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Abstract: In this paper, we analyze dynamical behaviors of the non-even-aged forests affected by insect pest system. This system is

described by a cubic system of three ordinary nonlinear differential equations with five real parameters. We confirm that the forest pest

system displays local Hopf bifurcations under certain conditions. Moreover, we show that a Hopf bifurcation occurs at four equilibrium

points for the system. Also, we obtain sufficient conditions for supercritical and subcritical bifurcations via the normal form theory.

More precisely, we show that the forest pest system admits limit cycles. Numerical examples are given to validate the theoretical

analysis
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1 Introduction

Characterizing whether periodic solutions exist or not is one of the most basic problems in the qualitative theory of
autonomous differential systems depending on parameters [12,8]. Normally, there are no ways to study the periodic
solution in a three-dimensional system. A bifurcation of a system is a qualitative change in its dynamical behaviors
yielded by varying parameters. The bifurcation can be divided into a local bifurcation and a global bifurcation. The Hopf
bifurcation is a kind of typical local bifurcation. It is the birth of a limit cycle from an equilibrium point for the system.
The Hopf bifurcation Theorem [16,19,21] provides the simplest criterion for a family of periodic solutions to bifurcate
from a known family of equilibrium solutions of a dynamical system. Then, there exists a family of periodic solutions
bifurcating at Hopf bifurcation. However, the aim of this paper is to use Hopf bifurcation and normal form theory to
investigate this phenomenon.
The simplest mathematical models of non-even-aged forests affected by insect pests have been proposed by Antonovsky
et al. in [1,2]. In dimensionless and performing some simplifications by a linear change of variables, parameters, and time,
the forest pest system takes the form

ẋ = by− (y− 1)2x− ax− xz,

ẏ = x− dy,

ż =−ez+ cxz,

(1)

where x,y are densities of old and young trees, z is insect density and the terms with xz and yz represent the insect
forest interaction, with a,b,c,d and e are real parameters. The model is studied and analyzed in [2]. Moreover, in [2,
3] the authors used analytical methods such as bifurcation theory and numerical methods to study qualitative behaviors
and dynamics of a nonlinear forest pest system. In [23] the authors analyzed the one-parameter transcritical bifurcation
diagram for the forest pest system 1. Some detailed investigations of the forest pest system have been carried out in
references [1,2,3,4,6,7,8,9,10,11,12,15,18,19,20].
Since systems 1 in general cannot be solved explicitly, the qualitative information provided by the theory of dynamical
systems is the best that one can expect to obtain in general. There is no general analytical approach to finding an analytical
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solution. The stability of equilibrium points and the bifurcation theory such as the Hopf bifurcation of dynamical systems
play quite important roles in studying the dynamics of many differential systems. One of the most classical problems of
the qualitative theory of polynomial differential systems depending on parameters is characterizing the existence or not of
limit cycles.
A Hopf bifurcation is a local bifurcation in which an equilibrium point of the dynamical system loses stability as a pair of
complex conjugate eigenvalues of the linearization around the equilibrium point crosses the imaginary axis of the complex
plane. To find the limit cycle (isolated closed orbits), we will use the Hopf bifurcation theorem [16,21] of the forest pest
model applying the normal form theory introduced by Hassard et al. [10].
The remainder of this paper is organized as follows. In Section 2, we study the local stability of equilibrium points and
the existence of local Hopf bifurcations. Using the normal form theory, the direction of the Hopf bifurcations and the
stability of bifurcating periodic solutions are analyzed in detail in Section 3. Finally, in Section 4, numerical examples are
presented to illustrate the main results.

2 Stability equilibrium points and Hopf bifurcations analysis

The Hopf bifurcation and the analysis of the equilibrium points of a forest pest model are the topics of this section. The
local stability of every equilibrium point is investigated by analyzing the characteristic equation. After that, the Hopf
bifurcation around the equilibrium points is found. By simple analysis, it is easy to obtain the following statements for
the system 1.

I) The system has only two equilibrium points, which are the origin and

E1 =

(

e

c
,

e

dc
,
−(ad2c2 − bdc2 + d2c2 − 2dec+ e2)

c2d2

)

, where d,c 6= 0.

II) If Γ > 0 and d 6= 0, then the system has two other equilibrium points

E2,3 =

(

d∓Γ ,1∓ Γ

d
,0

)

, where Γ =
√

bd− ad2.

III) If b = d = 0 and e 6= 0, the system has infinitely many equilibrium point E4 = (0,y,0).
IX) If b = d = 0 and e = 0, the system has infinitely many equilibrium point E5 = (0,y,z).

Note that the Hopf bifurcation does not occur at the equilibrium points E4 and E5 of system 1, because the eigenvalues
of the Jacobian matrix of system 1 at E4 and E5 are (0,−e,−y2−a+2y−1) and (0,0,−y2−a+2y−1− z), respectively.

2.1 Hopf bifurcation analysis at E0(0,0,0)

The Jacobian matrix for system 1 at E0(0,0,0) is given by

JE0
=





−(a+ 1) b 0
1 −d 0
0 0 −e



 .

The characteristic equation of the matrix JE0
is

|λ I− JE0
|= λ 3 +T1λ 2 +K1λ +D1 = 0, (2)

where T1 = a+ d + e+ 1, K1 = ((a+ e+ 1)d +(a+ 1)e− b), D1 = e((a+ 1)d − b). Therefore, the eigenvalues of the

Jacobian matrix JE0
are λ1,2 =

−(a+d+1)∓
√

(a−d+1)2+4b

2
and λ3 =−e.

Proposition 1.The equilibrium point E0(0,0,0) is a Hopf bifurcation if and only if a = ah1 = −(d + 1), d2 + b < 0 and

e 6= 0, which satisfy Re(λ ′(ah1)) 6= 0, i.e., the system 1 undergoes a Hopf bifurcation.
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Proof.The origin is a Hopf bifurcation point if and only if T1K1 +D1 = 0,K1 < 0 and T1 6= 0, since T1K1 +D1 = (a+d+
1)((a+ e+ 1)d+(a+ 1)e+ e2− b) = 0, this implies that a = ah1 =−(d+ 1), then equation 2 can be rewritten into

(λ + e)(−λ 2 + d2 + b) = 0, (3)

Obviously, equation 3 has a pair of purely imaginary conjugate roots, and a real root λ3 = −e 6= 0, where

ω =
√
−d2 − b,(d2 + b < 0).

