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Abstract: Let T = [Tkj]z‘ =1 be an operator matrix, where 7} ; is a Schatten p—class operator. Then

n n

wp(T) < | Y wh(Tip+ Y, 11Tll5
=1 kj=1
k£

for1 < p <2 and

12 n n
wp(T)<n 7 | Y wh(Ti)+ Y [ITjllh
= Pyt
i)

for 2 < p < oo. These inequalities generalize a recent p—numerical radius inequalities. The first inequality refines another recent
p—numerical radius inequality.
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1 Introduction

Let B(H) denote the C*—algebra of all bounded linear operators on a complex separable Hilbert space H and k(H) denote
the class of compact operators in B(H). For A € B(H), let w(A) and ||A|| denote the numerical radius and the usual operator

norm respectively, where
w(A) = sup [(Ax,x)]

[Ixf=1

and
[All = sup [|Ax|].

[Ixf=1

For A € B(H), the schatten p-norm of A is given by:

1A]], = <ils§<A>>f" — (rlAp)?,
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where 1 < p < co. Note that ||A|| = ||A|| is the usual operator norm of A.

The operator A belongs to the trace class By (H) if ||A||; = tr]A]| is finite, it belongs to the Hilbert Schmidt class B (H)

1

if ||Al] = (tr|A|2)% is finite. In general A € B(H) belongs to the Schatten p-class B, (H)for 1 < p <eoif ||A||, = (tr|A|7)?
is finite.
The singular value of the operator A € B(H) is the eigenvalue of the absolute value of A, |A| = (A*A)%, where A* is the
conjugate transpose of A. The singular values of A are ordered descendingly as s1(A) > s(A) > .... For more details and
generalizations for singular value inequality, we advise the reader to read [4 — 11].

Note that

Al = I[ A] []- 1)
1[5 = [[AA* ]| 2. @)
For more details about Schatten p—norms, we refer to [12].
The Cartesian decomposition of an operator A € B(H) is given by A = Re(A) +iIm(A), where Re(A) = A+A and Im(A) =
Ag—f*. Re(A) and Im(A) are Hermitian matrices. The operator A is called accretive if Re(A) is positive semldeﬁnlte operator

and A is called dissipative if Im(A) is positive semidefinite operator.
It is shown that, [18], the numerical radius of A € B(H) can be written as

w(A) = sup||Re(cA)]|. 3)
0eR

Some remarkable numerical radius inequalities, are given see e.g.[3] and [17].
The authors in [1] define for A € B(H), a more general setting for numerical radius, if A € B(H) and N(.) is a norm, the
generalized numerical radius of A is defined as

wy(A) = Slel%N(Re(eieA))' )

If N is the trace norm, then we get wy(A). If N is the Hilbert Schmidt norm then we get w,(A) and more general if N is
the Schatten p-norm, then we get w,(A). Note that if N(.) is the usual operator norm then the relation (4) reduces to
relation (3.)

The authors in [2], proved that if 7' = [T};]} ;_,, where Ty; € B>(H) , then

Bof—=

n n
wa(T) < | Y wa(Ti)+ Y Tl | - )
j=1 k,j=1
i
The authors in [15], proved that for T € B,,(H)
wi(T) < |[Re(T)||; + [IIm(T)||;; for1<p<2 (6)

and
wh(T) <257 1(||Re(T)| |5 + ||[Im(T)|[2) for2 < p<eo. (7

Recently, the authors in [16], proved that if T = [T};]} Jay where T;; € B,(H) , then

P

i [Re(T35) |15+ | m( ,,>>||P+22P2||Tk,||P for1<p<2 ®)
- k#J
and
:
wp(T) < (V2 “%i Re(T3)I 15+ |[Im(Ty) 17+ 22 "Z||Tk,||P for2<p<es. ©)
k#}

In this paper, we give a generalization of inequality (5), a refinement of inequality (8) and a new numerical radius
inequalities for sums, products and direct sums of operators via unitarily invariant norms and Schatten p-norms.
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2 Numerical radius inequality for Schatten p—norms

In this section, we give a generalization of inequality (5) and a new p-numerical radius inequalities. To prove our results in
this paper, we need the following lemmas. The first lemma is given by Kittaneh in [13], the second lemma is well-known.
The first theorem in this paper is ready to present.

