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Abstract: Bi-univalent functions, which are analytic and univalent in the open unit disk, have been a significant area of research in
complex analysis due to their rich geometric properties. This study introduces a novel subclass of bi-univalent functions, called the
Bazilevi¢ functions class, which is created via the convolution of Balancing polynomials. We calculated the bounds for the Fekete-
Szegd inequality as well as the initial coefficients |as| and |az|. We have also included several relevant corollaries.
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1 Introduction and preliminaries

A function that is complex-valued and depends on one or more complex variables is considered analytic if it is
differentiable at every point within its domain. Any such analytic function that is normalized can be represented as a
series in the form

f(z):z—i—Za[Zl. (1)
=2

This series is in the complex variable z and converges within the set % = {z:z € C,|z| < 1}. The set &7 is composed of
all such functions. Indicate by . the subclass of .o/ consisting of univalent functions.
Let c be a Schwarz function defined as

¢) = le (c(0) =0, |e(d)] < 1).

Consider two functions, | and f,, which are part of the class .o7. We say that £ is subordinate to £, if there exists a
function c(z) that is analytic in %, and makes £(z) = £2(c(z)) hold true. This relationship is denoted as £ (z) < £2(z).
Here, it is known that for the Schwarz function c, the coefficient inequality |c,| < 1 holds [8], and specifically, we have

il <1, eal S1—ler? (meN\{1}).

Comprehensive information on the subordination concept is available in monographs authored by Miller and Mocanu
[18].
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The Hadamard product of £(z) and k(z), where k(z) is an element of the set <7 and
k(z) =z+ Y k2
=2

is expressed by

=

(£xk)(z) =z+ ) akiZ.
=2
Consider f as a function in .. The function £ (z) is classified as bi-univalent if its inverse, denoted by £ ~*(w), extends
analytically to |w| < 1 within the w-plane. That is, according to the Koebe-One Quarter Theorem [8], it provides that the
image of % under every univalent function f € <7 contains a disc of radius 1/4. Thus, clearly, every such univalent
function £ € & has an inverse £ ! satisfying £ ! (£ (z)) = zand £ (£ =1 (w)) =w (Jw| <ro(f), ro(£) > 1), where

£ w)y=w —aw? + (2a%—a3) w— (5a§—5a2a3+a4) wha ...,

We use o to represent the collection of all such bi-univalent functions present in %/. Here, we present several examples
of functions belonging to the class ¢ which have greatly renewed interest in the study of bi-univalent functions:

Z 1 1+z
£(z) = 7, &) =—log(l —z), h(z)=7log
1—z 2 1—z
with their respective inverses
0 = gt = Sl hin = )
W)= —— w) = w)=—5—.
1+w’ & eV’ 2w+ 1

The concept was first introduced by Lewin [17] in 1967, who also provided an estimate for the second coefficient of
these functions, stating that |ay| < 1.51. This estimation was later refined by Brannan and Clunie [5], who proposed that
las| < V2. Over the years, the initial coefficients of bi-univalent functions have been extensively studied and estimated,
contributing to a rich body of literature on the subject. Not much is known about the bounds on the general coefficient |a,
for n > 4. In the literature, there are only limited works determining the general coefficient bounds. Hence, the coefficient
estimate problem for each of the coefficients |a,| (n € N\ {1,2}; N={1,2,3,---}) is still an open problem.

Table 1: Summary of findings on coefficients a, for functions in X.

Researchers Findings Estimates

Lewin 1967 For all functions in X lap| < 1,51 [17]

Brannan and Clunie 1980 For all functions in X laz| < V2 [5]

Netanyahu 1969 Proven maximum for |a;| maks|ay| = % [19]

Tan 1984 The best estimate for |a;| lap| < 1,485 [29]

Various researchers Estimates for Maclaurin coefficients |ay| and |as] See [16,24,26,27,28,31,32,33,34,35]
Open Problem Estimating the coefficient |ay| Unresolved [2,6,12,25]

These studies not only enrich the theoretical foundation of complex analysis but also have practical implications in
solving problems related to differential equations, approximation theory, and other applied mathematical disciplines.

