
JJMS 18, No. 3, 351-367 (2025 ) 351

Jordan Journal of Mathematics and Statistics.
Yarmouk University

DOI:https://doi.org/10.47013/18.3.3

On The Maximum Likelihood Estimation For The

Transmuted Extreme Value Distribution Parameters

Mohammed Ridha Kouider 1,∗, Samia Toumi 2, Fatah Benatia 3, Nuran Medhat Hassan 4

1 Mohamed Khider University of Biskra, Faculty of Exact Science and Natural and Life Science, Algeria
2 Mohamed Khider University of Biskra, Faculty of Exact Scienceand Natural and Life Science, Algeria
3 Mohamed Khider University of Biskra, Faculty of Exact Scienceand Natural and Life Science, Algeria
4 Department of Basic Science, Faculty of Engineering, Modern Academy, Cairo, Egypt

Received: March 15, 2024 Accepted : Jan. 12, 2025

Abstract: Recently, researchers have been interested in the transmuted family of distributions via the quadratic rank transformation

map, which was studied by Shaw and Buckley [21] (2009). Among the important distributions is the generalized extreme value

distribution, due to its wide use in various fields. For this reason, we focus on estimating the parameters of the transmuted generalized

extreme value (TGEV) distribution. Therefore, we develop transformed parameters of a generalized Pareto distribution (GPD) with a

scale parameter and a shape parameter and approximate it to the transformed conditional distribution function to estimate the

parameters of the TGEV via the maximum likelihood estimation (MLE). In addition, we present a numerical method for estimating

the unknown parameters of the transmuted GPD starting from the MLE based on simple random sampling (SRS) and ranked set

sampling (RSS). Finally, we present a simulation study using this practical method to better illustrate the findings of this investigation.
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1 Introduction

The quality of the operations used in statistical analysis depends entirely on the distributions. Considerable effort has been
made to develop large classes of standard probability distributions along with related statistical methodologies. However,
there are still many important problems, as the real data do not follow any of the classical or standard distributions.
However, a model with a large amount of information provides more flexibility and covers more variation in the data.
Several techniques exist to obtain generalized probability models. One of the techniques for adding additional parameters
to existing models is the QRTM technique. Shaw and Buckley [21] (2009) introduced the QRTM technique for the
generalization of classical probability models. And Aryall and Tsokos [1] (2009) focused on the transformed generalized
maximum value distribution and studied its applications and properties. In addition, Faton and Llukan [4] (2009) studied
the transmuted Pareto distribution. In application to real data, they observed that the transmuted Pareto distribution leads
to a better fit than the Pareto distribution. And can be used to model flood data. There, more Habib et al. [17] (2016) had
given the transmuted GPD with four parameters. They show that the subject distribution can be used to model reliability
data.

As is known under the theorem presented by Pickands [20] (1975), we can approximate the conditional distribution
function (df) to the GPD parameters. We also know that the GPD is strongly related to the generalized extreme value
(GEV) distribution. Therefore, we find that the MLE method is based on this beautiful interconnection. So, the aim of
this study is to use the transmuted GPD (TGPD) parameters, where the GPD has two parameters, the shape parameter
and the scale parameter, to estimate the TGEV parameters using the MLE method. Therefore, we approximate the TGPD
parameters to the transmuted condition distribution based on the theorem, which we will present and expand in sections
(1). In section (2) we give a procedure that is performed by the MLE method via SRS and RSS. And to estimate the
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TGPD parameters numerically by the MLE method, we use the modified bisection algorithm (MBA) for multi-roots,
which was presented by [11] (2019). For section (3), some simulations are given with three numerical examples. In the
first, we applied the MLE using SRS with a sample of 15 data that follows the TGPD parameters. The second is given
with real data. And for the last one, we apply the MLE method with 1000 replicates using the RSS. They are used to test
the efficiency of the estimators of the TGPD parameters using the algorithms presented in section (2).

The cumulative distribution function (cdf) of the GPD parameters (shape and scale) is

P(X ≤ x) = Gγ,σ (x) :=

{
1−
(
1+ γ

σ x
)−1/γ

for γ 6= 0

1− exp
(
− x

σ

)
for γ = 0

, (1)

And a random variable (rv) X is said to follow the GPD given in (1) if the probability density function (pdf) of X as:

gγ,σ (x) :=

{
1
σ

(
1+ γ

σ x
)−1/γ−1

, for γ 6= 0
1
σ exp

(
− x

σ

)
, for γ = 0

, (2)

where γ ∈ R is the shape parameter and σ > 0 is the scale parameter for x > 0 if γ ≥ 0 and for 0 < x < σ/ |γ| if γ < 0.
Let X1, . . . ,Xn be a sequence of random variables (rv’s) of independent and identically distributed (iid) from some

unknown df H. For τH = sup{x : H (x)< 1} ≤ ∞ and 1−H (t)> 0 with t < τH and x > 0, be the conditional df of X − t

given X > t,

Ht (x) = P(X < t + x|X > t) =
H (x+ t)−H (t)

1−H (t)
(3)

where τH is the upper endpoint of H.
We denote the order statistics by X1,n < · · ·< Xn,n. The weak convergence of the centered and standardized of Xn,n =

max(Xi) for i = 1, . . . ,n implies that there exist two strictly positive sequences of constants an and bn with a continuous
df Φ (x) such that for x > 0:

lim
n→+∞

P

(
Xn,n − an

bn

≤ x

)
= Φ (x) (4)

However, the results of Fisher and Tippett [5] (1928), Gnedenko [6] (1943) and de Haan [7] (1970) characterized the
classes of df having a certain limit in (4). This possible limiting of Φ (x) in (4) are given by the so-called extreme value
distributions Ψγ with γ called the extreme value index, defined by

Ψγ (x) :=

{
exp
(
−(1+ γx)−1/γ

)
if γ 6= 0

exp(−exp(−x)) of γ = 0
, (5)

Then, Balkema and de Haan [2] (1974) and Pickands [20] (1975)] has been proved that there exists a normalizing function
σ (t)> 0 such that for all x > 0

lim
t→τH

sup
0<x<t−τH

∣∣Ht (x)−Gγ,σ(t) (x)
∣∣= 0 (6)

if and only if H ∈ D
(
Ψγ

)
that’s mean if H satisfies the condition (4) where γ ∈ R. Also from (1) and (5) we obtain that

for the shape parameter γ ∈R and the scale parameter σ > 0 we find

Gγ,σ (x) = 1+ log
(

Ψγ

( x

σ

))
(7)

Furthermore, if the rv X has GPD parameters (the shape and scale), then the conditional df of X − t given X > t is also
the GPD parameters given in (1). In view of (6) with τH denoting the upper endpoint of H we can expect that observations
of Ci = Xn−i+1,n −Xn−k,n for 1 ≤ i ≤ k , or, equivalently, on

C0 = Xn−k,n,C1 = Xn−k+1,n −Xn−k,n, . . . ,Ck = Xn,n −Xn−k,n (8)

where in the asymptotic setting kn = k an intermediate sequence, that is, kn → ∞ and kn/n → 0 as n → ∞. Therefore, in
view of convergence (6), the conditional df of the sample (C0,C1, . . . ,Ck) given C0 = c0 can be approximated by the df of
an ordered sample of k random variables iid of the GPD with df Gγ,σ defined in (1).

