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1 Introduction

Pell numbers Pn and Pell-Lucas numbers Qn are defined recursively:

P1 = 1,P2 = 2 Q1 = 1,Q2 = 3
Pn = 2Pn−1 +Pn−2 for n ≥ 3 Qn = 2Qn−1 +Qn−2 for n ≥ 3.

The first few elements of the sequence (Pn) are

1,2,5,12,29,70,169,408,985,2378, ....

and the Binet formula is given by

Pn =
αn −β n

2
√

2
for n ≥ 1,

where α = 1+
√

2 and β = 1−
√

2 are the roots of x2 −2x−1 which is called the characteristic equation of the sequence
(Pn). For precise details, see [2]. We can prove by induction on n that

αn−2 ≤ Pn ≤ αn−1 for n ≥ 1 (1)

and
Pn+1

Pn

≥ 7

3
for n ≥ 2. (2)

The first few elements of the sequence (Qn) are

1,3,7,17,41,99,239,577,1393,3363, . . ..

Similarly, the Binet formula of Pell-Lucas sequence is given by

Qn =
αn +β n

2
for n ≥ 1, (3)

where α = 1+
√

2 and β = 1−
√

2 are the roots of the same characteristic equation x2 − 2x− 1. We also know that

αn−1 ≤ Qn ≤ 2αn for n ≥ 1. (4)
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Various exponential Diophantine equations involving powers of some terms of recurrence sequences were investigated
by many authors. For example, Trojovsk [8] studied the sum of two terms in the powers of some types of Fibonacci
numbers which are Lucas numbers. In [7], Patel and Chaves solved the exponential Diophantine equation Fx

n+1 −Fx
n−1 =

Fm, where (Fn) is the Fibonacci sequence. In the Pell sequence, one of the latest works along this line can be seen in the
works [1],[4],[6],[9] and [10].

We start by recalling the following well-known identity (see [5, page 122]): For all n ≥ 2, one has

Pn−1 +Pn+1− 2Qn = 0. (5)

This identity suggests us to ask the natural question: Are there some triples of nonnegative integers (m,n,x) which satisfy
the new identity:

Px
n−1 +Px

n+1− 2Qm = 0 ? (6)

2 Main Theorem and Tools

The purpose of this paper is to prove the following result:

Theorem 1(Main Theorem). The Diophantine equation (6) has the only solutions (m,n,x) = (1,n,0) or (m,n,x) =
(n,n,1) with n ≥ 1.

The main tools that we will use to prove the above theorem are the linear forms in logarithms defined by algebraic
numbers. In addition, the reduction techniques involving continued fractions are also used. For details, see [1],[4],[6].

Definition 1. Let γ ∈ R be algebraic whose degree is d ≥ 2 and minimal polynomial over Z given by

adxd + ad−1xd−1 + ...+ a0 = ad

d

∏
i=1

(x− γ(i)),

where ad > 0 and the numbers γ(i) are called the conjugates of γ . The logarithmic height of γ is denoted by h(γ) and

defined as

h(γ) =
1

d
(loga0 +

d

∑
i=1

log(max{|γ(i)|,1})).

Theorem 2(Matveev’s Theorem). Let L be a number field of degree D and let γ1, ...,γt ∈ L be positive real algebraic

numbers. Let b1, ...,bt be nonzero integers. If Λ = γb1
1 γb2

2 ...γbt
t − 1 6= 0, then

log |Λ |>−1.4 ·30t+3 · t4.5 ·D2 · (1+ logD)(1+ logB)A1 . . .At ,

where B ≥ max{|b1|, ..., |bt |} and Ai ≥ max{Dh(γi), | logγi|, 0.16} for i = 1, ..., t.

In the proof of Theorem 1, the next result is used to decrease the upper bound on n. For its proof, one can see Dujella
and Pethő [3].

Lemma 1(Legendre’s Formula). Let M be a positive integer. Let p0/q0, p1/q1, p2/q2, . . . be the convergents of an

irrational number κ and let [a0;a1,a2, . . .] be its continued fraction.