The process of determining precise bounds for |a3 — Ka%| within any compact function family is referred to as the
Fekete-Szego problem. Specifically, when x = 1, the function represents the Schwarzian derivative. The Schwarzian
derivative plays a significant role in the theory of geometric functions [9].

The literature is rich with various integer number sequences, including well-known ones like Fibonacci, Lucas, Pell,
and more. Recently, a new sequence known as Balancing numbers was introduced by Behera and Panda [4]. Over the past
quarter-century, this sequence has been extensively studied, revealing many of its unique properties. Research has been
conducted, and generalizations have certainly been made. For those interested in delving deeper into Balancing numbers,
comprehensive information can be found in the references [7,10,11,13,14,15,20,21,22].

An interesting extension of Balancing numbers is the concept of Balancing polynomials. These polynomials, defined
and explored in [23], represent a natural progression from Balancing numbers and exhibit some fascinating characteristics.
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Definition 1.The Balancing polynomials, for any x in the complex plane C, are expressed by the recurrence relation:
B (x) = 6xBy—1(x) — Br—2(x).

Here, y(x) = 0 and P (x) = 1 serve as the initial conditions.

Similar to other number polynomials, Balancing polynomials can also be derived from certain generating functions. Here
is one such example:

Lemma 1([3]). The ordinary generating function for Balancing polynomials is expressed as follows:

o z
= %, n— _ .
n;) (x)2 1 — 6%z + 72

This paper contributes to the understanding of Balancing polynomials by offering insights into their structural
properties and their implications across various values of x in the complex plane. We establish a novel class
BN, (£ +k) and compute bounds for the initial coefficients |az| and |az| for functions belonging to this newly defined
class Addltlonally, we explore the Fekete-Szego inequality, enhancing our comprehension of the analytic properties and
bounds of Balancing polynomials and their applications in mathematical analysis.

2 Coefficient Bounds For The Function Class B, ,(f k)

In this section, we establish a novel class B9, ,, (£ +k), and calculate the bounds for the initial coefficients |az| and |as|
for functions that belong to BIM, (£ * k).

Definition 2.Assume £,k € o, p € C\ {0}, and v > 0. A function (£ xk)(z) € © is said to belong to the class BMY, (£ *k)
if it satisfies the following conditions:

(- u)((f*?@) +ll(z(f*k)’(z))((f*k)(z)) DT B o

(£ xk)(z) z z

and

(1) ((f *kZV_I(W)> o <w((f*k)__1(w))'> <(f *k)_l(w)> - B(x,w) (). 3)

(fxk)~L(w) w w

Example 1.We show that the class BN, (£ * k)) is non-empty. We consider the function
as
f(z):erZz , ZEU,

where

V(6] /[65]

kol /36520 +20) (0 + 1)~ 2(36x2 — 1)+ )|

a =

By some simple calculation, we can obtain its inverse as follows

2(=14+V1+aw)

a

£ w) = WEX.

For x = %, p=0,v=1andk(z) = 1 , we see that (f*k>< ) < I( ,7) and w =< I(%,w). Figures 1 and 2 show that
the transformation of %/ under £(z) and £~!(w), respectlvely.
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Re

Re

Fig. 2: The transformation of %/ under £~!(w).

Remark.(i) For v = 1, we define the new class BN, | (£ xk) consisting of functions (£ xk)(z) € o that satisfy

(1 (%) Q) <12 (€ )

and

* _lw
(1—u)(%)ﬂt((f*k)‘l(ww<I(X7W) (we).

(ii) For u =1, we get the new class B.Z[, (£ * k) as follows:

(502 [ Ex0) @)\
<(f*k)(z)>< ; ) <I(x,2) (z€¥%)
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and

<w((f *k)l(W))’> <(f*k)l(W)>v<I(x w) (we).

(£xk)~!(w)
(iii) For = 1 and v = 1, the new class BINT | (£ x k) is defined as follows:

(£xk)'(z) <U(x,2) (z€%)
and
(£xk) (W) <I(x,w) (weZ).
(iv) For = 1 and v = 0, the new class BINT (£ xk) is defined as follows:

Z(fxk)'(2)

00 <I(x,2) (z€%)

and
w((£*k) "' (w))’

(£8) 1) <I(zx,w) (we).