Lemma 1.Let T = [Tkj]?,j:1 be an operator matrix, where Ty; € B,(H) for k,j = 1,...,n. Then

n n
Y TGl < NITI <2 Y ITl15 (10)
kj=1 kj=1
for2 < p < oo, and
n n
n?=2 Y TGl < ITIp < Y [1Tllh (11)
k,j=1 k,j=1
for1 < p<2.
Lemma 2.Let a,b > 0. Then
@’ +b” < (a+b)P <27 (aP +b7), for p>1, (12)
and
2P~ (aP +bP) < (a+b) <aP +bP, for0<p<1. (13)

Theorem 1.Let T = [T}W]Z =1 be an operator matrix , where Ty € B,(H) for k,j =1,2,...,3. Then

1
P

N 3
wp (1) <377 [ Ywtm)+ Y Il | for2<p<es (14)
j=1 k,j=1
k#j
and
7
3 3
wp(T) < | Xwh(Tip)+ Y ITllh | fort<p<2. (15)
j=1 kj=1
k#j
i0 —i0x i0 —i0 x i0 —i0 %
T T T T T T
Proof. Throughout this proof, let A = 6124—%’ = % and C = L;SZ, where
i0 —i@7% ||P
T T . .
2l =2|| =G| =21l T e T I
P
<2'P(|1€ T |, + |le T3, || )P (by the triangle inequality)
=2"77(||Tha |, + |51 1,p)” (16)
=2"7P(||T2llp + |21 |)?
<217P2P (|| Tia|[D + || T |[5) (by inequlitiy (12))
= ([T + T2 [15)-

In the same procedure, we can easily show that

2BI[D < ||Tus| |5 + | T 15 (17)
and
2/[C]|8 < T35 + 1 T2 [5- (18)
©2025 YU
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Now, we prove inequality (14):

wy(T) = sup ||Re(e®T)]|,

1 T e T T Ty T
= 5 5up e |y Ty Tz | +e7 | T, T, T
* * *
O€R T3 Ty T33 T3 Ty Ty »
1 el:eTll +€7116T]*l elzele—l—eﬂ:eTQ*] el:GT13 +67{9T3*]
= 5 sup | ||| €0 +e 0Ty, €Ty + 67T, €T+ 70T
0cR 619T3| +e—16T1*3 e’9T32+e_’9T23 e’9T33+e_’9T33 )
[Re(e®Tyy) A B
= sup A*  Re(e®Typ) C
0ER i B* c* Re(e’9T33) )

1

6cR j=1
(by inequality (10))

< 0.8sup3'~ (ZHRe (T3 15+ NS + [1BI5 + IICI15 + [|A*[15 + ||B* ||”+||C*||”>

1

P

=0.8sup3'~ (ZIIRe (eTj;) ||”+2||A||”+2||B||”+2||CII”>
6eR

1
P

<082u£3 <Z||R€ ETi)15+ (Tl 5+ || T2 ]15) + (||Tl3||§+||T31||§)+(||T23||§+||T32||§)>
€ —1

(by inequlities (16),(17) and (18))

==

1-2 i0
—sup3 | B R T)llp+ Y 1Tl
0eR j=1 kj=1
k#j

<=

=377 supZIIRe ’9T11)||p+sup Z T3 115
0€R j= OcRE j=1
k#j

P

3
1-2
=37 Z wh(Tj; +Z 1T (5
Jj=1 k,j=1

k#j
Replacing the same steps in proving inequality (14) and by using inequalities (11), we can give inequality (15).