1. Let u,v be integers such that
∣

∣

∣κ − u

v

∣

∣

∣<
1

2v2
.

Then u/v is a convergent of κ , i.e., u/v = pk/qk for some k ≥ 1.

2. If a(M) = max(ai)0≤i≤N , where N is a positive integer such that qN > M, then

∣

∣

∣κ − u

v

∣

∣

∣>
1

(a(M)+ 2)v2
(7)

is valid for all pairs of positive integers (u,v) with 0 < v < M.
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3 Proof of Theorem 1

At first, if x = 0, then clearly Qm = 1 = Q1. That is, the triple (m,n,x) = (1,n,0) is a solution for all n ≥ 1. Also, if
x = 1, then by (5) the triple (m,n,x) = (n,n,1) is also a solution for all n ≥ 1. Next we need to show that there is no other
solution.

In the case when n,x ≥ 2, we can easily show that m ≥ 4. In fact, we have

2Qm = Px
n+1 +Px

n−1 ≥ P2
3 +P2

1 = 26,

which implies that m ≥ 4.
To complete the proof of Theorem 1, we need to have an inequality between x, m and n.

3.1 An Upper Bound for x in Terms of m and n

In this subsection, we prove that if (m,n,x) is a solution of the Diophantine equation (6) with n,x ≥ 2 and m ≥ 4, then

(n− 1)x− 2 < m < (n+ 1)x+ 1, (8)

and
x < 1.56× 1010n log((n+ 2)x+ 2). (9)

In fact, applying (1) and (4), we get

αm+2 ≥ 4αm > 2Qm = Px
n+1 +Px

n−1 ≥ Px
n+1 > αx(n−1).

and
2αm−1 < 2Qm = Px

n−1 +Px
n+1 ≤ Px

n+2 < α(n+1)x ≤ 2αx(n+1).

Thus, by combining these inequalities we get (8). Next we prove (9). By (3), we rewrite the equation (6) as

αm −Px
n+1 = Px

n−1 −β m. (10)

Dividing this equation by Px
n+1 and using (2), we conclude that

∣

∣αmP−x
n+1 − 1

∣

∣ =

∣

∣

∣

∣

Px
n−1 −β m

Px
n+1

∣

∣

∣

∣

≤
(

Pn

Pn+1

)x

+
|β |m
Px

n+1

<

(

Pn

Pn+1

)x

+
Px

n

Px
n+1

= 2

(

Pn

Pn+1

)x

≤ 2

(

3

7

)x

<
2

(2.3)x ,

since 2.3 < 7/3 and so (3/7)x < 1/(2.3)x
for all x ≥ 2. Therefore,

∣

∣αmP−x
n+1 − 1

∣

∣<
2

(2.3)x . (11)

We put Λ1 = αmP−x
n+1 − 1. If Λ1 = 0, then αm ∈ Z for m ≥ 4 which is not valid. Thus, we have Λ1 6= 0.

Now, we will apply Theorem 2 to find a lower bound of Λ1. We put t = 2, γ1 = α , γ2 = Pn+1, b1 = m and b2 = −x.

Note that γ1, γ2 ∈Q

(√
2
)

. Thus, we take D = 2. Since h(γ1) = logα/2 and by (1), h(γ2) = logPn+1 < n logα . Thus, we

can choose A1 = logα and A2 = 2n logα.
Therefore, the left inequality of (8) gives m+2 > (n− 1)x ≥ x, so it suffices to consider B = m+2 ≥ max{|b1|, |b2|}.

Hence, by Theorem 2 we may immediately deduce

log |Λ1| > −1.4× 305× 24.5 × 22× (1+ log2)(1+ log(m+ 2)) (logα) (2n logα) (12)

≥ −8.1× 109n(1+ log(m+ 2)) .