Let λ = λ (a), define the relation from the characteristic equation 2

f (λ (a),a) = λ (a)3 +T1λ (a)2 +K1λ (a)+D1 = 0, (4)

Differentiation of equation 4 with respect to a yields,
∂ f
∂λ

dλ
da

+ ∂ f
∂a

= 0, implies

dλ (a)

da
=−∂ f

∂a

(

∂ f

∂λ

)−1

=− λ 2 +(e+ d)λ + ed

3λ 2 + 2(a+ d+ e+ 1)λ + a(d+ e)+ de+ d+ e− b
. (5)

Taking the root λ (a) = λ (ah1) = iω , evaluating a = ah1, and substituting it into equation 5, we have

α ′(0) =

(

d Re(λ (a))

da

)

a=ah1

=−1

2
6= 0, (6)

and

ω ′(0) =

(

d Im(λ (a))

da

)

a=ah1

=
d

2ω
. (7)

Obviously, the first and second conditions for the Hopf bifurcation Theorem hold. Hence, by [8], we know that the the
system 1 undergoes a Hopf bifurcation equilibrium point at E0(0,0,0) when a = ah1.

2.2 Hopf bifurcation analysis at E1

Now, we shift the equilibrium point E1 of the system 1 to the origin under the following linear transformation x1 = x− e
c

, y1 = y− e
dc

and z1 = z+ ad2c2−bdc2+d2c2−2dec+e2

c2d2 , which transforms system 1 into the following:

ẋ1 =−x1y2
1 + by1 −

e

c
y2

1 +
2(dc− e)

dc
x1y1 − x1z1 −

b

d
x1 +

2e

c
y1 −

e

c
z1 −

2e2

dc2
y1,

ẏ1 = x1 − dy1,

ż1 =−ad2c2 − bdc2+ d2c2 − 2dec+ e2

cd2
x1 + cx1z1.

(8)

Then the stability analysis reduces to that of the equilibrium point E1(0,0,0) of system 8. The Jacobian matrix at the
E1(0,0,0) is

JE1
=





− b
d

b+ 2e
c
(1− e

dc
) − e

c
1 −d 0

− ad2c2−bdc2+d2c2−2dec+e2

cd2 0 0



 .

Obviously, the following characteristic equation of JE1
is

|λ I− JE1
|= λ 3 +T2λ 2 +K2λ +D2 = 0, (9)

where T2 =
(d2+b)

d
,K2 =

(−e(ad2c2−bdc2+d2c2+2d2c−2dec−2de+e2))
(d2c2)

,D2 =
(−e(ad2c2−bdr2+d2c2−2dec+e2))

(dc2)
.

Proposition 2.The equilibrium point E1 in the system 8 is a Hopf bifurcation if and only if

a = ah2 =
(b2dc2−bd2c2−2d4c−2bd2c+2bdec+2d3e+2bde−be2)

(d2c(2)b)
,
(2ed(dc−e)

(bc2)
> 0) and − (d2+b)

d
,b,c,d,e 6= 0. Also, in the equation 9,

which satisfies ( dRe(λ (a)
da

)a=ah2
6= 0, then the forest pest system 1 displays a Hopf bifurcation.
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Proof.The equilibrium point E1 is a Hopf bifurcation point if and only if T2K2 + D2 = 0,K2 < 0 and T2 6= 0, since

T2K2 + D2 = −e(abd2c2−b2c2d−d2c2b+2d4c+2bd2c−2bdec−2d3e−2bde+be2)
c2d3 = 0, and e 6= 0 by K2 < 0, then must be

a = ah2 =
(b2dc2−bd2c2−2d4c−2bd2c+2bdec+2d3e+2bde−be2)

(d2c2b)
, so equation 9 becomes

(

λ +
(d2 + b)

d

)(

λ 2 +
2ed(dc− e)

bc2

)

= 0. (10)

Equation 10 has a pair of purely imaginary conjugate roots λ1,2 =∓iω , where ω =
√

2ed(dc−e)

bc2 and a real root λ3 =− d2+b
d

.

Suppose that λ = λ (a), define the relation from the characteristic equation 9

f (λ (a),a) = λ (a)3 +T2λ (a)2 +K2λ (a)+D2 = 0. (11)

Differentiation of 11 with respect to a yields
∂ f

∂λ
dλ
da

+ ∂ f

∂a
= 0, implies

dλ (a)

da
=−∂ f

∂a

(

∂ f

∂λ

)−1

=− λ d2c2e+ d3c2e

3λ 2d2c2 +(2bdc2 + 2d3c2)λ + dec(2e+ bc− dc−2d− adc)+ 2de2− e3
. (12)

Taking the root λ (a) = λ (ah2) = iω , evaluating a = ah2, and substituting it into 12, we have

α ′(0) =

(

d Re(λ (a))

da

)

a=ah2

=− b2c2de

2b(d2 + b)2c2 + 4d4ec− 4d3e2
6= 0, (13)

and

ω ′(0) =

(

d Im(λ (a))

da

)

a=ah2

=−1

4

√

(2bde(dc− e))dc(bd2c2 + b2c2 + 2d2ec− 2de2)

(b(d2 + b)2c2 + 2d4ec− 2d3e2)(dc− e)
. (14)

So, first and second conditions for Hopf bifurcation are met and the Hopf bifurcation Theorem holds. Hence, by [8], we
know that the system 8 undergoes a Hopf bifurcation at E1 when a = ah2.

2.3 Hopf bifurcation analysis at E2,3

First translation of the equilibrium point E2 to the origin by x1 = x−d+Γ ,y1 = y−1+ Γ
d
,z1 = z, which transforms system

1 into the following:

ẋ = b(y1 +(1+Γ/d))− S,

ẏ = x1 − dy1,

ż = c(x1 +(d+Γ ))z1 − ez1,

(15)

where S = (y1 +
Γ
d
)2(x1 +(d+Γ ))+ a(x1 +(d+Γ ))+ (x1 +(d+Γ ))z1.