In this article, we use the QRTM approach, which was suggested by Shaw and Buckley [21] (2009) to define TGPD
for simplicity if we take the GPD which is defined in (1) as the base df. Then, according to the QRTM approach, the cdf
of TGPD satisfies the relationship.

Fγ,σ ,λ (x) := (1+λ )Gγ,σ (x)−λ G2
γ,σ (x) , (9)
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which in differentiation yields,

fγ,σ ,λ (x) := gγ,σ (x)
(
1+λ − 2λ Gγ,σ (x)

)
(10)

where Gγ,σ (x) is the cdf of the GPD given in (1) and |λ | ≤ 1. Observe that with λ = 0 we get the df of the base rv, i.e.,
Fγ,σ ,λ (x) = Gγ,σ (x). Then, a rv X is said to have TGPD with parameters (γ,σ ,λ ) if his pdf is defined as:

fγ,σ ,λ (x) :=

{
1
σ

(
1+ γ

σ x
)−1/γ−1

(
1−λ + 2λ

(
1+ γ

σ x
)−1/γ

)
, for γ 6= 0

1
σ exp

(
− x

σ

)(
1−λ + 2λ exp

(
− x

σ

))
, for γ = 0

(11)

and its cdf as

Fγ,σ ,λ (x) :=





(1+λ )
(

1−
(
1+ γ

σ x
)−1/γ

)
−λ

(
1−
(
1+ γ

σ x
)−1/γ

)2

, for γ 6= 0

(1+λ )
(
1− exp

(
− x

σ

))
−λ

(
1− exp

(
− x

σ

))2
, for γ = 0

(12)

where γ ∈ R is the shape parameter and σ > 0 is the scale parameter for x > 0 if γ ≥ 0 and for 0 < x < σ/ |γ| if γ < 0
with |λ | ≤ 1 is the transmuted parameter. Likewise, the qth quantile of xq TGPD is derived in the following corollary.

Corollary 1.The qth quantile xq of the random variable X having the cdf of the TGPD from (12) with γ 6= 0 is given by the

nonlinear equation

xq =
σ

γ







−
√

4λ q+(1−λ )2 − (1−λ )

2λ




−γ

− 1


 (13)

Proof.The qth quantile xq of rv X , where X follows Fγ,σ ,λ (x) the cdf of TGPD for γ 6= 0 is obtained by inverting F̄−1
γ,σ ,λ

(x)

which obtained from (12) to obtain xq = F̄−1
γ,σ ,λ

(x) where p = Fγ,σ ,λ (x) by

p := (1+λ )

(
1−
(

1+
γ

σ
x
)−1/γ

)
−λ

(
1−
(

1+
γ

σ
x
)−1/γ

)2

Then it’s easy to find that

1− p = (1−λ )
(

1+
γ

σ
x
)−1/γ

+λ
(

1+
γ

σ
x
)−2/γ

After calculating math with q = 1− p we found

xq =
σ

γ







−
√

4λ q+(1−λ )2 − (1−λ )

2λ




−γ

− 1




Hence, the distribution median is

x0.5 =
σ

γ

((
−√

1+λ 2− (1−λ )

2λ

)−γ

− 1

)
(14)

Also, if we consider the base df to be Ht (x) the conditional df of X − t given in (3) for X > t, we will have defined the
transmuted conditional df for X − t as follows:

Ft,λ (x) := (1+λ )Ht (x)−λ H2
t (x) , for |λ | ≤ 1 (15)

Theorem 1.Let X1, . . . ,Xn be iid rv’s with unknown common df H and let τH where τH = sup{x : H (x)< 1} ≤ ∞ denote

the right endpoint of support of H. Consider a threshold t as t → τH for 0 < x < t−τH , and if the condition (6) is met then

lim
t→τH

sup
0<x<t−τH

∣∣Ft,λ (x)−Fγ,σ(t),λ (x)
∣∣= 0 (16)

where Ft,λ is the transmuted conditional df given in (15) and Fγ,σ(t),λ is the TGPD presented in (12).
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Proof.Under (12) and (15) we have

sup
∣∣Ft,λ (x)−Fγ,σ(t),λ (x)

∣∣= sup

∣∣∣(1+λ )
(
Ht (x)−Gγ,σ(t) (x)

)
−λ

(
H2

t (x)−G2
γ,σ(t) (x)

)∣∣∣

This is equivalent to that

sup
∣∣Ft,λ (x)−Fγ,σ(t),λ (x)

∣∣≤ (1+λ )sup
∣∣(Ht (x)−Gγ,σ(t) (x)

)∣∣−λ sup

∣∣∣
(

H2
t (x)−G2

γ,σ(t) (x)
)∣∣∣

For H2
t (x)−G2

γ,σ(t) (x) =
(
Ht (x)−Gγ,σ(t) (x)

)(
Ht (x)+Gγ,σ(t) (x)

)
and under (6) we check that Ft,λ (x) ≃ Fγ,σ(t) (x).

Then, it is easy to prove Ft,λ (x)≃ Fγ,σ(t),λ (x) .

2 The MLE of the TGEV parameters

Since the GPD is considered an equivalent set of results in extreme value distributions Ψγ which is presented in (5) and
under the relation (7) we can state the distribution of the TGEV, which is defined as follows:

Ψγ,λ

( x

σ

)
= exp

(
−Fγ,σ ,λ (x)

)
(17)

for Fγ,σ ,λ (x) = 1−Fγ,σ ,λ (x) with Fγ,σ ,λ (x) is the TGPD given in (12). Aryal and Tsokos [1] (2009) were the first to
introduce the TGEV. Then Cira et al. [3] (2019) studied in detail the characteristics of this distribution and estimated its
parameters using the MLE method using a series of Monte Carlo simulation experiments. Hence, in this paper we focus
on estimating the parameters of TGEV through estimates of the parameters of TGPD. In addition, in view of (14) the
transmuted conditional distribution can be approximated by the distribution of an ordered sample of k iid rv following df
Fγ,σ ,λ (x) which is the cdf of TGPD. This allows us to estimate the parameters of TGEV with the MLE method to estimate
the parameters of TGPD. Therefore, we will present the MLE method for TGPD using the SRS and RSS.