Thus, the inequalities (11) and (12) give

log2− x log(2.3)> log |Λ1| ≥ −8.1× 109n(1+ log(m+ 2)) .

and so

x <
8.1× 109n(1+ log(m+ 2))− log2

log(2.3)

≤ 9.73× 109n(log(m+ 2)+ 1)

≤ 1.56× 1010n log(m+ 2),

where the inequality 1+ log(m+ 2)< 1.6log(m+ 2) holds for m ≥ 4. It comes next that x < 1.56× 1010n log(m+ 2).
This proves (9) since m < (n+ 2)x.
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3.2 An Upper Bound for x in Terms of n

We find an upper bound for x which is only depending on n. We will use the following comprehended fact. Let ℓ≥ 3 and
x ≥ 2. If x < ℓ · logx, then

x < 2ℓ · logℓ. (13)

If (m,n,x) satisfies (6) with x ≥ 2, m ≥ 4 and n ≥ 59, then

x < 5.69× 1011n logn. (14)

For the proof of (14), we single out two cases:
Case 1. Suppose that n+ 2 < x. By (9) we see that

x < 1.56× 1010n log
(

x2 + 2
)

≤ 1.56× 1010n log
(

1.51x2
)

≤ 4.06× 1010n logx,

since log
(

x2 + 2
)

≤ log
(

1.51x2
)

≤ 2.6logx for x ≥ 2. It follows that

x

logx
< 4.06× 1010n.

Applying (13) with ℓ= 4.06× 1010n and since logℓ < 7logn holds for n ≥ 59, we get

x < 2
(

4.06× 1010n
)

log
(

4.06× 1010n
)

< 2
(

4.06× 1010n
)

(7logn)≤ 5.69× 1011n logn.

This proves (14). We are done.
Case 2. When x ≤ n+ 2. This immediately implies the inequality (14). We are done.

3.3 An Absolute Upper Bound on x

We will prove that if (m,n,x) satisfies (6) with m ≥ 4 and n ≥ 59, then

x < 1026. (15)

Consider the number y =
x

α2(n−1)
. By (14), for every n ≥ 39 we obtain

y <
5.69× 1011n logn

α2(n−1)
<

1

αn
,

and so y < α−39 < 10−14. On the other hand, since β =−1/α , we can also write

Px
n−1 =

(

αn−1 −β n−1

2
√

2

)x

=
αx(n−1)

(

2
√

2
)x

(

1− (−1)n−1

α2(n−1)

)x

,

and

Px
n+1 =

(

αn+1 −β n+1

2
√

2

)x

=
αx(n+1)

(

2
√

2
)x

(

1− (−1)n+1

α2(n+1)

)x

.

There are two cases:
Case 1. Assume that n is even. Therefore,

1 <

(

1− (−1)n−1

α2(n−1)

)x

=

(

1+
1

α2(n−1)

)x

=

(

1+
x/α2(n−1)

x

)x

< lim
t→∞

(

1+
x/α2(n−1)

t

)t

= ey < 1+ 2y,

since y < 10−14.
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Case 2. Assume that n is odd. Here, we can write

1 >

(

1− (−1)n−1

α2(n−1)

)x

=

(

1− x/α2(n−1)

x

)x

> lim
t→∞

(

1− x/α2(n−1)

t

)t

= e−y > 1− 2y,

this is since y < 10−14. It follows that

(1− 2y)
αx(n−1)

(

2
√

2
)x < Px

n−1 < (1+ 2y)
αx(n−1)

(

2
√

2
)x ,

or, equivalently,
∣

∣

∣

∣

∣

∣

Px
n−1 −

αx(n−1)

(

2
√

2
)x

∣

∣

∣

∣

∣

∣

<
2yαx(n−1)

(

2
√

2
)x .

The above inequality is also true when n− 1 is replaced by n+ 1.
Now, return to the original equation (6), which can be rewritten as

αm +β m = 2Qm =
αx(n−1)

(

2
√

2
)x +

αx(n+1)

(

2
√

2
)x +



Px
n+1 −

αx(n+1)

(

2
√

2
)x



+



Px
n−1 −

αx(n−1)

(

2
√

2
)x



 .