The Jacobian matrix for system 15 at E2(0,0,0) is

JE2
=







− b

d
2ad− b− 2Γ −(d+Γ )

1 −d 0
0 0 cd− e+ cΓ






,

and its corresponding characteristic equation of |λ I − JE0
|= 0 is

λ 3 +T3λ 2 +K3λ +D3 = 0, (16)

where T3 = −c(d + Γ ) + d + e + b
d

, K3 = −dc(d + Γ ) − bc(1 + Γ
d
) − 2ad + de + 2Γ + 2b + be

d
, and

D3 = 2(c(d + Γ ) − e)(−ad + Γ + b). The eigenvalues of the Jacobian matrix of system 15 at E2 are

λ1,2 =
(−(d+ b

d )∓
√

(8ad+d2−8Γ−6b+ b2

d2 ))

2
and λ3 = cd− e+ cΓ .

Next, we will use the system 15 at the equilibrium point E2 to apply the Hopf bifurcation Theorem.
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Proposition 3.The origin of system 15 is a Hopf bifurcation if and only if b = bh3 = −d2. Moreover, which satisfy

Re(λ (bh3)) 6= 0 in equation 16, i.e. system 15 undergoes a Hopf bifurcation.

Proof.When b = bh3, equation 16 at a point E2 can be rewritten into

(λ − (cΛ + dc− e))
(

λ 2 +
√

−2ad− 2d2 + 2Λ
)

= 0, (17)

when Λ =
√
−ad2 − d3 . Obviously, equation 17 has a pair of purely imaginary conjugate roots and a real root λ3 =

cΛ + dc− e 6= 0, where ω =
√
−2ad− 2d2 + 2Λ(−2ad− 2d2 + 2Λ > 0).

Then a root λ (b) of the characteristic polynomial satisfies the relation

f (λ (b),b) = λ (b)3 +T3λ (b)2 +K3λ (b)+D3 = 0, (18)

Differentiation of 18 with respect to b yields
∂ f

∂λ
dλ
db

+ ∂ f

∂b
= 0 implies

dλ (b)

db
=−∂ f

∂b

(

∂ f

∂λ

)−1

=
(w1 +w2)

(w3Γ +w4)
, (19)

where w1 = d(8d2c+(2λ c− 4e− 4λ )d − 2λ (e+ λ ))Γ ,w2 = −(c(6a−λ − 2)d2 +((2aλ − λ 2 − 6b)c+ 2e+ 2λ )d −
3bcλ ),w3 = (−2d3c+(−4rλ −4a+2e+4λ )d2+(−2bc+4eλ +6λ 2+4b)d+2b(e+2λ )) and w4 = 2d(ad−b)(d2c+
(2λ c− 2)d+ bc).
Taking the root λ (b) = λ (b) = iω , evaluating b = bh3, and substituting it into 19, we have

α ′(0) =

(

d Re(λ (b))

db

)

b=bh3

=− 1

2d
6= 0, (20)

and

ω ′(0) =

(

d Im(λ (b))

db

)

b=bh3

=−m1

m2

, (21)

where m1 = ω(d5c2 + 2d4(1+ c2(a − 1)) + ((a2 − 2a− 5/2Λ)c2 + 3ce+ 4a− 1)d3 + (−5/2Λ(a− 1/5)c2 + ce(3a+
2Λ)+ 2a2 − e2 − a− 3Λ)d2+(Λce(2a− 1)− a(e2+ 3Λ))d + 1/2Λe2) and m2 = ((d5c2 + d4(2+(2a− 3)c2)+ ((a2 −
3a−3Λ)c2+4ce+4a−2)d3+((−3aΛ+Λ)c2+ce(4a+2Λ)+2a2−e2−2a−4Λ)d2+((2ceΛ(a−1)−a(e2+4Λ))d+
Λe2)d(a+ d)).
Evidently, the first and second requirements for the Hopf bifurcation theorem [8] are satisfied. That is, system 15 undergoes
a Hopf bifurcation at the equilibrium point at E2 when b = bh3.

We can classify the local stability analysis of equilibrium points and types from the results in [6] and the Routh-
Hurwitz criteria. Table 1 shows how equilibrium points E0,E1 and E2 can be categorized based on the roots of equations
2, 9 and 16. So, we have the following conclusions.

3 Supercritical and subcritical Hopf bifurcations

In this section, we apply the normal form theory [10] to study the direction, stability, and period of bifurcating periodic
solutions for the system 1. In the remainder of this part, we use the three-dimensional classical Hopf bifurcation theory
and symbolic computing to analyze parametric changes in the system 1.

Theorem 1.The system 1 exhibits a Hopf bifurcation when a passes through ah1 at equilibrium E0.

1. If d2 + b+ 4d > 0, the Hopf bifurcation is supercritical,and bifurcating periodic solutions exist for a > ah1, with the

bifurcating periodic solution is stable.

2. If d < 0, the Hopf bifurcation is subcritical and bifurcating periodic solutions exist for a < ah1, with the bifurcating

periodic solution is orbitally unstable.
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Table 1: Local stability of all equilibrium points.
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Proof.We know that it can display Hopf bifurcation at the point E0 as a = ah1. We consider the linear change of

variables





x

y

z



= P





x2

y2

z2



, where P =





d −
√
−d2 − b 0

1 0 0
0 0 1



, the differential system 1 will be changed to

ẋ2 =−
√

−d2 − by2,

ẏ2 =
√

−d2 − bx2 +F2(x2,y2,z2),

ż2 =−ez2 +F3(x2,y2,z2),

(22)

where F2(x2,y2,z2) = 2x2y2 − x2z2 − 2d√
−d2−b

y2
2 + d√

−d2−b
x2z2 − x2

2y2 + d√
−d2−b

x3
2 and

F3(x2,y2,z2) =−
√
−d2 − bcy2z2 + dcx2z2.

Next, we follow the procedures proposed by Hassard et al. [10] to work out the necessary quantities. We can get

g11 =
1

4

(

∂ 2F1

∂x2
2

+
∂ 2F1

∂y2
2

+ i

(

∂ 2F2

∂x2
2

+
∂ 2F2

∂y2
2

))

=− id√
−d2 − b

, (23)

g02 =
1

4

(

∂ 2F1

∂x2
2

− ∂ 2F1

∂y2
2

− 2
∂ 2F2

∂x2∂y2
+ i

(

∂ 2F2

∂x2
2

− ∂ 2F2

∂y2
2

+ 2
∂ 2F1

∂x2∂y2

))

=−1− id√
−d2 − b

, (24)

g20 =
1

4

(

∂ 2F1

∂x2
2

− ∂ 2F1

∂y2
2

+ 2
∂ 2F2

∂x2∂y2

+ i

(

∂ 2F2

∂x2
2

− ∂ 2F2

∂y2
2

− 2
∂ 2F1

∂x2∂y2

))

