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Abstract: Let A be a commutative ring with identity, G be an abelian group, and consider the group ring AG. A ring A is called a
generalized morphic ring (GM ring) if the annihilator of each element in A is principal. In this article, we showed that if AG is a GM
ring, then so is A. The converse was proved to be false. We try to put some conditions on A or G to get the converse. Among many other
results, we showed that if A is an Armendariz ring and G is a torsion free group, then AG is a GM ring if and only if A is.Moreover, if
Cy denotes the multiplicative cyclic group of order m and Zj, the ring of integers modulo n, we justified that the ring Z,C,, is a GM ring
if and only if, whenever p is a prime dividing gcd(n,m), then p? 1 n. We also proved that for an integral domain D with char(D) = p,
the group ring DC), is a GM ring.
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1 Introduction

In this article, we assume that all rings are commutative rings with identity and all groups are abelian. A ring A is said
to be a morphic ring if for each a € A there exists b € A such that Anng(a) = bA and Anng(b) = aA. A ring A is called
a generalized morphic ring (GM ring) if the annihilator of each element in A is principal, see [16]. For any ring A, we
denote by Z(A), the set of all zero divisors in A. Moreover, the set of regular (non-zero divisors) elements and the set of
all units in A are denoted by reg(A) and U (A), respectively. We recall that a ring A is called an Armendariz ring if for
n K m X n .oom .
any two polynomials ) a;x' and Y}, bix' over A, (¥ aix')( X bix') =0 implies a;b; =0 for all i and j. A group G is called
i=0 i=0 i=0 i=0
locally finite if each finitely generated subgroup of G is finite. For each n € N, we denote the multiplicative cyclic group
of order n by C,.
For a ring A and a group G, we consider the group ring

n
AG = {Zaigi:aiEA,giEG,nEN}
i=1

n n
Let € : AG — A be the ring epimorphism defined by € ( Yy aigi) = Y aj;, and let
i=1 i=1

1

n n
A(G):Kersz{ a,-gieAG:Za,-zO}
=1 i=1

If G is a finite group, then we put G = ¥, g. If g € G has a finite order n, then we let § = 1 +g +---+ g"~!. For more
geG
details and terminology on group rings, see [12].
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In [5] the authors studied morphic group rings and showed that for a ring A and a group G, A is a morphic ring
whenever AG is so. Then they gave some necessary conditions for the converse to be true. A continuation of this work
was carried out in [8], while studying conditions under which a group ring is a principal ideal ring. Similar results were
obtained for AG to be Baer (the annihilator of each non-empty subset of the ring is generated by an idempotent), quasi-
Baer (the annihilator of any ideal is generated by an idempotent), or a PP-ring (every principal ideal is projective), see
[14] and [15]. There are also studies that determine when AG is a clean ring, see [6].

In section 2, we studied when a group ring AG is a GM ring. We showed that if AG is a GM ring, then so is A, but not
conversely. So our task is to study some situations in which the converse is true.

In section 3, we showed that if A is an Armendariz ring, and G is a torsion free abelian group (every non-identity
element has infinite order), then AG is a GM ring if and only if A is a GM ring.

In section 4, we showed that Z,C,, is a GM ring if and only if, whenever p is a prime dividing gcd(n,m), then p? { n.
We showed that if D is a Noetherian integral domain, n = n.1 € U(D), and C, factors uniquely in DC, as a product of
irreducibles, then DC, is a GM ring. Finally, we showed that if D is an integral domain, with char(D) = p, then DC pisa
GM ring.

2 When is AG a GM ring?

In this section, we give necessary conditions for a group ring AG to be a GM ring.

Theorem 1. Let S be a ring and A be a subring of S such that both S and A have the same identity 1. Assume that S is a
free A-module with a multiplicatively closed basis B such that 1 € B. Then A is a GM ring whenever S is so.

n
Proof. Let r € A. Then Anng(r) = S, for some o € S which implies that @ = Zaigi, with a; € A, g; € B for each i.
i=1

n
Let f : S — A be defined by f (Y r;,g;) = ¥ ri. Then clearly f is a ring homomorphism, and so 0 = f(0) = f(ra) = rZai.
=

n
Thus, Zai A C Anny(r). If b € Annya(r) C Anng(r) = aS, then 0 = rb, and hence we have b = a3, for some f € S.

i=1

Sob=f(b.1)=f(b) = (im) f(B) e <iai> A. Thus, A is a GM ring.
i=1

i=1

Corollary 1. IfAG is a GM ring for a ring A and a group G, then A is a GM.

n .
It follows by Theorem 1, that A is a GM ring whenever the polynomial ring Ax] = { ¥, aix’ : a; € A,n € N} or
i=0

n ,
Alx,x '|={ ¥ aix':a;€A,n,m € NU{0}}is a GM ring, being free A-modules with bases By = {x" : n € NU{0}} and
i=—m
By = {x" : n € Z}, respectively. In section 3, we will show that if A is an Armendariz ring, then the converse is also true.
In general, we note that the converse of Corollary 1 is not true. For example, the ring Z4 is a GM ring, while Z4C; is
not since Anngz,c,(2+2g) = (2,1 — g) is not principal. Given that a ring A is a GM, the main objective of this paper is to
determine some extra conditions on A or G that must be added to ensure that AG is also a GM ring.