2.1 The MLE for the TGPD parameters using SRS

In this subsection, we discuss the estimation (γ,σ ,λ ) based on the MLE of TGPD using a simple random sample (SRS)
with one set. To specify it, let X1,X2, ...,Xn be iid rv’s with common cdf Fγ,σ ,λ (x) of the TGPD, which given in (12). We
assume that both of Fγ,σ ,λ is absolutely continuous. Then for γ 6= 0 the likelihood function can be written as

ℓ(x;γ,σ ,λ ) =
n

∏
i=1

fγ,σ ,λ (xi) =
n

∏
i=1

1

σ

(
1+

γ

σ
xi

)−1/γ−1
(

1−λ + 2λ
(

1+
γ

σ
xi

)−1/γ
)

(18)

And with γ = 0 the likelihood function is

ℓ(x;γ,σ ,λ )
∣∣
γ=0 =

n

∏
i=1

1

σ
exp
(
−xi

σ

)(
1−λ + 2λ exp

(
−xi

σ

))
(19)

By accumulation taking logarithm of equation (18),

logℓ(xi;γ,σ ,λ ) =
n

∑
i=1

[
log

(
1

σ

)
−
(

1

γ
+ 1

)
log
(

1+
γ

σ
xi

)
+ log

(
1−λ + 2λ

(
1+

γ

σ
xi

)−1/γ
)]

(20)

where σ > 0 for γ > 0 and σ > −γxn,n for γ < 0 with 0 ≤ λ ≤ 1. Hence, for any γ < −1 and −1 ≤ λ ≤ 0 there is no
MLE. And in the case γ = 0 the log-likelihood function of (19) can be written as

log
(
ℓ(x;γ,σ ,λ )

∣∣
γ=0

)
=

n

∑
i=1

[
log

(
1

σ

)
− xi

σ
+ log

(
1−λ + 2λ exp

(
−xi

σ

))]
(21)

The likelihood equations of (20) with γ 6= 0 are given in terms of the partial derivatives as




log(ℓ(x;γ,σ ,λ ))
∂γ =

n

∑
i=1

[
log
(
1+ γ

σ xi

)
− (1+ γ)

γ
σ xi

1+ γ
σ xi

+(1− ζi)
(

log
(
1+ γ

σ xi

)
−

γ
σ xi

1+ γ
σ xi

)]
= 0.

log(ℓ(x;γ,σ ,λ ))
∂σ =

n

∑
i=1

[
−1+

(
1+ 1

γ

) γ
σ xi

1+
γ
σ xi

+
(1−ζ )

γ

γ
σ xi

1+
γ
σ xi

]
= 0.

log(ℓ(x;γ,σ ,λ ))
∂λ =

n

∑
i=1

[
−1+2(1+

γ
σ xi)

−1/γ

(
1−λ+2λ(1+ γ

σ xi)
−1/γ

)

]
= 0.

(22)
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With

ζi =
1−λ

1−λ + 2λ
(
1+ γ

σ xi

)−1/γ

Also, under (21) for γ = 0 we have

log(ℓ(x;γ,σ ,λ )|γ=0 )
∂σ =

n

∑
i=1

[
−1+ 1

σ xi +
xi
σ (1− εi)

]
= 0.

log(ℓ(x;γ,σ ,λ )|γ=0 )
∂λ =

n

∑
i=1

[
−1+2exp(− xi

σ )
1−λ+2λ exp(− xi

σ )

]
= 0.

(23)

where

εi =
1−λ

1−λ + 2λ exp
(
− xi

σ

)

There more for 0 ≤ λ ≤ 1 it is easy to hold that 0 ≤ ζi ≤ 1 and 0 ≤ εi ≤ 1. The MLE of TGPD (γ,σ ,λ )parameters via

the SRS which denoting by
(

γ̂SRS, σ̂SRS, λ̂SRS

)
are obtained by solving the equationsΨ (γ̂) = 0,Ψ (σ̂) = 0 and Ψ

(
λ̂
)
= 0

for −1 ≤ γ ≤ 0, σ >−γxn,n where xn,n = max(xi) for i = 1,2, ...,n and γ > 0 for σ > 0 and 0 ≤ λ ≤ 1. These functions
are related to the system equations (22). They are as follows:

Ψ (γ) =
n

∑
i=1

[log
(

1+
γxi

σ

)
− (1+ γ)

(
1−
(

1+
γxi

σ

)−1
)
+(1− ζi)

(
log
(

1+
γxi

σ

)
+
(

1+
γxi

σ

)−1

− 1

)
] (24)

Ψ (σ) =
n

∑
i=1

[
−1+

(
1+

1

γ

)(
1−
(

1+
γ

σ
xi

)−1
)
+

1− ζi

γ

(
1−
(

1+
γ

σ
xi

)−1
)]

(25)

And

Ψ (λ ) =
n

∑
i=1

((
−1+ 2

(
1+

γ

σ
xi

)−1/γ
)(

1−λ + 2λ
(

1+
γ

σ
xi

)−1/γ
)−1

)
(26)

Where

ζi = (1−λ )

(
1−λ + 2λ

(
1+

γ

σ
xi

)−1/γ
)−1

It is usually more convenient to use nonlinear optimization algorithms such as MBA for multi-roots, which is proposed
by [11] (2019) to search a root of a function defined on the interval [α,β ] . As it is known that this new numerical method
is based on the mean values theorem on the interval [α,β ] with f (α) f (β )≤ 0.

First, to determine γ̂SRS the estimator of the shape parameter γ one should find the roots of Ψ (γ) which is defined in
(24) for γ ≥−1. Since, the MBA for multi-roots was applied in a closed interval. For this, we will focus on checking the
roots of the function Ψ (γ) for γ ∈ [−1,0]. However, for γ > 0 we can express the function (24) in terms of θ ∈ ]−1,0[
where θ =−(1/γ). Then the problem is over.

Second, to determine σ̂SRS the estimator of the scale parameter σ we must search the roots of the function Ψ (σ) via
the MBA. Such as σ ≥−γxn,n where xn,n = max(xi) with i = 1,2, ...,n for −1 ≤ γ ≤ 0 and σ > 0 for γ > 0. But the MBA
works with closed interval for the scale parameter. Therefore, we present the following theorem, which gives us a simple
technique to implement the MBA to find the root of Ψ (σ) which is defined in (25).

Theorem 2.Let define the function Ψ (σ) in (25). Then,

1. lim
σ→+∞

ζi =
1−λ
1+λ where ζi = (1−λ )

(
1−λ + 2λ

(
1+ γ

σ xi

)−1/γ
)−1

.

2. lim
σ→+∞

Ψ (σ) =−1.

3.For Ψ (σ) with γ ≥ 0 we find σ ≥ σu where σu =
(

1+ γ + n− n× ζ
)

x with x = (1/n)
n

∑
i=1

xi and ζ̄ = (1/n)
n

∑
i=1

ζi.

with σ ≥−γxn,n where xn,n = max(xi) with i = 1,2, ...,n for −1 ≤ γ ≤ 0 and σ > 0 for γ > 0.
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Clearly from the theorem (2) it is easy to apply the MBA method. Then, with σ > 0 for γ > 0, we can search the zero of

the functionΨ (σ) on (25) in the interval [ε,σu] where ε = 10−8x̄ with x̄=(1/n)
n

∑
i=1

xi. Hence, for σ ≥−γxn,n where xn,n =

max(xi) with i = 1,2, ...,n for −1 ≤ γ ≤ 0 we will find that there is no problem. Because we can return to the previous

state by taking β =−γ . Then we search the roots of Ψ (σ) in the interval [ε,σu] where σu =
(

1−β + n− n× ζ
)

x.