= 1− id√
−d2 − b

, (25)

G21 =
1

4

(

∂ 3F1

∂x3
2

+
∂ 3F1

∂x2∂y2
2

+
∂ 3F2

∂x2
2∂y2

+
∂ 3F2

∂y3
2

+ i

(

∂ 3F2

∂x3
2

+
∂ 3F2

∂x2∂y2
2

− ∂ 3F1

∂x2
2∂y2

− ∂ 3F1

∂y3
2

))

=−1

4
+

3i

4
· d√

−d2 − b
. (26)

Next, we calculate

h11 =
1

4

(

∂ 2F3

∂x2
2

+
∂ 2F3

∂y2
2

)

= 0, (27)

h20 =
1

4

(

∂ 2F3

∂x2
2

− ∂ 2F3

∂y2
2

− 2i
∂ 2F3

∂x2y2

)

= 0. (28)

By solving the following equations
λ3φ11 =−h11,

(λ3 − 2iω)φ20 =−h20,

the solution is
φ11 = φ20 = 0. (29)

Furthermore, we have

G110 =
1

2

(

∂ 2F1

∂x2z2

+
∂ 2F2

∂y2z2

+ i

(

∂ 2F2

∂x2z2

− ∂ 2F1

∂y2z2

))

=−1

2
+

i

2

d√
−d2 − b

(30)

G101 =
1

2

(

∂ 2F1

∂x2z2

− ∂ 2F2

∂y2z2

+ i

(

∂ 2F2

∂x2z2

+
∂ 2F1

∂y2z2

))

=
1

2
+

i

2

d√
−d2 − b

(31)

From 26, 29, 30 and 31, we get

g11 = G21 +(2G110φ11 +G101φ20) =−1

4
+

3i

4

d√
−d2 − b

(32)

We now can compute the direction and stability of periodic orbits of system 1 at the origin via µ2 and period of periodic
solution and its characteristic exponent from β2 and τ2 respectively.
From the above analysis, one can compute the following quantities:

M1(0) =
i

2ω
(g20g11 − 2|g11|2 −

1

3
|g02|2)+

1

2
g21 =−1

8

d2 + b+ 4d

d2 + b
+

i

24

4b− 9d3− 36d2 − 9bd

(
√
−d2 − b)3

,
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µ2 =−Re(M1(0))

α ′(0)
=−1

4

d2 + b+ 4d

d2 + b
, (33)

β2 = 2Re(M1(0)) =−1

4

d2 + b+ 4d

d2 + b
, (34)

τ2 =− Im(M1(0))+ µ2 ω ′(0)
ω0(0)

=− 1

12

3d3 + 3bd+ 12d2− 2b

(d2 + b)2
. (35)

From the system 1 exhibits a Hopf bifurcation at the equilibrium E0 as a passes through ah1 = −d − 1. Since µ2

determines the type of Hopf bifurcation and the direction of bifurcating periodic solutions; β2 determines the stability of
the bifurcating periodic solutions; τ2 determines the increases (decreases) of the period of bifurcating periodic solutions.
If d2 + b+ 4d > 0, from equations 33 and 34, then µ2 = β2 = ((−1)/4(d2 + b+ 4d)/(d2 + b)) > 0. Hence the Hopf
bifurcation is supercritical and the bifurcating periodic solution is orbitally stable with bifurcating periodic solutions exist
for a > ah1. But if d < 0, from equations 33 and 34 then µ2 = β2 = ((−1)/4 (d2 + b+ 4d)/(d2 + b)) < 0, so Hopf
bifurcations is subcritical and bifurcating periodic solutions exist for a < ah1 and the bifurcating periodic solutions are
orbitally unstable. If τ2 > 0, in equation 35, the period of bifurcating closed orbits increases. whereas, if τ2 < 0, in 35, the
period of bifurcating closed orbits decreases.

Now we use the normal form theory to determine the direction of Hopf bifurcations and the stability of bifurcating limit
cycles at equilibrium points E1 and E2. However, the calculations are not challenging, just large. They were carried out
using Maple.
Analogously to the above analysis at E0, we have the following results for the equilibrium point E1 of system 8:

µ2 =−Re(M1(0))

α ′(0)
=

4(b(d2 + b)2c2 + 2d4ec− 2d3e2)(dc− e)

16c2(d2 +ω2)4(d4 + d2ω2 + 2bd2 + b2)2
√

(2bde(dc− e))dc(bd2c2 + b2c2 + 2d2ec− 2de2)
(h1)+

1

8ω2bdc2(d4 + 4d2ω2 − 2bd2 + b2)(d4 + d2ω2 + 2bd2+ b2)2(d2 +ω2)3
+(

13

∑
i=2

hi), (36)

β2 = 2Re(M1(0)) =
1

8c2(d2 +ω2)4(d4 + d2ω2 + 2bd2 + b2)2
(h1)+

1

4ω2bdc2(d4 + 4d2ω2 − 2bd2+ b2)(d4 + d2ω2 + 2bd2+ b2)2(d2 +ω2)3

13

∑
i=2

hi), (37)

τ2 =− 1

ωb2c2(d4 + 4d2ω2 + 2bd2+ b2)∆ 2

(

1

−24ω3d2

5

∑
i=1

Bi +
1

Ω

5

∑
i=1

ci

)

, (38)

where ∆ = (d4 + d2ω2 + 2bd2+ b2)(d2 +ω2),
Ω = 4ω(ω2(d2c4(4b2d2 + 9b2ω2 + 8b3)− 12bd4c3e + 4b4c4 + 12bd3e2c2) + 4d6c2e2 − 8d5e3c + 4d4e4). Moreover,

∑13
i=2 hi,∑

5
i=1 Bi and ∑5

i=1 ci can be found in the Appendix. If µ2 > 0(< 0), then the Hopf bifurcation is supercritical
(subcritical). Notice that it is not easy to analyze equation 36 to find supercritical and subcritical. Now, we consider some
special cases of 36.