Using the same techniquefor 7' = [T;;]} j=1» used in the proof of inequality (14), we can give the following generalization
of inequalities (14) and (15).
Theorem 2.Let T = [Tkj];:j=1 be an operaor matrix, where Ty; € B,(H) for k,j =1,2,...,n. Then

P

2| &
wy(T) <n'"7 Z wh(Tj;) + Z ITillh | for2< p<es, (19)
Jj=1 k,j=1
k#j
and 1
P
n n
wp(T) < Z wh(Tij)+ Y ITllb | for1<p<2. (20)
Jj=1 k,j=1
k]
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In particular if p = 2 in inequality (19), then we retain inequality (5).
Remark.Inequality (20) is sharper than inequality (8). To show this:

1

P

n

wp(T) < | Yowh(Ti)+ Y [1T115
j=1 k,j=1
k#j

wo(1) < | X IRe(T )+ (T 5+ Y 1Tl | (b inequatity 6)
J=1 k,j=1
k#j

==

IN

wp(T) leRe Ti)ll5 + Im(T)|lp +2277 Z 1Tl | (since 2277 > 1)
j=1 k,j=1

k#j

=

n
Z |[Re(Tjj)||h -+ [|[Im(T;;)||b+ 2%~ pZ||Tk]||p (by inequality (13)).
- =y,

Corollary 1.If T\, 15, ..., T, € B,(H), then

1
wp(l1&Thd®..aT,) < Zw” )7, (21)
for1 < p<2 and
2 n , 1
wp(Mi&T®...aT,) <n »() wh(T)))r. (22)
j=1
for2 < p < oo
The authors in [19] proved that if 7 = [T} ;]} =1 accretive dissipative matrix , then
Y Tl < (0= 1272 Y ([T, forp =2, (23)
k,j=1 Jj=1
k#j
n
Y 1Tlly < (= 10277 Y. 1T l15, for0 < p<2. (24)
k,j=1 J=1
k#j
and .
7[5 <n Y T3]3 (25)
j=1
Theorem 3.Let T = [T}Cj]};jzl be a accretive-dissipative matrix, where Ty; € B, (H) for k, j = 1,2,...,n. Then
1
1 2 n n
wp(T) <n'» Z wh(Tij)+ Y, (n=12P2||T35l | for2<p<e, (26)
J=1 k,j=1
k#j
and :
»
n n 9
wp(T) < | Ywh(Ti)+ Y, (n =122 P|Tll5 | for1<p<2. 27)
j=1 k,j=1
k#j
©2025 YU
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Proof-We reach inequality (26) by using inequalities (19) and (23). Similarly, we give inequality (27) by using inequalities
(20) and (24).

Theorem 4.Let T = [Ty;]} j—1 be an operator matrix , where Ty; € B,(H) fork,j =1,2,...,n and ¢®®T is accretive. Then

(W3 (T;))?. 28)

(agE

wa(T) < V/n(

i=1
Proof.

wa(T) = sup [|Re(eT)||2

6eR
. eiST +e—i97~*
Re(e®Tyy) - il 7l
= Sup .
PISIN i0 ) —i0 )
T +e P, i0
— ... Re(e Tnn) )

n .
vasup(Y” [|Re(e®T5;)|13)% (by inequality (25))
6eR j=1

< V(Y Tt
=1

IN

Remark.Inequality (28) is sharper than, in some cases, inequality (5). To show this, we consider the following example.

Example 1.Let T = [;.L g] . Then the right hand side of inequality (28) is 4y/2while the right hand side of inequality (5) is
V66.

3 Generalized numerical radius inequalities for operators

In this section, we give a new numerical radius inequalities via unitarily invariant norms and Schatten p-norms inequalities
for sums, products and direct sums of operators. To prove the next theorems, we need the following lemmas. The first
lemma is proved in [14] and the second lemma is proved in [8].