Equivalently,
∣

∣

∣

∣

∣

∣

αm − αx(n+1)

(

2
√

2
)x

(

1+α−2x
)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−β m +



Px
n+1 −

αx(n+1)

(

2
√

2
)x



+



Px
n−1 −

αx(n−1)

(

2
√

2
)x





∣

∣

∣

∣

∣

∣

≤ 1

αm
+

∣

∣

∣

∣

∣

∣

∣

Px
n+1 −

αx(n+1)

(

2
√

2
)x

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

Px
n−1 −

αx(n−1)

(

2
√

2
)x

∣

∣

∣

∣

∣

∣

∣

<
1

αm
+ 2y







αx(n+1)

(

2
√

2
)x

(

1+α−2x
)






.

Thereby dividing both sides of the above by αx(n+1)/
(

2
√

2
)x

, we get

∣

∣

∣

∣

αm−x(n+1)
(

2
√

2
)x

−
(

1+α−2x
)

∣

∣

∣

∣

<

(

2
√

2
)x

αm+x(n+1)
+ 2y

(

1+α−2x
)

(16)

<

(

2
√

2
)x

αm+x(n−2)
+ 2y

(

1+α−2x
)

<
1

2αn−2
+

35

17
y

≤ 1

2αn−2
+

35

17αn

≤
(

1

2
+

35

17

)

1

αn−2
<

3

αn−2
,

where
(

2
√

2
)x

/αx(n+1) <
(

2
√

2
)x

/αx(n−2) ≤
(

2
√

2/α59
)x

< 1/2, n−2 ≤ x(n− 2)≤ m and α2x ≥ α4 > 34. Thus, we

see that

αm−x(n+1)
(

2
√

2
)x

− 1 ≤ 3

αn−2
+
(

1+α−2x
)

− 1,
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and so
∣

∣

∣

∣

αm−x(n+1)
(

2
√

2
)x

− 1

∣

∣

∣

∣

≤ 1

α2x
+

3

αn−2
≤ 4

α l
, (17)

where l = min(2x,n− 2).
Next, we can put

Λ2 = αm−x(n+1)
(

2
√

2
)x

− 1. (18)

We can check easily that Λ2 is different from zero. Otherwise, 8
x
2 = αx(n+1)−m. This means that α2x(n+1)−2m ∈N and this

is only true whenever m = x(n+ 1), and so x = 0, but this is a contradiction with the hypothesis that x ≥ 2. Moreover,
since n ≥ 39, we deduce from (17) and (18) that

|Λ2| ≤
1

α4
+

3

α37
<

1

2
,

from which we conclude that
1

2
≤ αm−(n+1)x

(

2
√

2
)x

≤ 3

2
. It comes next that

− log2 ≤ (m− x(n+ 1)) logα +
x

2
log8 ≤ log3− log2,

that is

− log3+ log2 ≤ (−m+ x(n+ 1)) logα − x

2
log8 ≤ log2

so

−m+ x(n+ 1)≤ 1

logα

{ x

2
log8+ log2

}

≤ 1.6x, (19)

and also

−m+ x(n+ 1)>
1

logα

{

− log3+ log2+
x

2
log8

}

≥ 1.16x− 0.47> 0. (20)

In view of (17), we apply once again Theorem 2 as follows; we set t = 2, γ1 = α , γ2 = 2
√

2, b1 = m−(n+ 1)x and b2 = x.
Similarly, as above, we can choose (A1,A2) = (logα, log8), D = 2 and B = 1.6x. Hence,

log |Λ2| > −1.4× 305× 24.5 × 22 (1+ log2)(1+ log1.6x)(logα) (log8) (21)

> −9.56× 109(1+ log1.6x) .

From inequalities (17) and (21) one obtains

log4− l logα >−9.56× 109(1+ log1.6x) ,

that is

l <
9.56× 109(1+ log1.6x)+ log4

logα
< 2.1× 1010(log1.6x)< 3.6× 1010 logx,

where 2.1log(1.6x)< 3.6logx whenever x ≥ 2. There are two possibilities:

• Assume that l = 2x. Then 2x < 3.6× 1010 logx, which gives x < 1011.
• Assume that l = n− 2. Here, by (14) we get

n− 2 < 3.6× 1010 log
(

5.69× 1011n logn
)

.