1.Take e = b = −c2 and d = c, then ω = 2
√

c > 0 and µ2 = −(10c3+40c2+c+64)

4c3(c+4)2 , or if e = b = c2 and d = −e, then

ω = 2
√

2c2(c+ 1)> 0 and

µ2 = −(6c13+28c12+58c11+44c10+32c9+352c8+1340c7+2581c6+3134c5+2755c4+1674c3595c2+60c+21)
4c2(c4+8c3+10c2+1)(c2+2c+2)2(c4+2c3+4c2+1)

, or if e = −d,b = −d2 and

c = 1, then ω = 2
√

d > 0 and µ2 = −(10d2+41d+64)

4d2(d+4)2 . For all above cases µ are negative, then Hopf bifurcation is

subcritical.
2. Take e = −c 6= 0,b = −1 and d = 1,then µ2 = − 13+10c

20c
, if c ∈ (−1.3,0) so Hopf bifurcation is supercritical and if

c ∈ (−∞,−1.3) ∪ (0,∞) Hopf bifurcation is subcritical. In addition, take e = −c 6= 0,b = −3 and d = 3, then

µ2 = 9248c2−62220c−261819
187272c

, if c ∈ (−2.93104141701...,0) the Hopf bifurcation is supercritical and if
c ∈ (−∞,−2.931041417010904...)∪ (0,∞)Hopf bifurcation is subcritical.
Furthermore, for the equilibrium point E2 of system 15, we have the following results:

µ2 =−Re(M1(0))

α ′(0)
=−d2(a+ d)

ω2
, (39)

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JJMS 18, No. 3, 393-405 (2025 ) / 401

β2 = 2Re(M1(0)) =−d2(a+ d)

ω2
, (40)

τ2 =− Im(M1(0))+ µ2 ω ′(0)
ω0(0)

=− 1

24ω

(

Π1

Π1

+
486ad2+ 486d3− 648dΛ + 4ad− 212d2− 4Λ

12ω3

)

, (41)

where Π1 = (−33ωad − 33d2ω + 21ωΛ)(−2d2d3c2 − 4ad4c2 − 2d5c2 + 4ad3c2 + 4d4c2 − 6d3ec − 4a2d2 − 8ad3 +
2ade2 − 4d4 + 2d2e2 + 2ad2 + 2d3 + Λ(5ad2c2 + 5d3c2 − 4adec − 4d2ec − d2c2 + 2dec + 6ad + 6d2 − e2), and
Π2 = ω2(−2a3d2 − 4a2d2ec− 8ad3ec− 4d4ec− d6c2 + d3e2 + 4ad3 − 6a2d3 − 6ad4 + 3d5c2 + 2a2d2 − 2d5 + a2de2 +
2ad2e2 −a3d3c2 −3a2d4c2 −3ad5c2 +6ad4c2 +3a2d3c2 +2d4+Λ(2d2ec−ad2c2 +3a2d2c2 +6ad3c2 −2d3ec−ae2 +
4a2d− de2 + 8ad2 − d3c2 + 3d4c2 + 4d3 + 2adec− 2a2dec− 4ad2ec)).

From the above analysis, the system 15 exhibits a Hopf bifurcation at the equilibrium E2(0,0,0) as a passes through
a = ah3. When d > 0 then α ′(0)< 0, hence the signs of µ2 and β2 are the same according to equation 39 and equation 40.
Also, from equation 41 the period of bifurcating closed orbits increases τ2 > 0 and decreases τ2 < 0. Also, if d > 0, then
β2 > 0. Likewise, if d < 0, then β2 < 0. In short, we have proved the next result.

Theorem 2.System 15 exhibits a Hopf bifurcation at the equilibrium point E2. When a + d < 0, the bifurcation is

supercritical and the direction of the the bifurcation isb < bh3.

Remark 1. The results for the equilibrium point E3 are analogous to those of Proposition 3 and Theorem 2 for E2. As a
result, the formulation of the conclusion for the equilibrium E3 and its proof are omitted. This is due to the fact that when
we perform the appropriate computations for the equilibrium point E3, we obtain the same results as when we perform
the identical computations for the equilibrium point E2.

4 Numerical examples

In the present section 3, we make some numerical simulations with help of Maple to support our analytical results.
1. The stability of equilibrium point E0 is changed from one side to other of ah1.Hence, there is Hopf bifurcation at
a = ah1.When b = −5,c = 1,d = −1.1, and e = 2 with initial conditions: x(0) = 0,y(0) = z(0) = 0.1. The theoretical
analysis suggests that

ω = 1.946792233 and ah1 = 0.1.

It follows from the results that

µ2 = β2 =−1.410949868 and τ2 = 0.7269142625.

In the light Theorem 1, since µ2 < 0, the Hopf bifurcation is subcritical which means that equilibrium point E0 of the
system 1 is stable when a > ah1 where a = 0.2, and the equilibrium point losses its stability and a Hopf bifurcation occurs
when a decreases past ah1,where a = −0.1 i.e., a family of periodic solutions bifurcates from the equilibrium point, as
shown in Fig. 1. Since β2 < 0, each individual closed solution is stable. Since τ2 > 0, the period of bifurcating periodic
solutions increases with a increasing.
2. The stability of equilibrium point E1 is changed from one side to the other of ah2.Hence, there is Hopf bifurcation at
a = ah2. When b = 1,c = 1,d = 1.9, and e = 1 with initial conditions: x(0) = 0,y(0) = z(0) = 1. The theoretical analysis
suggests that

ω = 1.849324201 and ah2 =−4.065429363.

It follows from the results that

µ2 = 1.499683545,β2 =−0.08480781953 and τ2 =−0.1280863068.

Since µ2 > 0, the Hopf bifurcation is supercritical which means that equilibrium point E1(0,0,0) of the system 8 is stable
when a < ah2, a Hopf bifurcation occurs when a increases past ah2, i.e., a family of periodic solutions bifurcate from the
equilibrium point, as shown in Fig. 2. Since β2 < 0, each individual periodic solution is stable. Since τ2 < 0, periods of
bifurcating periodic solutions decrease with decreasing a.
3. The stability of equilibrium point E3 is changed from one side to other of bh3. Hence, there is Hopf bifurcation at
b = bh3. When a = 1,c = 5,d =−1.2, and e = 5 with initial conditions: x(0) = y(0) = z(0) = 0.1. The theoretical analysis
suggests that

ω = 0.7702678943 and bh3 =−1.44.
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Fig. 1: A trajectory of forest pest system 1 at equilibrium E0. (i) the bifurcating periodic solution when a= 0.2> ah1 = 0.1.
(ii) a stable when a =−0.1 < ah1 = 0.1.