Example 1.

1.It was shown in [5] that if AG is a morphic ring, then G must be a locally finite group. Now using Theorem 3.3 in [13],
we see that if A is a PP-ring, then AZ is a PP-ring, and so it is a GM ring while Z is not locally finite.

2.It was shown in [14] that if AG is quasi-Baer and G is finite, then |G|_1 € A. One can easily see that Z,C; is a GM
ring (in fact it is a morphic ring), but 2 is not even a regular element in Z,. Since Z,C,; is a principal ideal ring it is not
a quasi-Baer ring nor a PP-ring.

3.It was shown in [14, Lemma 3.1] that if 2~! € A, then AC; ~ A X A, and so A4 is a GM ring if and only if AC; is. In
particular, if # is an odd integer, then Z,C, is a GM ring.

4.For any integral domain D, Z(DC,) = {ot(1+g): a« € D} U{B(1 —g) : B € D} with Annpc,(at(1+g)) = (1 —g)DC>
and Annpc, (B(1—g)) = (14 g)DCs, and so DC; is a GM ring. Moreover, if D is an integral domain that is not a field,
with 27! ¢ D, then DC; is a GM ring that is not a morphic ring nor a PP-ring.
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Theorem 2. Let G be a group and A be a ring. Then AG is a GM ring if and only if AK is a GM ring for each finitely
generated subgroup K of G.

Proof. Using Theorem 1, AK is a subring of AG sharing the same identity 1.e and AG is a free AK-module with the
multiplicatively closed bas1s G. Thus if AG is a GM ring, then AK is also a GM ring.

Conversely, let u = Za ki € AG, and let K = (ky,k2,...,k,). Then AK is a GM ring and u € AK. Therefore, Annag (u) =
i=1
cAK is a principal ideal for some ¢ € AK, and since uc = 0, we have cAG C Annsg(u). Let v € Anngg(u) and e,gll,glz,
be the distinct representatives of the left cosets of K in G, and so G = KU gllK U glzK U---. Thus, we have v = Zbig;, with
b; € AK. Since 0 = uv = Z(ub,-)g;», we must have ub; = 0 for each i, and so b; = cc; with ¢; € AK. Thus, v = Zb,-g; =
chig; = ch,-g; € cAG. Hence, Annag(u) = cAG is principal, and AG is a GM ring.

Corollary 2. Let A be a ring and let G be a locally finite group. Then AG is a GM ring if and only if AK is a GM ring
for each finite subgroup K of G.

Definition 1. Let A be a ring and M be an A-module. For each m € M let Anng(m) = {r € A: rm = 0}. An A-module M
is called a GM A-module if Anny(m) is a principal ideal for each m € M.

Theorem 3. Let A be a ring and let G be a group. Then A is a GM ring if and only if AG is a GM A-module.

Proof. Letv = Z a;g; € AG and let Anny(ay,az,...ay) = cA. It is clear that cA C Anny(v) and if r € Anny(v), then

r € Anny(ay,az, .. a,,) = cA. Thus, Anny (v) = cA is principal and AG is a GM A-module. The converse is clear.

3 The Group Ring AG with G a Torsion Free Abelian Group

In this section, we discuss the GM group rings AG in the case G is a torsion free abelian group. But first, we will need the
following lemma.

Lemma 1. Let {Aq}qen be a direct system of rings such that each Ay is a GM ring. For o, € A with a < B, let
gog :Agq — Ag be the corresponding ring homomorphism. For o, B € A with o0 < B, let ag,bo € Aq and suppose that

whenever Anny, (aq) = baAq, we have Anny, ((pg (aq)) = (pg (ba)Ag. Then A =1im Ay is a GM ring.
—

Proof.  Using the terminology of [4, page 33] if & < B, let @ : Aq — Ag be @ homomorphism such that ¢g o (pg = (pgo
@q. Leta € A. Then there exists @ € A such that a = @ (ag). Since Ay is a GM ring, Anna, (aa) = baAa. Letb = @q(by).
Then ab = Qg (aa)Pa(ba) = Pa(adaba) = Pa(0g) = 0. So bA C Anny(a). Let ¢ € Anny(a). Then there exists § > o such
that ¢ = @g(cg). Now 0 = ca = @g(cg)Pa(an) = @glcp)Pp ((pg(aa) = @p(cp (pg‘(aa). Thus there exists ¥ > f such

that 0, = ¢f (c50f (aa)) = @} (cp) @f(aq). By assumption we must have ¢} (cp) € Anny (9 (aa)) = 9 (ba) Ay, that is