Lemma 3.Let K, L € B(H) and N(.) be any unitarily invariant norm. Then

2N(KL*) < N(K*K+L*L). (29)
Lemma 4.[fK,L € B(H), then
2sj(KL*+LK*)gs§([’L<I’;D, forj=1,2,..n. (30)

In particular for any unitarily invariant norm

* * 2 KL
ON(KL* +LK*) < N ({LK . 31)
Lemma 5.[fA,B,X and Y € B(H) such that X and Y are positive semidefinite and N(.) is any unitarily invariant norm,
then
1 1
INAXIYIB 4By xian) < a2 [ |AXT BY2 ) (32)
BY? AX?
©2025 YU
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1 1
ProofLet K = {A}éz Bgz] and L* =

XIA* 0
YIB* 0

[X3A*AX? +YEB*BYS XSA*BY? +Y1B'AX
XIA*BY? +YIB*AX? X1A*AX? +Y1B*BY

(

i
([ )

(

AX? BY?
BY? AX?

YIB* X1A*

AX? BY?
BY? AX3Z

AX?2 BY:2

We present a generalized numerical radius inequality for products of operators. Several special cases are given.

Theorem 5.If A, B,X and Y € B(H) such that X and Y are positive semidefinite and N(.) be any unitarily invariant norm,

then
wn(AX2Y2BY) < §N2<<|AX%|+ |BY2() @ (JAX 3|+ [BY3 ). (33)
In particular, letting N(.) = ||.|| in inequality (33), we give
wp(AXEYEB") <477 1|||AX 3|+ |BYE|2. (34)
Proof.

wy(AX2Y2B*) = supN(Re(e®AX 1Y 1B")
0cR

1 . .
S supN(e®AX Y IR + ¢ OByiXEAY)
2 ger

Ne ]
< ([t mrt
4 BY2 ¢9AX2
1, (|lefAx: By?
:—N 1 . 1
4 BY2 (9AX2
i0 Ayt
glNZ e®AX2 0 N o]
4 0 ¢AX: BY?2

B 1
:lNZ |[AX 2| 0]
0 |AX?2]|

Y
0
|BY 2| 2
0 |BY 2
( by triangle inequality).

_ Lo [laxt+mrd o
4 0 IAX?|+ |BY 3|
1
= NA((JAX [ +|BYE|) & (AX? |+ |BY 2))).

Remark.

©2025 YU
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1.Letting ¥ = X in inequality (33), we give
1 1 | 1 |
wy(AXB*) < ZNZ((|AX7|+ |BX2|) @ (JAX 2|+ |BX2])).

In particular, letting N(.) = ||.||,, we give

1

wp(AXB') <47 [[lAX | +|BX Y| 2.

2.Letting X = I in inequality (35), we give

1
WN(AB*) <

< V(A +[B) @ (1A] +[B])-

In particular, letting N(.) = ||.|

p» We give
* 1
wp(AB*) <47~ |||A]+ |B|[}.
3.Letting B* = A in inequality (37), we give
1 N %
wy(A?) < ZNZ((IAHIA )& (IA[+]47%))).

In particular, letting N(.) = ||.|

p» We give
1
wp(A%) < 4v|[|A] 1[5,
4 Letting A = B = [ in inequality (35), we give

1 1
wy(X) SN (X2 |@ [X2]).
In particular, letting N(.) = ||.||,, we give
1 L2 1
wp(X) < 4r[[[X2|[[, = 47 ||X]]5.

Theorem 6.[f A,B € B(H), then
0 4] AB* 0 L s e )
wo (g ol J=wo ([*5 gl ) <42 (1A% 1B 115+ 1 1Al + 181 1115)

ProofLet X = [ I;)* 18} andY* = {O* 8] in inequality (38), then we give

*1112
AB* 0 1 0A 0A
e ([0 2]) <ol )]+ 23]
2
1 0A 0B
S [ 3 1K e
2
1 |B*|O |A*|O
=4 {o |A|]*[o R

2
oy (1B |+ 4% 0
<
=4 (H[ 0 lal+8l]]|,

1 2
<4r= (|[1AT|+ B {15+ 1A+ [B] [15) -

20

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

We prove a generalized numerical radius inequality for product of three operators. To reach our aim, we need the following

lemma.