Remark.(v) We define the new class BN, ,, (£ x 1% ) as follows:

<1—u>(@> +u<f;§)><@> <Ix2) (e?)
“L(y ? w(E T (w)) Ly ?
(1u)<f7()> +u< (ffl((w)))><f W( )> <Uxw) (wew).

(vi) For v =1, the new class B, | (£ * 1% ) is defined as follows:

and

(1—p) (@) +ut'(z) <1(x,2) (z€%)

and

-1
<1u><f7(w)>+u<f'<w>>’<l<x,w> (wew).

(vii) For p =1 and v = 1, the new class BN | (£ * 1<) is defined as follows:

'(z) <1(x,2) (z€)

and
') <1(x,w) (we#).

(viii) For p =1 and v = 0, the new class BN (£ = %) is defined as follows:

-z

z£'(2)
e <1(x,z) (ze%)
and .
% <I(x,w) (we).

This class was introduced and studied by Aktas and Karaman [1].
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Theorem 1.Assume that £, as defined in (1), belongs to the class %fmﬁ)v (f #k). Then

|az| < V2[6x] /16|
il /36520 + 20) (0 + 1) —2(36x2 — 1)+ V)|

and

s < 1 <‘ 6x ‘+‘ 36x2 D
a r— .
= ksl o+ 2u ! T n+v)2

ProofIf (£ xk) € B, ,, (£ k), then from (2) and (3), there exist Schwarz functions /(z) and m(w), mapping % to %,

such that Y Y
(£ xk)(z) 2(£+k)'(2) | [ (Exk)(z) | _
(1!1)(#) +#< 1)) )( . ) =1(x,1(z))

07 w)\ L (w(E ) )\ [(Ex) T w) )
o) ) ()

The functions /(z) and m(w) are defined as follows:

and

I(z) =iz + b+ 52+

and
m(w) = myw~+mow? + mzw® + - - .

These functions are analytic within %, with /(0)=0 and m(0) = 0. Additionally, the absolute values of /(z) and m(w) are
less than 1 for all z,w € % . It is important to note that if the following conditions are met:

@) = |hz+bZ+5B2+-| <1 (z€)

and
Im(w)| = |mw+mow? +mzw® +---| <1 (we %),

then, the absolute values of the coefficients /; and m; (fort = 1,2,3,...) are less than or equal to 1 [8]:

|ll|§1; |ml|§1 (t:172737)

v v
(1—p) <(f*1;)(2)> +u <Z(g:1138) ) <(f*1;)(1)>

=1+ (v+u)arkorz+ ((v +2u)azks + (mzﬂigﬁ’—”)a%kg)zz T

Ex0)7 w) ) (w(E) " )\ [(ExR) T w) )
(1—;1)( w >+“< (f*k)_l(w) )( w )

=1—(v+ u)akow+ ((v +21)(2a3%5 — azks) + <%>a%k%>w2 +oe

Since

and

or, equivalently

(UL)(@) » <Z((f*k)(z))’> <(f*k)(2)> Bzt (Brn s Bra)fE) b

(f*k)(2) z
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and
07 )\ (et ) ((ExB) 700 ) 2 2
(I—p) EE— +u W(f*k),l(v:v) " =B\ (x)mw+ (B (x)my + Bo(x)mi) w” + -+,
we get following equations
(’U+[J)(12k2 = r@Q(X)ll, 4)
v+2u)(v—1
(V+2u)azks + %a%kg =B (x)h+ B3 (x)I7, )
7(’0 -+ .u)azkz =%, (X)m (6)
e (v +2m) (1)
v+ L —
(0 +21)(2d5K3 — azks) + +a%k% = B (x)ma + B3 (x)m? (7)
By adding equations (4) and (6), we obtain the following result
l| = —mq. (8)
Additionally, squaring and adding (4) and (6), we derive
2(p+v)*K303 = 5 (x)(IF +mf). ©)
The addition of (5) and (7) yields
(v+2u)(v+ 1)a3k3 = B (x) (I +ma) + B3 (x) (17 +m?).
From these equations, we can deduce
(25 (x)(v+2p) (v +1) —2%B5(x) (U +v)?] a3k3 = B3 (x) (L +mp). (10)
A minor computation leads to the following upper bound for |a;|:
ol < V2B ()2 |
i/ |23 () (0 -+ 2) (0 4+ 1) — 285 () (1 + v)2|
To find the bound for |as|, we subtract equation (7) from (5), resulting in
2a3k3 (0 +24) — 2(0 + 2 Jazks = B (x) (I — m2) + B3 (x) (IF —m7). (11)

By substituting equations (8) and (9) into (11), we obtain

Bo(x)(l —ma) | F3(x)(If +m3)

k:
BET 2w 2p) 21+ v)?