Finally, for λ̂SRS the estimator of the transmuted parameter λ . Is checked by determining the roots of Ψ (λ ) in (26)
with λ ∈ [0,1] because the MLE exists for all λ ∈ [0,1]. Hence, for λ 6= 0 we can rewrite the third equation from (22) as

1

n

n

∑
i=1

[
1

1−λ + 2λ
(
1+ γ

σ xi

)−1/γ

]
− 1 = 0 (27)

We solve the Ψ (λ ) through MBA for multi-roots in [0,1] . We find the root of Ψ (λ ) gives an estimator of λ with good
estimator for σ and γ as we discus in section (3). All the methods that we explained for estimating TGPD parameters with
MLE via SRS will also be discussed upon in Example 1 that we present in section (3).

2.2 The MLE for the TGPD parameters using RSS

In this subsection, we estimate the unknown parameters (γ,σ ,λ ) of TGPD based on MLE using ranked set sampling
(RSS). RSS is one of the traditional methods that are generally used to achieve the surveillance economy. The concept of
RSS was initially shown by [18] (1951) in his work. Without the need for many substantial observations, RSS can increase
the effectiveness of methods such as estimation. It is used to reduce the number of measured observations necessary to
achieve the specified inference precision. The following is a description of the RSS scheme [23]: First, pick a simple
random sample (SRS) of r sets of size n from the group you want to study. Second, pick the element with rank i from the
j set in a cycle where i ∈ {1,2, ...,n} And j ∈ {1,2, ...,r}. Then we get an RSS sample of size m = r× n.

Let X (1),X (2), ...,X (r) be an SRS from the TGPD with pdf f γ,σ ,λ given in (11). The rv′s X
(1)
1,n ,X

(1)
2,n , ...,X

(1)
n,n and

X
(2)
1,n ,X

(2)
2,n , ...,X

(2)
n,n with X

(r)
1,n ,X

(r)
2,n , ...,X

(r)
n,n be independent where X

j
i,n denotes the jth and ith sample of size n for

j ∈ {1,2, ...,r} and i ∈ {1,2, ...,n} where m = r × n the size of RSS . For j = 1 we have r = 1 then m = n. Now, let
X1,X2, ...,Xn be a random sample with the common distribution cdf Fγ,σ ,λ given in (12) and pdf f

γ,σ ,λ
given in (11). The

pdf f
i,γ,σ ,λ

(x) of RSS for the ith order statistics as shown as

f
i,γ,σ ,λ

(x) =
n!

(i− 1)!(n− i)!
f

γ,σ ,λ
(x)
[
Fγ,σ ,λ (x)

]i−1 [
1−Fγ,σ ,λ (x)

]n−i
(28)

Using equations (11) and (12) in equation (28), we have for γ 6= 0.

f
i,γ,σ ,λ

(x) = n!
(i−1)!(n−i)!

(
1
σ

(
1+ γ

σ x
)−1

γ −1
(

1−λ + 2λ
(
1+ γ

σ x
)−1/γ

))

×
[
(1+λ )

(
1−
(
1+ γ

σ x
)−1/γ

)
−λ

(
1−
(
1+ γ

σ x
)−1/γ

)2
]i−1

×
[

1−
[
(1+λ )

(
1−
(
1+ γ

σ x
)−1/γ

)
−λ

(
1−
(
1+ γ

σ x
)−1/γ

)2
]]n−i

(29)

And with γ = 0 the pdf of RSS is

f
i,γ,σ ,λ

(x) = n!
(i−1)!(n−i)!

(
1
σ exp

(
− x

σ

))(
1−λ + 2λ exp

(
− x

σ

))

×
[
(1+λ )

(
1− exp

(
− x

σ

))
−λ

(
1− exp

(
− x

σ

))2
]i−1

×
[
1−
[
(1+λ )

(
1− exp

(
− x

σ

))
−λ

(
1− exp

(
− x

σ

))2
]]n−i

(30)
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Let X1,X2, ...,Xn be an iid random sample with df of TGPD. Then for γ 6= 0 the likelihood function can be written as

ℓ(x;γ,σ ,λ ) =
n

∏
i=1

[ n!
(i−1)!(n−i)!

(
1
σ

(
1+ γ

σ xi

)−1
γ −1

(
1−λ + 2λ

(
1+ γ

σ xi

)−1/γ
))

×
[
(1+λ )

(
1−
(
1+ γ

σ xi

)−1/γ
)
−λ

(
1−
(
1+ γ

σ xi

)−1/γ
)2
]i−1

×
[

1−
[
(1+λ )

(
1−
(
1+ γ

σ x
)−1/γ

)
−λ

(
1−
(
1+ γ

σ x
)−1/γ

)2
]]n−i

]

(31)

And for γ = 0 the likelihood function can be written as

ℓ(x;γ,σ ,λ ) =
n

∏
i=1

[ n!
(i−1)!(n−i)!

(
1
σ exp

(
− x

σ

))(
1−λ + 2λ exp

(
− x

σ

))

×
[
(1+λ )

(
1− exp

(
− x

σ

))
−λ

(
1− exp

(
− x

σ

))2
]i−1

×
[
1−
[
(1+λ )

(
1− exp

(
− x

σ

))
−λ exp

(
− x

σ

)2
]]n−i

]

(32)

Using the logarithmic accumulation of equation (31),

logℓ(x;γ,σ ,λ ) = log[
k

∏
i=1

n!
(i−1)!(n−i)! ]+

n

∑
i=1

[− logσ −
(

1+ 1
γ

)
log
(
1+ γ

σ xi

)

+ log
(

1−λ + 2λ
(
1+ γ

σ xi

)−1/γ
)

+(i− 1)log

(
(1+λ )

(
1−
(
1+ γ

σ x
)−1/γ

)
−λ

(
1−
(
1+ γ

σ x
)−1/γ

)2
)

+(n− i) log

[
1−
[
(1+λ )

(
1−
(
1+ γ

σ x
)−1/γ

)
−λ

(
1−
(
1+ γ

σ x
)−1/γ

)2
]]

]

(33)

Using the logarithmic accumulation of equation (32),

logℓ(x;γ,σ ,λ ) = log[
n

∏
i=1

n!
(i−1)!(n−i)!