Fig. 2: A trajectory of forest pest system 8 at equilibrium E1 (i) a stable when a =−7.06542< ah2 =−4.065429363. (ii)
the bifurcating periodic solution when a =−3.06542> ah2 =−4.065429363.

It follows from the results that

µ2 = 0.4854101966,β2 =−0.4045084972 and τ2 = 1.181523057.

In the light Theorem 2, since µ2 > 0, the Hopf bifurcation is supercritical which means that equilibrium point E2(0,0,0)
of the system 15 is stable when b < bh3 and the equilibrium point losses its stability and a Hopf bifurcation occurs when a
increases past bh3, i.e., a family of periodic orbits bifurcates from the equilibrium point, as shown in Fig. 3. Since β2 < 0,
each individual closed orbit is stable. Since τ2 > 0, the periods of bifurcating periodic orbits increase with b increasing.

Remark 2. An essential tool for studying time-periodic nonlinear differential systems with small parameters is the
averaging approach, which has been used in several research domains, see [5,13]. In addition, the zero-Hopf bifurcation
and averaging Theory [3,13,14,17,19] and normal form Theory [22] plays a central role in the periodic solutions of the
polynomial differential models. Hence, to find all possible limit cycles of the system 1, one may use the averaging and
normal form methods to get information about another periodic solution of this system. This leads us to believe that there
should be a zero Hopf bifurcation point on the parameters, as will be demonstrated in a future study.
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Fig. 3: A trajectory of forest pest system 15 at equilibrium E2 (i) a stable when b = −1.55 < bh3 = −1.44. (ii) the
bifurcating periodic solution when b =−1.38 > bh3 =−1.44.

Conclusion

New insights into the forest pest differential system are presented. In summary, the periodic solutions of the forest pest
system have been studied in this paper. First, the stability of four equilibrium points E0,E1, and E2,3 are analyzed. The
Hopf bifurcation analysis of system 1 has also been studied using normal form theory. We thoroughly analyzed the Hopf
bifurcation direction as well as the stability of bifurcating periodic solutions. Then, by employing the normal form theory
of the Hopf bifurcation, its normal form is derived, and some sufficient conditions guarantee the occurrence of Hopf
bifurcation. Furthermore, a numerical result is presented to illustrate that Hopf bifurcation can take place.

Appendix

h1 =
ed2(d2 +ω2 + b)(c2d8 − 2cd7 +(3ω2c2 + 2bc2 + 2e)d6 − 2c(2ω2 + b)d5 +(3c2ω4 +(5bc2 + 4e)ω2 + 10bcω + b(bc2 +
2e))d4 +(−2ω4c− 2bω2c− 15beω)d3+(c2ω4 + 2(2bc2+ e)ω2 + 10beω + 2b2c2)ω2d2 − 15beω3d+ bc2ω4(ω2 + b))
h2 = 4d20c2 − 8d19ec+((−2ωc3 + 12c2)b+ 16c2ω2 + 4e2)d18+ 2c((−2/3cω2 + c(e+ 2)ω − 12e)b− 14eω2)d17+
((−6ωc3 + 8c2)b2 +(−8ω3c3 + 36ω2c2 − 8eωc+ 12e2)b+ 24c2ω4 + 12e2ω2)d16,
h3 = ((c4ω3 + (2c3 − 3c2)ω2 + 6c2(e + 4/3)ω − 16ce)b2 + 4(−11/2c2ω3 + 2c2(e + 3/2)ω2 − 10ecω + e2)ωb −
36ecω4)d15+((−4c3ω − 8c2)b3 +(−c4ω4 − 18c3ω3 − 2c2(e − 8)ω2 − 16ecω + 8e2)b2 − 2(6c3ω3 + c2(e− 18)ω2 +
14ecω + e2)bω2 + 16c2ω6 + 12e2ω4)d14,
h4 = ((2c4ω3 +(4c3 +6c2)ω2 +4ec2ω +16ce)b3+(4c4ω5 +(2c3 −39c2)ω4 +14c2(e+4/7)ω3 −2ceω2 +8e2ω)b2 +
(−52c2ω6 + 12c2(e + 1)ω5 + 44ecω4 + 16e2ω3)b − 20ecω6)d13 + ((4ωc3 − 12c2)b4 + (−4c4ω4 + 2c3ω3 + (8 +
(−4e−48)c2)ω2 −8e2)b3 −12(1/3c4ω4 +3/2c3ω3 +1/6c2(e−18)ω2 + ecω + e2)ω2b2 +(−8c3ω7 −6c2(e−2)ω6 −
32ceω5 − 108e2ω4)b+ 4c4ω8 + 4e2ω6)d12,
h5 =
(−c(−6cω2 + 4c(e+ 2)ω − 24e)b4 − c(−7c3ω3 + (−6c2 + 19c)ω2 + 12c(e+ 2)ω − 102e)ω2b3 + (bc4ω7 + (−6c3 −
87c2)ω6 +(10e− 8)c2ω5 + 24ecω4+ 4e2ω3)b2 +(−54c2ω8 + 4c2(2e+ 1)ω7+ 112ecω6+ 20e2ω5)b− 4ecω8)d11,
h6 = 6b((c3ω − 2/3c2)b4 +(5c3ω3 +(−8/3c2 − 8/3)ω2 + 8/3ecω − 2e2)b3 − 28/3(1/7c4ω4 − 13/28r3ω3 +(−5/7+
(5/56e + 15/14)c2)ω2 − 8/7ecω + e2)ω2b2 − 35/3(3/25c4ω4 + 3/35c3ω3 − 2/35c2(e + 14)ω2 − 16/35ecω +
e2)ω4b− 1/3c3ω9 − ec2ω8 − 2ecω7 − 83/3e2ω6)d10,
h7 = −6b(c(1/3c3ω3 + (2/3c2 + 1/2c)ω3 + c(2/3 + e)ω − 4/3e)b4 + 4/3(1/8c4ω4 + (11/4c3 + 3/8c2)ω3 +
9/2c2(2/3 + e)ω2 − 39/4ecω + e2)ωb3 + (−2/3c4ω7 + (−2c3 + 61/6c2)ω6 + 8c2(e + 3/4)ω5 − 47/3ecω4 +
20/3e2ω3)b2 +16/3(−1/8c4ω4 +(5/16c3+69/32c2)ω3 −1/16c2(e−4)ω2 +23/16ecω + e2)ω5b−4/3(1/4ec2ω2 −
25/8c2ω3 + 13/2ecω + e2)ω7)d9, h8 = 2b(b5c3ω + (c4ω4 + 11c3ω3 + (4 + (2e − 2)c2)ω2 + 4ecω − 2e2)b4 +

