,T ;Lm′(x)(Ω)).

We claim that χ = |∇v|m(x)−2 ∇v by making use of the same reasoning as in [3]. The observation that F(vε)→ F(v)
and H(x,vε) → H(x,v) strongly in L1(QT ) and in Lr(0,T ;Lr(Ω)) (∀r ≥ 1) suffices to conclude the existence of weak
bounded solution.

2.2 Uniqueness of solution

Lemma 5. Let (H1) to (H4) be satisfied. There is only one solution to (1.1). Furthermore, if (v1,v2) corresponds to the

initial data (u0,v0) in such a way that u0 ≤ v0, then v1 ≤ v2.
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Proof. Assume that there are two solutions, (v1,v2) and that correspond to the initial data, respectively, such that u0 ≤ v0

then v1 ≤ v2. Following [1,Theorem 2.2], we consider the following test function:

Uθ (s) := min
(

1,max(0,
s

θ
)
)

, for all s ∈R, and for θ > 0 small.

Notice that Uθ (v1 − v2) ∈ Lm−
(0,T ;W s,m(x)(Ω))∩L∞(QT ), ∀T > 0, and that

∇Uθ =

{

∇ 1
θ (v1 − v2) if 0 < v1 − v2 < θ

0 otherwise
.

Taking Uθ (v1 − v2) as the test function and considering v1,v2, two solutions for the problem (1.1), we arrive at

∫∫

Qt

(∂ (α(v1)−α(v2))

∂ t

)

Uθ (v1 − v2)+

∫∫

Qt

|∇v1|
m(x)−2∇v1 −|∇v2|

m(x)−2∇v2)∇(v1 − v2)U
′
θ

+
∫∫

Qt

(F(v1)−F(v2))Uθ +
∫ t

0

∫

∂Ω
(H(x,v1)−H(x,v2))Uθ = 0. (2.23)

Furthermore, the following inequality results from r(x)≥ 2 ∀ x ∈ Ω (see [22])

(|∇v1|
r(x)−2∇v1 −|∇v2|

r(x)−2∇v2)∇(v1 − v2)≥

(

1

2

)r(x)

|∇v1 −∇v2|
r(x) ≥ 0. (2.24)

Using the fact
∂α(v1)

∂ t
,

∂α(v2)
∂ t

∈ L1(QT ), we get

∫∫

Qt

(∂ (α(v1)−α(v2))

∂ t

)

Uθ →

∫∫

Qt

(α(v1(t))−α(v2(t)))
+.

By (H3) and (H4), we get

∫∫

Qt

(F(v1)−F(v2))Uθ →
∫∫

Qt

(F(v1)−F(v2))χ{(v1−v2)>0})≥−L3

∫

Ω
((α(v1)−α(v2))

+,

and
∫ t

0

∫

∂Ω
(H(x,v1)−H(x,v2))Uθ →

∫ t

0

∫

∂Ω
((H(x,v1)−H(x,v2))χ{(v1−v2)>0})≥ 0,

where the positive part of s and the characteristic function are denoted by χ and s+ := max(s,0), respectively. Now, let
tends θ → 0, Thus, we obtain

∫

Ω
(α(v1(t))−α(v2(t)))

+ ≤ L3

∫ t

0

∫

Ω
(α(v1)−α(v2))

+. (2.25)

By standard Gronwall Lemma 3, we can therefore infer that α(v1)−α(v2) ≤ 0. In the set {(v1 − v2)> 0}, we have
α(v1) = α(v2) according to hypothesis (H1). By (2.24), we obtain

∇(v1 − v2) = 0 in the set {0 < (v1 − v2)< θ} .

Therefore, since max(0,min(v1 − v2),θ ) = const holds true on ST , we can conclude that the solution is unique and that
v1 ≤ v2.

Remark. Under the suppositions of Theorem 1, one obtains that the solution operator S(t)v0 = v(t) (t ≥ 0) of Problem
(1.1) generates a semigroup that verifies the following properties:

1. S(t) : L2(Ω)→ L2(Ω) for t ≥ 0 and S(0)v0 = v0, for v0 ∈ L2(Ω);
2. S(t + s) = S(t)S(s) for t,s ≥ 0;
3. S(t)φ → S(s)φ in L2(Ω) as t → s for every φ ∈ L2(Ω);

4.
∂α(v)

∂ t
∈ L2(s,+∞;L2(Ω)), for every s > 0.
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3 Global attractor

The reader is directed to [33] for the definitions of global attractors and absorbing sets used here.

Theorem 2. Assuming that (H1) - (H4) are satisfied, the corresponding semigroup (S(s))s≥0 possesses an absorbing set

in W 1,m(.)(Ω)∩Lp(.)(Ω), and there is a bounded set B0 ⊂ W 1,m(.)(Ω)∩Lp(.)(Ω) such that, for any bounded set B in

L2(Ω), ∃T0 > 0 such that S(s)B ⊂ B0 ∀s ≥ T0. In this case, T0 depends only on B.

Proof. Let v represent the (1.1) solution, and vε represent the (Pε) solution that approximates v. Lemma 3 can be utilized
to obtain

‖vε(s)‖L∞(Ω) ≤ c(τ), for any s ≥ τ. (3.0)

By letting ε tend to 0 in (3.0), we get
‖v(s)‖L∞(Ω) ≤ c(τ). (3.1)

Therefore, the open ball B(0,cτ), with radius c(τ) and center at 0, is an absorbing set in L∞(Ω) by (3.0) and (3.1).
By (2.11), we have

‖vε‖W1,m(.)(Ω) ≤C8(t0), for any t ≥ t0 > 0.

By letting ε tend to 0 in this equality, we obtain

‖v(t)‖
W1,m(.)(Ω) ≤ ct0 , for any t ≥ t0 > 0.

Thus, in W 1,m(.)(Ω), the ball B(0,ct0), centered at 0 and with radius ct0 , is an absorbing set.

Applying the theorem 1 in [26] and the compact imbedding results in [17], we get:

Corollary 1. Under the conditions of theorem 2 and for 2 ≤ m− ≤ m+ < ∞, the corresponding semigroup generated

by (1.1) with initial data v0 in L∞(Ω)∩W 1,m(x)(Ω) possesses a global attractor A in L2(Ω), that is, A is compact,

invariant in L2(Ω) and attracts every bounded subset of L2(Ω) in the topology of L2(Ω)∩L∞(Ω).

4 Conclusion

In this paper, we have studied the m(x)-Laplacian problem with nonlinear boundary conditions. Due to the presence of
doubly nonlinear linearity, we obtain the existence of classical solutions for regularized problems associated with
problem (1.1), which can be solved in a classical sense by well-known results of [23]. We use some a priori estimates in
suitable functional spaces to study the convergence of these solutions. Global attractors’ existence in appropriate spaces
is demonstrated by making general assumptions under some sufficient conditions.
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