]+
n

∑
i=1

[− logσ −
(

xi
σ

)
+ log

(
1−λ + 2λ + exp

(
xi
σ

))

+(i− 1) log
[
(1+λ )

(
1− exp

(
xi
σ

))
−λ

(
1− exp

(
xi
σ

))2
]

+(n− i)log
[
1−
[
(1+λ )

(
1− exp

(
xi
σ

))
−λ

(
1− exp

(
xi
σ

))2
]]
]

(34)

The likelihood equations of (31) with γ 6= 0 are then given in terms of the partial derivatives,

∂ logℓ(x;γ,σ ,λ )
∂γ =

n

∑
i=1

[ 1
γ2 log

(
1+ γ

σ xi

)
−
(

1+ 1
γ

) xi
σ(

1+ γ̂
σ x
)

+(i− 1)
(1+λ )(1+

γ
σ xi)

−1/γ

(
− log(1+

γ
σ xi)−

xi
γσ

1+
γ
σ xi

)

(1+λ )(1+ γ
σ xi)

−1/γ−λ
(

1−(1+ γ
σ xi)

−1/γ
)2

−(i− 1)
2λ
(

1−(1+
γ
σ x)

−1/γ
)
(1+

γ
σ xi)

−1/γ

(
log(1+

γ
σ x)+

xi
γσ

1+
γ
σ xi

)

(1+λ )(1+ γ
σ xi)

−1/γ−λ
(

1−(1+ γ
σ xi)

−1/γ
)2

−(n− i)
(1+λ )(1+

γ
σ xi)

−1/γ

(
− log(1+

γ
σ xi)−

xi
γσ

1+
γ
σ xi

)

1−
(
(1+λ )(1+ γ

σ xi)
−1/γ−λ

(
1−(1+ γ

σ xi)
−1/γ

)2
)

+(n− i)
2λ
(

1−(1+ γ
σ x)

−1/γ
)
(1+ γ

σ x)
−1/γ

(
log(1+ γ

σ x)+
xi
γσ

1+
γ
σ xi

)

1−
(
(1+λ )(1+ γ

σ xi)
−1/γ−λ

(
1−(1+ γ

σ xi)
−1/γ

)2
) = 0

(35)

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



358 KOUIDER, TOUMI, BENATIA & MEDHAT: On the MLE for the transmuted EVD parameters

and

∂ logℓ(x;γ,σ ,λ )
∂σ =

k

∑
i=1

[−1
σ −

(
1+ 1

γ

) −γ

σ2

(1+ γ
σ xi)

+ 2(1− ζi)
(
1+ γ

σ xi

)− 1
γ −1 xi

σ 2

+(i− 1)

(
(1+λ )(1+

γ
σ xi)

− 1
γ −1 xi

σ2

)
+2λ

(
1−(1+

γ
σ xi)

− 1
γ

)
(1+

γ
σ xi)

− 1
γ −1 xi

σ2

(1+λ )(1+
γ
σ xi)

− 1
γ −λ

(
1−(1+

γ
σ xi)

− 1
γ

)2

−(n− i)

(
(1+λ )(1+ γ

σ xi)
− 1

γ −1 xi
σ2

)
+2λ

(
1−(1+ γ

σ xi)
− 1

γ

)
(1+ γ

σ xi)
− 1

γ −1 xi
σ2

1−
(
(1+λ )(1+ γ

σ xi)
− 1

γ −λ

(
1−(1+ γ

σ xi)
− 1

γ

)2
) = 0

(36)

∂ logℓ(x;γ,σ ,λ )
∂λ =

n

∑
i=1

[
−1+2(1+ γ

σ xi)
−1/γ

1−λ+2λ(1+
γ
σ xi)

−1/γ +(i− 1)
(1+ γ

σ xi)
−1/γ

−
(

1−(1+ γ
σ xi)

−1/γ
)

(1+λ )(1+
γ
σ xi)

−1/γ
−λ
(

1−(1+
γ
σ xi)

−1/γ
)2

+(n− i)
−(1+ γ

σ xi)
−1/γ

+

(
1−(1+ γ

σ xi)
−1/γ

)2

1−
(
(1+λ )(1+ γ

σ xi)
−1/γ

−λ

(
1−(1+ γ

σ xi)
−1/γ

)2
) = 0

(37)

Also, under (34) for γ = 0 we have.

∂ logℓ(x;γ,σ ,λ )
∂σ

∣∣
γ=0 =

n

∑
i=1

[−1
σ + xi

σ 2 + 2(1− εi)exp
(
− xi

σ

)
xi

σ 2

−(i− 1)
(1+λ )exp(− xi

σ )
xi
σ2 +2λ(1−exp(− xi

σ ))exp(− xi
σ )

xi
σ2

(1+λ )(1−exp(− xi
σ ))−λ(1−exp(− xi

σ ))
2

+(n− i)
(1+λ )exp(− xi

σ )
xi
σ2 +2λ(1−exp(− xi

σ ))exp(− xi
σ )

xi
σ2

1−
(
(1+λ )(1−exp(− xi

σ ))−λ(1−exp(− xi
σ ))

2
) ] = 0

(38)

and

∂ logℓ(x;γ,σ ,λ )
∂λ

∣∣
γ=0 =

n

∑
i=1

[
−1+2exp(− xi

σ )
1−λ+2λ exp(− xi

σ )
+ (i− 1)

(1−exp(− xi
σ ))−(1−exp(− xi

σ ))
2

(1+λ )(1−exp(− xi
σ ))−λ(1−exp(− xi

σ ))
2

+(n− i)
−(1−exp(− xi

σ ))
1−
(
(1+λ )(1−exp(− xi

σ ))−λ(1−exp(− xi
σ ))

2
) ] = 0

(39)

To obtain the estimators of the TGPD parameters (γ,σ ,λ ) via MLE with RSS. We set the three equations (35)-(37) and
the two equations (38)-(39) equal to zero. To solve these nonlinear equations with iterative approaches, we use numerical
methods, such as the Newton-Raphson method or the MBA for multi-roots, which is presented by [10]. The MLE of the

TGPD parameters (γ,σ ,λ ) through RSS, which is denoted by
(

γ̂RSS, σ̂RSS, λ̂RSS.
)

.

3 Simulation and results

3.1 Example1

In order to investigate the performance of the MLE via SRS for (γ,σ ,λ ). Then we applied the practical method which
discuss in section(2) as we are given with the following cases :

1.For estimating the shape parameter. We use the MBA for multi-roots where γ ∈ [0;−1] to search the root of the
function Ψ (γ) that is defined on (24). Under the Know parameter γ ∈ [0;−1]. Else if γ > 0 we estimated it via using
the MBA for multi-roots to determine the root of the function Ψ (θ ) for θ =−(1/γ) where

Ψ (γ) =
n

∑
i=1

[log
(

1− xi

θσ

)
−
(

1− 1

θ

)(
1−
(

1− xi

θσ

)−1
)
+(1− ζi)

(
log
(

1− xi

θσ

)
+
(

1− xi

θσ

)−1

− 1

)
] (40)

Consequently, γ̂SRS =−
(

1/θ̂
)
.
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2.For estimate the scale parameter. If σ > 0 for γ > 0 and if σ ≥ −γxn,n where xn,n = max(xi) with for all i = 1, . . . ,n
for γ ∈ ]0;−1]. We use the MBA for multi-roots on [ε;σu] for search the root of the function Ψ (σ) which define by

Ψ (σ) =
n

∑
i=1

[
−1+

(
1+

1

|γ|

)(
1−
(

1+
|γ|
σ

xi

)−1
)
+

1− ζi

|γ|

(
1−
(

1+
|γ|
σ

xi

)−1
)]

(41)

where σu =
(

1+ |γ|+ n− n× ζ
)

x.. And ε = 10−8/x.