After applying the value of %,(x) and taking the modulus, we get the desired bound for |a3:

a3 < 1 (‘ 6x ‘+} 36x2 >
a —_— .
= Tkl o+ 2u ! [ (utv)2

Corollary 1.If £, given by (1), is in BN, | (f k), then

|6x|+/|6%]

= el /1362 — DRZ — 2r 1 1)

1 6x 36x2
las| < — + ( .

|laz| <

and

les| \[1+2p]  [(1+n)?
©2025YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



388 Gunasekar Saravanan : Bi-univalent characteristics for a particular class of Bazilevi¢ functions ...

Corollary 2.If £, given by (1), is in BN (£ k), then

|6x]+/]6%]

T ko|/](18x2 — 1)v2 + (9x2 — 1)2v — 1]

a5 < 1 ‘ 6x Jr‘ 36x2 ‘
a —_— .
= Tks] Uv+21 T 1+ 0)2

Corollary 3.If £, given by (1), is in B | (£ k), then

laz| <

and

|3x|\/|6x

lan] < —XVIOH
kaly/I9x7 -

and

las| < —— (2|X| +90x%) .

[1e3]
Corollary 4.If £, given by (1), is in B (£ xk), then

laz] < < (|6x|\/|6—x)

and

laz] < — (3|X|+36|x |)

|k |
<), then

Corollary 5.If £, given by (1), is in BN, (£ *

|6x|\/|6x|

o/ B6x2(v+ 2 v+ 1) —2(36x2 — 1) (u+ v

laz| <

and

CDI DllaI) 6'1ff’ giléll ky (1)) i‘s i‘l %S[ t“’l (f [77)’ inen

|6x]+/]6%]

laz| <

~ VI(36x2 - 2 — (2u +1)]
and

| |<‘ 6x N 36x>

a

=T 2u| T (T p)?

Corollary 7.If £, given by (1), is in BN (£ * 1=, then

6X|\/|6X

laz] < V1082 —1)v2+ (92— 1)20— 1|

and

36x2 ‘

|a3|_‘v+2‘+‘ 1+v

Corollary 8.If £, given by (1), is in BN (£ * 1=), then

|az| < [6x]v/]6x]

and
las| < 3|x| +36|x7|.
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3 Fekete-Szego Inequalities For The Function Class B9, (£ k)

In this section, we will be determining the Fekete-Szego inequality, denoted as |az —
belong to the class BN, ,, (£ xk).

Theorem 2.If the function £, as defined in (1), belongs to the class B, ,, (f xk), then the following inequality holds

6% 1
2 5| 91,0, %,%)| < s
|a3_Ka2| < )
[12x¥ (1, v, k,x)|, [¥(1,0,k,x)| > m
where
36x2 ( K)
¥(u,v,k;x) =

k3 (36x2(v +2u)(v+1)—2(36x2— 1) (1 +v)?)
Proof.For k € R, it follows from (8) and (11) that

1 &) —m) (kj 3 K) 2

2
— ka3 = :
BT (v 2p) k3 “

By using (10) in the above equality, we obtain

lh—my (k_% B K') %%(X)(lz +m2) ]
2k3(v+24)  \ks k5(%3 (x) (v +2u) (1 + 1) = 2853(x) (1 +v)?)