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



404 Azad I Amen : Hopf Bifurcation Analysis in the Forest Pest System

(−1/2c4ω6 + 28c3ω5 + (−8 + (14e + 6)c2)ω4 + 26ecω3 − 24e2ω2)b3 + (−6c4ω8 + 15c3ω7 + (16 + (−9e −
10)c2)ω6 + 50ceω5− 33e2ω4)b2 +(−2c4ω10+ 3c2(e+ 14/3)ω8+ 14ecω7− 13e2ω6)b− ec2ω10− 36e2ω8)d8,
h9 = −2(c2(1/2c2ω2(c + 3/2)ω + e)b5 + (7/2c4ω4 + (7c3 + 7/2c2)ω3 + 10(e + 1/5)c2ω2 + 7ecω + 2e2)b4 +
(3/2c4ω6 +(22c3 + 12c2)ω5 + c2(35e+ 8)ω4 − 12ecω3 + 14e2ω2)b3 +(−5/2c4ω8 +(−11c3 + 41/2c2)ω7 + c2(23e+
6)ω6 − 4ecω5+ 34e2ω4)b2 +(−1/2c4ω10+(2c3+ 9c2)ω9 + 28ecω7+ 12e2ω6)b+ 2c2ω11)bωd7,
h10 = 2(c2(1/2c2ω2 + 2cω + e)b4 + (3c4ω4 + 13c3ω3 +(11/2ec2 + 4)ω2 + 2ecω + 5e2)b3 +(−3/2c4ω6 + 19c3ω5 +
c2(29e+ 8)ω4 + 18ecω3 − 7e2ω2)b2)+ (−4c4ω8 + 5c3ω7 − 37/2ec2ω6 + 20ceω5 − 13e2ω4)b− 1/2c4ω10+ ec2ω8 +
12e2ω6)b2ω2d6,
h11 = −2((3/2c2ω2 +(2c+ 3)ω + e)c2b3 +(9/2c4ω4 +(8c3 + 5/2c2)ω3 + 12ec2ω2 + 7ecω)b2 +(3/2c4ω6 +(11c3 +
15/2c2)ω5 + 25ec2ω4 + 19ecω3+ 8e2ω2)b− 1/2c4ω8 +(−6c3+ 5/2c2)ω7 + 7ec2ω6 + 16e2ω4)b3ω3d5,
h12 = 2b3(c2(3/2c2ω2 + cω + e)b3 + (3ω4c4 + 5ω3c3 + 7eω2c2 + 3e2)b2 + (−3/2c4ω6 + 4c3ω5 + 15ec2ω4 +
11e2ω2)b − c4ω8 − 10ec2ω6)ω4d4 − 3c2b4((c2ω + 2/3c + 1)b2 + 10/3(1/2c2ω2 + (3/5c + 1/10)ω + e)ωb +
1/3c2ω5 + 4eω3)ω6d3,
h13 = (3c4ω8b6 +(2ω10c4 + 7eω8c2)b5 − b4c4ω12)d2 − b5c4ω9(ω2 + b)d+ b6c4ω10,
B1 = b2d18ω2c4 + 8b2d16ω4c4 + 22b2d14ω6c4 + 28b2d12ω8c4 + 17b2d10ω10c4 + 4b2d8ω12c4 + 6b3d16ω2c4 +
35b3d14ω4c4 + 71b3d12ω6c4 + 63b3d10ω8c4 + 23b3d8ω10c4 + 2b3d6ω12c4 + 15b4d14ω2c4 + 63b4d12ω4c4 +
91b4d10ω6c4 + 51b4d8ω8c4 + 6b4d6ω10c4 − 2b4d4ω12c4 − 4b2d17ω2c3 − 52b2d15ω4c3 − 132b2d13ω6c3 −
124b2d11ω8c3 − 40b2d9ω10c3 + 4d22c2 + 32d20ω2c2 + 88d18ω4c2 + 112d16ω6c2 + 68d14ω8c2 + 16d12ω10c2 +
20b5d12ω2c4 + 62b5d10ω4c4 + 63b5d8ω6c4 + 20b5d6ω8c4 − b5d4ω10c4 − 20b3d15ω2c3 + 148b3d13ω4c3,
B2 = −228b3d11ω6c3 − 92b3d9ω8c3 + 8b3d7ω10c3 + 9b2d16eω2c2 + 89b2d14eω4c2 + 207b2d12eω6c2 +
183b2d10eω8c2 + 56b2d8eω10c2 + 24bd20c2 + 168bd18ω2c2 + 360bd16ω4c2 + 312bd14ω6c2 + 96bd12ω8c2 −
8d21ec − 64d19eω2c − 176d17eω4c − 224d15eω6c − 136d13eω8c − 32d11eω10c + 15b6d10ω2c4 + 38b6d8ω4c4 +
30b6d6ω6c4 + 6b6d4ω8c4 − b6d2ω10c4 − 20b4d13ω2c3 − 122b4d11ω4c3 − 22b4d9ω6c3 + 60b4d7ω8c3 +
45b3d14eω2c2 + 274b3d12eω4c2 + 385b3d10eω6c2 + 140b3d8eω8c2 − 16b3d6eω10c2 + 60b2d18c2 + 396b2d16ω2c2 +
864b2d14ω4c2 + 780b2d12ω6c2 + 252b2d10ω7c2,
B3 = −48bd19ec − 340bd17eω2c − 720bd15eω4c − 612bd13eω6c − 184bd11eω8c + 4d20e2 + 32d18e2ω2 +
88d16e2ω4 + 112d14e2ω6 + 68d12e2ω8 + 16d10e2ω10 + 6b7d8ω2c4 + 15b7d6ω4c4 + 12b7d4ω6c4 + 3b7d2ω8c4 −
40b5d11ω2c3 + 2b5d9ω4c3 + 118b5d7ω6c3 + 76b5d5ω8c3 + 90b4d12eω2c2 + 278b4d10eω4c2 + 101b4d8eω6c2 −
78b4d6eω8c2 + 80b3d12c2 + 544b3d14ω2c2 + 1112b3d12ω4c2 + 648b3d10ω6c2 − 120b2d17ec − 840b2d15eω2c −
1880b2d13eω4c − 1744b2d11eω6c − 584b2d9eω8c + 24bd18e2 + 172bd16e2ω2 + 360bd14e2ω4 + 300bd12e2ω6 +