3.For estimating the transmuted parameter. We use the MBA for multi-roots on [0;1] For search the root of Ψ (λ ) which
is defined on (26).

We will use this practical method to estimate the parameters (γ,σ ,λ ) of TGPD in this example. It is used when two
parameters are known from (γ,σ ,λ ) to each function. Hence, when we applied this numerical method, we may find
several roots for a function. However, it is possible to separate them by taking the parameters that have the maximum
log-likelihood function, which is given in (20) for γ 6= 0 and (21) for γ = 0. The functions are (24) or (40) for γ , (41) for
σ and (26) for λ .

Random samples of size n = 15 of the random variable follow the new generalized Pareto distribution (TGPD) with
parameters (γ,σ ,λ ). These parameters are γ =−0.7, σ = 2, and λ = 0.9. Before we generate a random sample following
the uniform distribution for size n = 15 with the R Core Team software as

1.pi = runi f (15)
2.Define the queue as qi = 1− pi

3.Generating random samples of size n = 15 from the TGPD by the method of inversion using the quantiles as we given
in (13) by

xqi
=

σ

γ







−
√

4λ qi +(1−λ )2 − (1−λ )

2λ




−γ

− 1




A simulation study is performed using the TGPD. We generate a sample Xi of size 15 following the TGPD with
parameters γ =−0.7, σ = 2 and λ = 0.9. The 15 values are listed in increasing order in the following table(1):

0.447 0.507 0.507 0.517 0.651

0.833 0.983 1.100 1.166 1.179

1.292 1.408 1.695 2.054 2.385

Table 1: X-sample of 15 size generated with the TGPD parameters γ =−0.7, σ = 2 and λ = 0.9

We use our practical method given before for the MLE of TGPD. We find that the shape parameter is γ = −0.7,
the scale parameter is σ = 2 and the transmuted parameter is λ = 0.9. We calculate the bounds σu = 16.5 and ε =
1.114933×10−8, to apply MBA for multi-roots to determine the root of Ψ (γ) which is defined in (24) for γ ∈ [0;−1] and
the root of the function Ψ (σ) given in (41) on [ε;σu] and the root of Ψ (λ ) which is defined in (26) for λ ∈ [0;1]. We find

γ̂SRS =−0.7238293, σ̂SRS = 1.915073 and λ̂SRS = 0.88865.

3.2 Example2

Here, we apply the transmuted extreme value model with the transmuted Peak-Over-Threshold (TPOT) model which is
supported by the theorem (1) that explained the relationship (16). Also, based on the GPD in (1) and the TGPD in (12) we
find that they have the same parameters γ and σ . Then we can estimate γ and σ parameters of the TGPD through the MLE
for the GPD parameters given in (1) with the algorithm given by Kouider et al [13] (2023) under full data. And to estimate
the transmuted parameter, we reach the zero of (26) by the MBA on [0;1]. Obviously, we can formulate the function (26)
as follows:

Ψ
(

λ̂ ML
)
=

n

∑
i=1

((
1− 2Gγ̂ML,σ̂ ML (xi)

)(
1+λ − 2λ Gγ̂ML,σ̂ ML (xi)

)−1
)
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0.011 0.030 0.051 0.056 0.092

0.100 0.140 0.184 0.200 0.2860

0.338 0.365 0.518 0.561 0.876

Table 2: Set of 15 Nylon Carpet Fibers (in kg/mm2)

where γML and σML and λ ML are the maximum likelihood (ML) estimators of γ and σ and λ , respectively. We fit a data
set presented by [10] using our proposed TGPD model. Data were collected from ensile strength testing for a random
value that exceeds the threshold of 15 nylon carpet fibers. The data set is listed in increasing order in Table (2):.

In his study, he found that the estimators of the GPD parameters by the MLE method were γ̂ML = −0.1176979 and

σ̂ML = 0.283040. Noted that the SRS method with one set is the same as the MLE method and (γ̂ML, σ̂ML, λ̂ ML)

becomes (γ̂SRS, σ̂SRS, λ̂ SRS). Then, we use a practical method given before for the MLE of TGPD to estimate the
transmuted parameter. We will find this by determining the root of Ψ (λ ) defined in (26) via MBA for multi-roots in

[0;1]. Then we get λ̂ ML = 0.05885239. And the TGPD maximum likelihood estimates for the data of 15 nylon carpet

fibers are γ̂ML =−0.1176979 and σ̂ML = 0.283040 and λ̂ ML = 0.05885239. The P-P interaction graph of C-sample with

TGPD
(

γ̂ML, σ̂ML, λ̂ ML
)

and their histogram are shown in the following figures, respectively.

Fig. 1: P-P plot of 15 Nylon Carpet Fibers (in kg/mm2) with TGPD
(

γ̂ML, σ̂ML, λ̂ ML
)

Fig. 2: Histogram of 15 Nylon Carpet Fibers (in kg/mm2) with TGPD
(

γ̂ML, σ̂ML, λ̂ ML
)
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Therefore, we can find some samples that follow the GPD parameters given in (1) which, in fact, follow the TGPD
parameters defined in (12). And to determine the value of λ , we search the root of Ψ (λ ) given in (26) which has a

maximum logℓ
(

xi; γ̂ML, σ̂ML, λ̂ ML
)

. Since if λ = 0 the TGPD becomes GPD.

3.3 Example3

We apply MLE using RSS to estimate the TGPD parameters given in (12). The tables from (3) to (5) show the estimator,
the mean square error (MSE), and the bias for unknown parameters of TGPD using values γ =−0.7, σ = 2 and λ = 0.9.
based on SRS and RSS techniques using the ML method with 1000 replications.

SRS RSS

n γ̂SRS σ̂SRS λ̂SRS γ̂RSS σ̂RSS λ̂RSS

50 −0.6562 1.7378 0.6870 −0.7163 1.8757 0.6921

100 −0.6720 1.7530 0.6858 −0.6713 1.9155 0.6590

150 −0.6980 1.7551 0.7089 −0.6680 1.9138 0.6561

200 −0.6925 1.7346 0.7003 −0.7480 1.9726 0.7121

Table 3: The estimators of TGPD parameters via MLE and MLE with RSS techniques.

SRS RSS

n γ̂SRS σ̂SRS λ̂SRS γ̂RSS σ̂RSS λ̂RSS

50 0.0178 0.0236 0.0863 0.0058 0.0035 0.0531

100 0.0053 0.0124 0.0661 0.0022 0.0019 0.0577

150 0.0026 0.0074 0.0588 0.0021 0.0010 0.0583

200 0.0020 0.0037 0.0227 0.0008 0.0026 0.0210

Table 4: MSEs of the SRS and RSS techniques generated with the TGPD parameters.