©2025 YU
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Lemma 6.IfA,X and Y € B(H) such that A is positive semidefinite and N(.) is any unitarily invariant norm, then

- 1 AP F 1
N(YAX +X*AY*) < ||Y|| ||X||N(A69A)+§N(A2(YX +XY)A2 A2 (Y*X* +XY)A2). (44)

D=

YA

0 in inequality (29), we give

)

ProofLet K = {
A2Y* 0

i ad }
x(,)axz} and L* — [Alzx 0

ATX 0

1ol
IN(YAX +X*AY*) = 2N [YA2XA2] :
Aly* 0

0 0

[AY* 0
ATX 0

IN
=

YAT X*A?
0 0

A3y vAd LAY XX*AY AdyixrAt L AtxvAS
ABXYA? +ATY*X*A? ASXX*AT +ATY*YAS

(
(
[ )
&mmwzwwmzﬁm%fw%MJ>
|
(
(

I
P

)

1

AF(Y*Y + XX*)A% A} (Y*X* + XY)AD
AZ(Y*X* +XY)A? A2 (Y'Y +XX*)A?

I
P

IN
=

0 A2(Y*X* +XY)A?
A2 (Y*X* +XY)A? 0

triangule inequality)

+
=

AL(||Y |2+ ||X|)A 0
0 AR (||Y]]2 +][X|2)A

IN
=

)

i 0 Al (Y*X* £ XY)Ab
A2 (Y*X* +XY)A?

sumﬁﬂmWW(ﬁﬂ)
j 1

[ 1
+N< 0 b(rex +XY)A2>

AL (Y*X* 4+ XY)A? 0
1 1
< (IVIP+IX|PINASA) + NAZ(Y*X* +XY)AT BAL(Y*X* +XY)A

+N

I\)I'—

)- (45)

Replacing X by 1/zX and Y by %Y in inequality (45) and taking the minimum over all # > 0, we give inequality (44).

Theorem 7.If A, X and Y € B(H) such that A is positive semidefinite and N(.) is any unitarily invariant norm, then

1
wn (YAX) < —||Y| |||X||N(A®A)+4N((A (Y*'X*4+XY)A2 )@(A%(Y*X*+XY)A%)). (46)
In particular, letting N(.) = ||.||, we give
i 1L I
wp(YAX) < 277" |[¥]| IX|| [|A]], +272[|AT (V"X 4+ XY)A} . 47)

©2025 YU
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Proof.

wy(YAX) = sup N(Re(e®YAX))
0cR
1 : .
= —supN(ePYAX + e O X*AY¥)
2 6eR

1
< SIFIHIXIIN(A®A4)

1
+ ZN((A% (Y*X* +XY)A2)& (A2 (Y*X" +XY)A?))
(By using inequality (44)).
Remark.
1.Letting X =Y =1 in inequality (46), we give
wn(A) <N(ADA).
In particular, let N(.) = ||.|| (the usual operator norm), we give the well known inequality
w(A) < [A]|.
2.Letting A = [ in inequality (46), we give
1 1
wn(YX) < ¥ IXING @ 1)+ V(X4 X0) @ (X X))
In particular, let N(.) = ||.||,, we give
1 4,1
wp(YX) <20 (n2 [[Y[[ [[X]][ +[|Re(XY)][)-

3.Letting Y =7 and X = XY in inequality (46), we give

Nl—

(Y*X* +XY)AZ B AT (Y*X* +XY)A

D=

1 1
wy(AXY) < S|IXY[IN(A©A) + N (4 )

In particular, let N(.) = ||.|

p» We give
1_ 1_ 1 1
wp(AXY) < 25 V|XY || [IAll, +27 2| JAZ(Y°X" + XY)AZ]),.
4 Letting A = I and X = XY in inequality (46), we give
1 1
wy(XY) < §||XY||N(IG§I) + ZN((Y*X* +XY)® (Y'X* +XY))

In particular, let N(.) = ||.||,, we give

1 1 1
wp(XY) < 20 'np ||XY|| 427 72| XY + Y X,
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