Actually, from the above inequality we deduce that n < 2.1× 1012 and by (14) once again, we also get

x < 5.69× 1011
(

2.1× 1012
)

log
(

2.1× 1012
)

≤ 3.4× 1025.

In both cases, x < 3.4× 1025 < 1026. This completes the proof of (15).
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3.4 Reducing the Bound on x

In this subsection, we improve the inequality (15). Indeed, we will prove that if (m,n,x) satisfies (6) with m ≥ 4 and

n ≥ 76, then x ≤ 37. Let us take Γ2 = log
(

γ
b1
1 /γ

b2
2

)

, where (b1,b2) = (x,(n+ 1)x−m) and (γ1,γ2) =
(

2
√

2,α
)

. Note

that Λ2 = eΓ2 − 1 is given in (18). Since |Λ2|<
1

2
, we conclude that e|Γ2| < 2 and by (17) we have

|Γ2|< e|Γ2|
∣

∣eΓ2 − 1
∣

∣< 2 |Λ2|<
2

α2x
+

6

αn−2
.

This gives
∣

∣

∣

∣

∣

∣

log
(

2
√

2
)

logα
− −m+ x(n+ 1)

x

∣

∣

∣

∣

∣

∣

<
1

x logα

(

2

α2x
+

6

αn−2

)

. (22)

Now, assume that n ≥ 76. Therefore, αn−2 > α74 > 102x (this is by applying (15)). Suppose further that x > 37. Then
α2x > 102x. It follows that

1

x logα

(

2

α2x
+

6

αn−2

)

<
8

102x2 logα
<

1

2x2
. (23)

The inequalities (22) and (23) imply that

−1

2x2
<

log
(

2
√

2
)

logα
− −m+ x(n+ 1)

x
<

1

2x2
. (24)

By Lemma 1 and the above inequalities we deduce that (−m+ x(n+ 1))/x is a convergent to the irrational number

γ = log
(

2
√

2
)

/ logα . Let [a0;a1,a2,a3,a4, ...] = [1;5,1,1,3, . . .] be the infinite continued fraction of γ and let pk/qk be

the fraction formed from its k-th convergent. Suppose further that
−m+ x(n+ 1)

x
= pk/qk for some positive integer k.

Since gcd(pk,qk) = 1 (this holds from the fact that pkqk−1 = pk−1qk +(−1)k−1
), we conclude that x = d · qk for some

positive integer d, that is, qk ≤ x.
We research for the smallest qk0+1 such that qk0+1 > x. After computation using Maple, we get

qk0+1 = q49 = 297581592712700128741090663> 1026 > x.

Thus, k0 ∈ {0,1, . . . ,48}. Moreover, ai ≤ 66 for any i = 0,1, ...,48. From a well-known property, we conclude that

∣

∣

∣

∣

γ − −m+ x(n+ 1)

x

∣

∣

∣

∣

=

∣

∣

∣

∣

γ − pk

qk

∣

∣

∣

∣

>
1

(ak + 2)q2
k

≥ 1

68x2
,

which contradicts (24). Thus, x ≤ 37. As required.

3.5 The Final Step

From the above, we deduce that there are no solutions (m,n,x) of the diophantine equation (6) with m ≥ 4, n ≥ 76 and
x ≤ 37. Indeed, we rewrite the inequality (16) as follows:

∣

∣

∣

∣

αm−x(n+1)
(

2
√

2
)x
(

1+α−2x
)−1 − 1

∣

∣

∣

∣

<
3

αn−2 (α−2x + 1)
<

3

αn−2
.

Note that 2 ≤ x ≤ 37, and so by (19) and (20) we get

1.16x− 0.47< (n+ 1)x−m < 1.6x.