SRS RSS

n γ̂SRS σ̂SRS λ̂SRS γ̂RSS σ̂RSS λ̂RSS

50 −0.0437 0.2621 0.2129 0.0163 0.1242 0.2078

100 −0.0279 0.2469 0.2141 −0.0286 0.0844 0.2409

150 −0.0019 0.2448 0.1910 −0.0319 0.0861 0.2438

200 −0.0074 0.2654 0.1996 0.0480 0.1878 0.0273

Table 5: Biases for SRS and RSS techniques for the TGPD parameters.

From tables (3) to (5) it can be seen that

1.The biases are very small in all cases.
2.The values of all estimators are very close to the true values of the parameters.
3.Estimators using RSS have lower MSEs than those using SRS.
4.The RSS produces results that are very close to the true values of the parameters with very small biases, and it

outperforms the SRS.
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4 Conclusion

In this paper, we introduce the GPD with three parameters called the TGPD parameters, which are given in (12) by taking
the GPD given in (1) as the base distribution in the QRTM approach. The MLE are getting the most attention in this article.
Therefore, we give the likelihood approach of the transmuted condition distribution function to the MLE of the TGPD
parameters to estimate the TGEV parameters, which are presented in (17). Moreover, we define the MLE of the TGPD
parameters on the basis of SRS and RSS techniques. Then, we presented a practical method to estimate the unknown
parameters of the TGPD. We will explain as follows: For the estimate γ , we solve equations (24) with γ ∈ [0;−1] or
(40) with γ > 0 such that σ and λ are known. And to estimate σ we solve the equation (41) with γ and λ to be known,
and finally, to estimate λ we solve the equation (26) and σ and γ must be known, and this is what we worked on in
example1. Otherwise, if γ and σ and λ are not previously known, we work with the methods that were used in Example2
or Example3. The goal of presenting these methods is to provide the maximum-likelihood estimator of the transmuted
parameter. Moreover, we can use the MLE method that we presented with the SRS and RSS techniques to prove an
estimator of GPD parameters given in (1) which we can find if λ = 0. Finally, we expect this work to serve as a reference
and help advance future research in this field.

5 Appendix

First, we have the first derivative of the log-likelihood from (20) for γ 6= 0 is given by:

∂ logℓ(xi;γ,σ ,λ )

∂γ
=

n

∑
i=1


−

∂
(

1
γ + 1

)
log
(
1+ γxi

σ

)

∂γ
+

∂ log

(
1−λ + 2λ

(
1+ γxi

σ

)−1
γ

)

∂γ


 (42)

Then, we get

−
∂
(

1
γ + 1

)
log
(
1+ γ

σ x
)

∂γ
=

1

γ2

(
log
(

1+
γ

σ
x
)
− (1+ γ)

γ
σ x

1+ γ
σ x

)
(43)

Since we get that (
1+

γ

σ
x
)−1/γ

= exp

(−1

γ
log
(

1+
γ

σ
x
))

and we derive the previous formula with respect to γ , we have

∂
(
1+ γ

σ x
)−1/γ

∂γ
=

1

γ2

(
log
(

1+
γ

σ
x
)
−

γ
σ x

1+ γ
σ x

)(
1+

γ

σ
x
)−1/γ

Then, we find

∂ log
(

1−λ + 2λ
(
1+ γ

σ x
)−1/γ

)

∂γ
=

1
γ2 2λ

(
1+ γ

σ x
)−1/γ

(
log
(
1+ γ

σ x
)
−

γ
σ x

1+
γ
σ x

)

1−λ + 2λ
(
1+ γ

σ x
)−1/γ

(44)

We consider

ζ (x) =
1−λ

1−λ + 2λ
(
1+ γ

σ x
)−1/γ

Equation (44) can be formulated in the form

∂ log
(

1−λ + 2λ
(
1+ γ

σ x
)−1/γ

)

∂γ
=

1

γ2
(1− ζ (x))

(
log
(

1+
γ

σ
x

)
−

γ
σ x

1+ γ
σ x

)
(45)

By adding the two equations (43) and (45) to Eq (42) we obtain the following.

∂ logℓ(xi;γ,σ ,λ )

∂γ
=

1

γ2

n

∑
i=1

[
log
(

1+
γxi

σ

)
− (1+ γ)

γ
σ xi

1+ γ
σ xi

+
1

γ2
(1− ζi)

(
log
(

1+
γ

σ
xi

)
−

γ
σ xi

1+ γ
σ xi

)]
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with ζi = ζ (xi). Finally for take γ̂SRS the estimator of γ via search the solution of the following equation

n

∑
i=1

[
log
(

1+
γ

σ
xi

)
− (1+ γ)

γ
σ xi

1+ γ
σ xi

+
1

γ2
(1− ζi)

(
log
(

1+
γ

σ
xi

)
−

γ
σ xi

1+ γ
σ xi

)]
= 0.

We use the same mathematical operations to arrive at the remaining equations in (22), which represent the basic

equations to obtain the estimators of the parameters σand λ which are denoted by σ̂SRS and λ̂SRS respectively.

5.1 Proof of Theorem(2)

The proofs of (1) and (2) are unpretentious. The proof of (3) follows by noticing that the Cauchy-Schwarz inequality is
written:

n

∑
i=1

(1− ζi)

(
1− 1

1+ γ
σ xi

)
≤
(

n

∑
i=1

(1− ζi)
2

)1/2



n

∑
i=1

(
1− 1

1+ γ
σ xi

)2



1/2

Since
(

1−
(
1+ γ

σ xi

)−1
)
> 0 where σ is a positive value for γ ≥−1 and 0 ≤ ζi ≤ 1. Then, we have

(
n

∑
i=1

(1− ζi)
2

)1/2



n

∑
i=1

(
1− 1

1+ γ
σ xi

)2



1/2

≤
n

∑
i=1

(1− ζi)
n

∑
i=1

(
1− 1

1+ γ
σ xi

)

Noticing that, for γ > 0, we get

n

∑
i=1

(1− ζi)

γ

(
1− 1

1+ γ
σ xi

)
≤ 1

γ

n

∑
i=1

(1− ζi)
n

∑
i=1

(
1− 1

1+ γ
σ xi

)

Then we can find that

n

∑
i=1

[
−1+

(
1+

1

γ

)(
1− 1

1+ γ
σ xi

)
+

(1− ζi)

γ

(
1− 1

1+ γ
σ xi

)]

≤
n

∑
i=1

[
−1+

(
1+

1+ γ + k− kζ

γ

)(
1− 1

1+ γ
σ xi

)]

Under Titu’s inequality, we find

n2

n

∑
i=1

(
1+ γ

σ xi

) ≤
n

∑
i=1

(
1

1+ γ
σ xi

)

It follows that

1

n

n

∑
i=1

(
1− 1

1+ γ
σ xi

)
≤ 1− n

n

∑
i=1

(
1+ γ

σ xi

) = 1− 1

1+ γ
σ x

Then we find the following.