88bd10e2ω8 + b8d6ω2c4 + 3b8d4ω4c4,
B4 = 3b8d2ω6r4 + b8ω8c4 − 20b6d9ω2c3 + 38b6d7ω4c3 + 58b6d5ω6c3 + 90b5d10eω2c2 + 80b5d8eω4c2 −
126b5d6eω6c2 − 116b5d4eω8c2 + 60b4d14c2 + 456b4d12ω2c2 + 1032b4d10ω4c2 + 1716b4d8ω6c2 − 160b3d15ec −
1240b3d13eω2c − 2560b3d11eω4c − 1372b3d9eω6c + 60b2d16e2 + 448b2d14e2ω2 + 1016b2d12e2ω4 +
952b2d10e2ω6 + 324b2d8e2ω8 − 4b7d7ω2c3 + 10b7d5ω4c3 + 14b7d3ω6c3 + 45b6d8eω2c2 − 23b6d6eω4c2 −
68b6d4eω6c2 + 24b5d12c2 + 216b5d10ω2c2 + 912b5d8ω4c2 − 120b4d13ec− 1120b4d11eω2c,
B5 = −2654b4d9eω4c − 4912b4d7eω6c + 80b3d14e2 + 712b3d12e2ω2 + 1438b3d10e2ω4 + 644b3d8e2ω6 +
9b7d6eω2c2 − 10b7d4eω4c2 − 19b7d2eω6c2 + 4b6d10c2 + 44b6d8ω2c2 + 400b6d6ω4c2 − 48b5d11ec− 564b5d9eω2c−
2604b5d7eω4c + 60b4d12e2 + 688b4d10e2ω2 + 1687b4d8e2ω4 + 3516b4d6e2ω6 − 8b6d9ec − 120b6d7eω2c −
1174b6d5eω4c+ 24b5d10e2 + 364b5d8e2ω2 + 1852b5d6e2ω4 + 4b6d8e2 + 80b6d6e2ω2 + 859b6d4e2ω4,
c1 = (2bc2d2 + 3bc2ω2 + 2b2c2 − 2ced2 + 2de2)(bc2d4 + 2b2c2d2 + 2cd4e + b3c2 − 2d3e2) − b2d14c4ω4 −
3b2d10c4ω6 − 3b2d8c4ω8 − b2d6c4ω10 − 2b3d10c4ω4 − 4b3d8c4ω6 − 2b3d6c4ω8 + 4bd15c3ω2 + 12bd13c3ω4 +
12bd11c3ω6 + 4bd9c3ω8 + b4d6c4ω6,
c2 = 2b4d4c4ω8 + b4d4c4ω10 + 22b2d13c3ω2 + 84b2d11c3ω4 + 102b2d9c3ω6 + 40b2d7c3ω8 + 3bd15c2ω2 −
4bd14ec2ω2 + 19bd13c2ω4 − 10bd12ec2ω4 + 33bd11c2ω6 − 8bd10ec2ω6 + 21bd9c2ω8 − 2bd8ec2ω8 + 4bd7ω10c2 +
16d16c2ω2 + 48d14c2ω4 + 48d12c2ω6 + 16d10c2ω8 + 2b5d6c4ω4 + 4b5d4c4ω8 + 2b5d2c4ω8 + 48b3d11c3ω2 +
150b3d9c3ω4 + 122b3d7c3ω8 + 20b3d5c3ω8 + 15b2c2d13ω2 − 26b2d12ec2ω2 + 64b2d11c2ω4,
c3 = −102b2d10ec2ω4 + 71b2d9c2ω6 − 130b2d8ec2ω6 + 22b2d7c2ω8 − 54b2d6ec2ω8 + 40bd14c2ω2 + 80bd12c2ω4 +
40bd10c2ω6 − 2d17ce − 50d15eω2c − 134d13ceω4 − 126d11ceω6 − 40d9ceω8 + b6d4c4ω4 + 2b6d2c4ω6 + b6c4ω8 +
52b4d9c3ω2 + 102b4d7c3ω4 + 50b4d5c3ω6 + 30b3d11c2ω2 − 64b3d10ec2ω2 + 81b3d9c2ω4 − 199b3d8c2eω4 +
56b3d7c2ω6 − 163b3d9c2eω6 + 5b3d5c2ω8 − 28b3d4c2eω8 + 24b2d12c2ω2 + 32b2d10c2ω4 + 8b2d8c2ω6 − 10bd15ce,
c4 = −148bd13ceω2 − 258bd11ecω4 − 120bd9ceω6 + 2d16e2 + 34d14e2ω2 + 86d12e2ω4 + 78d10e2ω6 + 24d8e2ω8 +
28b5d7c3ω2 + 30b5d5c3ω4 + 2b5d3c3ω6 + 30b4d9c2ω2 − 76b4d8ec2ω2 + 49b4d7c2ω4 − 142b4d6ec2ω4 +
19b4d5ω6c2 − 66b4d4ec2ω6 − 8b3d10c2ω2 − 8b3d8c2ω4 − 20b2d13ce − 152b2d11ceω2 − 178b2d9ceω4 −
10b2d7ceω6 + 10bd14e2 + 112bd12e2ω2 + 168bd10e2ω4 + 84bd8e2ω6 + 6b6d5c3ω2 + 6b6d3c3ω4 + 15b5d7c2ω2 −
44b5d6c2eω2 + 16b5d5c2ω4 − 45b5d4c2eω4 + b5d3c2ω6 − b5d2c2eω6 − 8b4d8c2ω2

and c5 =
−8b4d6c2ω4 − 20b3d11ce− 68b3d9ceω2 − 42b3d7ceω4 + 20b2d12e2 + 143b2d10e2ω2 + 171b2d8e2ω4 − 6b2d6e2ω6 +
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3b6d5c2ω2 − 10b6d4c2eω2 + 3b6d3c2ω4 − 10b6d2c2eω4 − 10b4d9ce − 22b4d7ceω2 + 12b4d5ceω4 + 20b3d10e2 +
97b3d8e2ω2 + 68b3d6e2ω4 − 2b5d7ce− 8b5d5ceω2 + 10b4d8e2 + 43b4d6e2ω2 − 3b4d4e2ω4 + 2b5d6e2 + 11b5d4e2ω2.
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