We let s = (n+1)x−m . After simple computation, for every x ∈ [2,37] and s ∈ [⌊1.16x− 0.47⌋,⌈1.6x⌉]⊂ [1,59] we get
∣

∣

∣α−s
(√

8
)

x
(

1+α−2x
)−1 − 1

∣

∣

∣> 0.9. Thus,
10

9
<

3

αn−2
, from which we have αn−2 <

30

9
. Hence n ≤ 3, contradicting the

assumption. So, there are no solutions for m ≥ 4, n ≥ 76 and x ≤ 37. As claimed.
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Similarly, we can prove that there are no solutions to the Diophantine equation (6) for m ≥ 4 and n ≤ 75. In fact, by
(9), we get

x < 1.56× 1010× 75log((n+ 2)x+ 2)≤ 1.18× 1012 log(77x+ 2)≤ 1.27× 1012 log(78x) ,

which gives x < 4.54× 1013. Thus, m < (n+ 2)x ≤ 77x < 3.5× 1015. Let Λ1 as above and put Γ1 = m logα − x logPn+1.
Clearly, by (10), αm > αm −Px

n+1 = Px
n−1 −β m > 0 since |β |< 1. Hence, αm > Px

n+1 and so Γ1 > 0. It follows from (11)
that

0 < Γ1 < eΓ1 − 1 = Λ1 <
2

(2.3)x .

That is,

0 < m
logα

logPn+1

− x <
2

(2.3)x
logPn+1

. (25)

We divide both sides of the last inequality by m, one obtains the inequalities

0 <
logα

logPn+1

− x

m
<

2

m(2.3)x
logPn+1

≤ 1

2(2.3)x
log5

,

for x ≥ 2. Since x2 < (2.3)x
log5, we deduce that

0 <
logα

logPn+1

− x

m
<

1

2x2
,

for x ≥ 2 and m ≥ 4. By Legendre’s Formula (see Lemma 1), we infer that x/m is a convergent to the continued fraction
of logα/ logPn+1.

Let [a0;a1,a2, . . .] be the continued fraction of the irrational number γ = logα/ logPn+1 and let pk (n)/qk (n) be its k-th
convergent (2 ≤ n ≤ 75). Let an (m) = max{ai : i = 0,1, ...,k}, where qk−1 (n)< m < qk (n). Recall that m < 3.5× 1015.
From the property of continued fraction, see (7) in Lemma 1, we have

m
logα

logPn+1

− x >
1

(an (m)+ 2)m
. (26)

It follows from (25) and (26) that
1

(an (m)+ 2)m
<

2

x(2.3)x
logPn+1

. (27)

Let an0
(m) = max

2≤n≤75
(an (m)). A quick inspection using Maple reveals that qk (n0) = 1311738121 and an0

(m) = 1565.

Since the inequalities


















x(2.3)x
logP3

2
− (1565+ 2)m > 0, for x ≥ 48

x(2.3)x
logP3

2
− (1565+ 2)m < 0, for x ≤ 47

hold, we conclude that for all n = 2,3, . . . ,75, if x ≥ 48 then the inequality

x(2.3)x
logPn+1

2
> (an (m)+ 2)m

holds. This contradicts (27). We deduce that if (m,n,x) is a solution of the diophantine equation (6) with m≥ 4 and n≤ 75,
then x ≤ 47.

Finally, a simple computation by Pari/Gp for x ∈ [2,47] and n ∈ [2,75] turned up that the only solutions (m,n,x) of (6)
are the triples (1,n,0) and (n,n,1) with n ≥ 1. Thus, we have finished the proof of Theorem 1.

4 Open Problem

As our final conclusion, we propose for further research the following interesting question: Let N ≥ 1 and let a be an odd

positive integer with a ≤ N (a is odd since pn+1 and pn−a have the same parity for n ≥ a+ 1). When does
Px

n+1 +Px
n−a

2
equal a Pell-Lucas number? That is, we research for all indices m,n,a with a odd and the exponent x such that
Px

n+1 +Px
n−a = 2Qm.
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[9] S. E. Rihane, B. Faye, F. Luca, A. Togbé, On the exponential Diophantine equation Px
n +Px

n+1 = Pm, Turk. J. Math., 43 (3) (2019),

1640–1649.
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