1

n

n

∑
i=1

[
−1+

(
1+

1

γ

)(
1− 1

1+ γ
σ xi

)
+

(1− ζi)

γ

(
1− 1

1+ γ
σ xi

)]

≤ −1+

(
1+

1+ γ + n− n× ζ

γ

)(
1− 1

1+ γ
σ x

)

Next, we put

Ψ̃ (σ) =−1+

(
1+

1+ γ + n− n× ζ

γ

)(
1− 1

1+ γ
σ x

)
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where ζ = 1
n

n

∑
i=1

ζi for ζi = (1−λ )
(

1−λ + 2λ
(
1+ γ

σ xi

)−1/γ
)−1

with i = 1, . . . ,n and x = 1
n

n

∑
i=1

xi. Therefore we have

Ψ (σ) ≤ kΨ̃ (σ). It follows that if Ψ̃ (σ) ≤ 0 implies Ψ (σ) ≤ 0. For Ψ̃ (σ) ≤ 0 for all σ ≥ σu. Also for all σ ≥ σu,
Ψ (σ)≤ 0. Then we get γ > 0 and σ > 0

1

1+ γ
σ x

≥ 1− γ

1+ 2γ + n− n× ζ

Since γ < 2γ , it’s easy to verify that
(

1− γ

1+2γ+n−n×ζ

)
∈ [0;1]. Hence,

γ

σ
x ≤ 1+ 2γ + n− n× ζ

1+ γ + n− n× ζ
− 1

Then we find
γ

σ
x ≤ γ

1+ γ + n− n× ζ

Since for σ > 0 and γ > 0 we will find

σ ≥
(

1+ γ + n− n× ζ
)

x.

then we have σu =
(

1+ γ + n− n× ζ
)

x. On the other side, if -1≤ γ < 0 is negative, we can take γ as absolute value |γ|

and σu will still be correct as σu =
(

1+ |γ|+ n− n× ζ
)

x.

Next, we were provided mathematical formulations of the TGPD and also some of its properties, such as the reliability
function, the hazard rate function, the statistical properties, specifically moments and moment-generating.

5.2 Reliability analysis

The TGPD can be a useful characterization of lifetime data analysis. The reliability function of the TGPD is denoted by
RT GPD also known as the survivor function and is defined for γ ∈ R as:

RTGPD (x;(γ,σ ,λ )) = 1−Fγ,σ ,λ (x) . (46)

It is important to note that RTGPD (x;(γ,σ ,λ )) +Fγ,σ ,λ (x) = 1. One of the characteristic in reliability analysis is the
Hazard Rate Function (HRF) defined with γ ∈ R by

h
TGPD

(x;(γ,σ ,λ )) =
fγ,σ ,λ (x)

RT GPD (x;(γ,σ ,λ ))
(47)

The cumulative hazard rate function based on

H
T GPD

(x;(γ,σ ,λ )) =

x∫

0

h
TGPD

(t;(γ,σ ,λ ))dt

and substituting equation (47) into the previous equation yields

H
T GPD

(x;(γ,σ ,λ )) =− ln
(
1−Fγ,σ ,λ (x)

)
(48)

5.3 Statistical properties

We discuss the statistical properties of the TGPD, specifically the quantile function, median, moments, and moment
generating function.
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5.3.1 Moments

The rth moment of a random variable X of the TGPD for γ 6= 0 can be obtained from the following theorem:

Theorem 3.The rth moment of a random variable X follows the TGPD is given by

E (X r) =

(
σ

γ

)r r

∑
j=0

(−1) j
C j

r

[(
1

( j− r)× γ + 1

)(−(λ + 1)( j− r)× γ − 2

( j− r)× γ + 2

)]
(49)

where γ 6= 0.

Proof.The rth moment of a random variable X of the TGPD for γ 6= 0 can be obtained from

E (X r) :=

1∫

0

xr fγ,σ ,λ (x)dx (50)

Then, substituting pdf of TGPD for γ 6= 0 from (11) into (50) yields

E (X r) :=

1∫

0

xr 1

σ

(
1+

γ

σ
x
)−1/γ−1

(
1−λ + 2λ

(
1+

γ

σ
x
)−1/γ

)
dx (51)

Setting u =
(
1+ γ

σ x
)−1/γ

. Then x = σ
γ (u−γ − 1) and dx =−σu−γ−1du. Substituting this to (51) yields then

E (X r) :=

(
σ

γ

)r 1∫

0

(
u−γ − 1

)r
(2λ (1− u)− 1−λ )du

Using the binomial theorem yield

(
u−γ − 1

)r
=

r

∑
j=0

C j
r (−1) j

u( j−r)×γ

Then

E (X r) =

(
σ

γ

)r r

∑
j=0

(−1) j
C j

r


2λ

1∫

0

u( j−r)×γ (1− u)du− (1+λ )

1∫

0

u( j−r)×γdu




Thus it’s easy to checked that

E (X r) =

(
σ

γ

)r r

∑
j=0

(−1) j
C j

r

[(
1

( j− r)× γ + 1

)(−(λ + 1)( j− r)× γ − 2

( j− r)× γ + 2

)]

The end of proof

For γ 6= 0 with r = 1,.(49) gives

E (X) =
σ

1− γ

(
λ γ

(2− γ)
+ 1

)
(52)

Setting r = 2 with γ 6= 0, then (49) gives

E
(
X2
)
=

(
σ

γ

)2( γλ + 2γ2

(2γ − 1)(1− γ)

)
(53)
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Variance Let X be a random variable that follows the TGPD of (12) and (11) with γ 6= 0. Using (52) and (53), the variance
is given as follows:

Var (X) = E
(
X2
)
− (E (X))2 =

(
σ

1− γ

)2
[
(λ + 2γ)(1− γ)

γ (2γ − 1)
−
(

λ γ

2− γ
− 1

)2
]

(54)

Remark.If λ = 0 with γ 6= 0, we have

1.E (X) = σ
1−γ .

2.E
(
X2
)
=
(

σ
1−γ

)2
2(1−γ)
2γ−1

.

3.Var (X) =
(

σ
1−γ

)2
1

2γ−1

5.3.2 The Moment Generating Function

The moment generating function of the TGPD where γ 6= 0 is obtained in the following theorem:

Theorem 4.The moment generating function of the random variable X which has the pdf of the TGPD for from (12) is

given by

Mx (t) =
∞

∑
r=0

tr

r!
E (X r) (55)

Proof.Clearly, from the following fact

Mx (t) = E (exp(Xt))

Using the expansion of exp(Xt) yields

Mx (t) =
∞

∑
r=0

(Xt)r

r!

Then

Mx (t) =
∞

∑
r=0

tr

r!
E (X r)
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