= % (x) Km +‘I’(u,v,k;x)) L+ (m +‘I’(u,v,k;x)) mz} ;

as — ka3 = %’2()[

where
P (1,0, 1) (8- %) k)
T K (B )(v+2p)(v+1) = 2%5(x) (k+v)?)
Therefore, we have
6x 1
) V12U ‘ ) |III(IJ'5 U,k,X)| < 2|k3(v+2u)|
las — ka;y| <

Corollary 9.If £, given by (1), is in B, | (£ xk) and k € R. Then

6x . 1
i ‘qu v ¥ (1, 1 )| < i)
laz — ka;| < )
1229 (1, 1k, x)], [P (0, 1 K5%)| 2 gty
where
36x2 ( K)
'P(.uvlvk;x) =

k3 (36x2(1 +2p) (v + 1 ) —2(36x2 — 1)( + 1)2)’
Corollary 10.If £, given by (1), is in BIN (£ xk) and k € R, then

5 06—}}—{2 5 |lI/(1 U k X)| m
|as — ka3 | < ,
[12x%(1,0,k,%)], [¥(1,0.5,%)| > gq7a;

where
36x2 ( K‘)
K3 (36x2(v+2)(v+1)—2(36x2—1)(1+v)?)

Y(1,v,k;x) =

©2025 YU
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Corollary 11.If £, given by (1), is in B} | (f xk) and K €R, then

2 x|, |‘P(1,1,k,x)|§®
|a3fKa%|§ ,
[12x%(1, 1k, %), [P(1, Lk, %)| > gy
where
2
_ 9x2(t—§ K)
) ak; = -
(L1 kx) = 2l —om)

Corollary 12.If £, given by (1), is in BN ,(f * k) and K € R, then

3%/, [¥(1,0,k,x)| < ﬁ
laz — ka3 < ,
[12x¥(1,0,k,%)], [¥(1,0,k,%)| > g5
where
20k
18x (k—2 - K)
¥(1,0,kx) = ——2
k3
Corollary 13.If £, given by (1), is in B, ,, (£ * 1= ) and K € R, then
o ¥ (1, 0,%)] < gt
5 v+2u | » D = 2[v+2pu]
az — Ka;| < ,
120 (1, 0.%)], [9(1,0,%)] > o
where
36x*(1—x
¥ (u,v3x) = iUl

- 36x2(v+2u)(v+1) —2(36x2— 1) (u+ )2

Corollary 14.If £, given by (1), is in %Sm’;u (fx7%=) and K € R, then

[

6x 1
2 ‘ 1+2u | |ql(l~l'a laX)| < T+2u]
az — Kajz| < :
12 (1, 1), (11 3)| >
where
36x2(1— K
W (1 x) = *(1-%)

T 36x2(1+2u) (v + 1) —2(36x2 — 1) (u+1)%

Corollary 15.If £, given by (1), is in BT (£ * ;%) and k €R, then

6x 1
v+2 17 |IP(1705X)| < 2[(v+2)]
jas — xa3| < ;
[12x¥(1,0,%)], [¥(1,0,%)| > 572,
where
36x2(1— k)
Y(l,v,kix)= .
(1,0, k%) 36x2(v+2)(v+1) —2(36x2—1)(1 4+ v)?
©2025 YU
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Corollary 16.If £, given by (1), is in B (£ k) and K € R, then

31, |¥(1,0,x)| <
|a3fKa%|§ ,
12:9(1,0,9)], [9(1,0,5)] >

N,

N,

where

¥ (1,0,x) = 18x* (1 — k).

4 Conclusion

In this study, we have introduced and thoroughly investigated a novel subclass of bi-univalent functions known as
Bazilevi¢ functions, which are constructed through the convolution of Balancing polynomials. Our primary objective
was to establish rigorous bounds for the Fekete-Szegé inequality and to compute the initial coefficients |as| and |as| for
functions belonging to this subclass.

Furthermore, the corollaries derived from our analysis offer additional insights and extensions, underscoring the
versatility and applicability of Bazilevi¢ functions in mathematical research. These results pave the way for further
exploration into the deeper implications and potential applications of Bazilevi¢ functions across different parameters.

In conclusion, our study contributes to the advancement of mathematical analysis by establishing a solid theoretical
foundation for Bazilevi¢ functions and by providing concrete computational results. Future research can build upon these
findings to explore more intricate aspects of Bazilevi¢ functions and to investigate their role in solving complex
mathematical problems.
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