90}[/3 (C[i) = (P;(/x(ba)ry for some ry € Ay. Hence ‘PV(‘PE (c[;)) = %(‘P?(ba))%(r}')» and so ¢ = @ (C[i) = Qa(ba)Py(ry) =
boy(ry) € bA. Thus, Anny(a) = bA and A is a GM ring.

Theorem 4. Let A be an Armendariz ring and let G be a torsion free abelian group. Then A is a GM ring if and only if
AG is.

Proof. 1f AG is a GM ring, then A is a GM ring as shown before, so assume that A is a GM ring. Now, AG = lim AK is an
—

ascending union where K ranges over the ﬁnltely generated subgroups of G. Moreover K is a finitely generated torsion
free abelian group, and so K ~ Z" = Z x --- x Z which implies that AK ~ A[x{"!, ..., x!] which is a GM ring being a
localization of the GM ringA[x| ,++«yXn], see [10, Theorem 2.1]. Now let K| C K and letAl =AK, :A[xlil, fl] JAy =
AKy = Al L . Let a € A;. Then Anny, (a) = bA;. We want to show that Anny,(a) = bA;. Smce ab=0
we have bA, gAnnAz( a). Let c €Anny,(a). Then0 =ac = ¢ f—]l where #; is a monomial in xy,...,xs, ¢; € Alxy,...,x5]. We
can view ¢ as a polynomial in A [x,41, ..., X]. Since A is Armendariz, &;; = 0 for each coefficient o; of a and coefficient
B of ci. Thus Bja = 0 for each j, and so B; € Anny,(a) = bA; and this implies that ¢ € bA,. Hence, Anng,(a) = bA;.
Using Lemma 1, we get that AG is a GM ring.
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Note that AZ is never a morphic ring, since Z is not locally finite, while if A is a GM Armendariz ring, then indeed
AZ is a GM ring.

Corollary 3. Let A be an Armendariz ring. Then A is a GM ring if and only if A[x,x™] is a GM ring if and only if A[x]
is a GM ring.

Proof. AisaGM ring < AZ is a GM ring < A[x,x '] is a GM ring.
For A is a GM ring < A[x] is a GM ring, see [10].

4 The Group Ring AC,

To work with torsion groups, we will consider the finite cyclic group C,.

Following [3], a ring A is called an EM ring if for each finitely generated ideal /; of A there exist an element x € A and
a finitely generated ideal I, with I} = xI, and Anny(I;) = {0}. We recall that a ring A is said to have the property (A), if
whenever [ is a finitely generated ideal contained in Z(A), then we must have Anny (1) # 0.

Lemma 2. Let A be a Noetherian ring such that U(A) = reg(A). Then A is an EM ring if and only if A is a principal
ideal ring.

Proof. Suppose that A is an EM ring and /; is an ideal of A. Then there exist x € A and an ideal I; of A such that I} = xI,
with Anny (I;) = {0}. Since A has the property (A), the ideal I, must be regular. Hence, I, = A, and so I} = xA is principal.

It was shown in [16, Proposition 2.8] that if A is a local ring with nilpotent Jacobson radical, then A is morphic if and
only if A is GM. So if A is a finite ring, it is a product of quasi-local rings, and so a finite ring is morphic if and only if it is
a GM ring. Now, we can give other equivalent conditions to the results 3.6,3.8,3.10 and 3.11 in [5]. The main result is:

Theorem 5. The following are equivalent for nym € N\ {1}.

1.Z,,C,, is a morphic ring.

2.7,Cp, is a GM ring.

3.Z,Cy, is an EM ring.

4.Z,,Cy, is a principal ideal ring.

5.If a prime integer p divides gcd(n,m), then p? { .

Proof. (1)<(2) Follows immediately, since Z,C,, is a finite ring.
(2)<(3) Follows by [1, Theorem 3.26].

(3)<(4) Follows from Lemma 2.

(1)<=(5) See [5, Theorem 3.10].

It was shown in [6, Lemma 3.3] that if A is a division ring, then AC, is a morphic ring. We now give a generalization
of this result. Let A be a ring, and let a € A be nonunit. Then a is called irreducible if a = bc implies b or c is associate
with a, that is (a) = (b) or (@) = (¢). A commutative ring A is called atomic if every nonzero nonunit element of A is a
finite product of irreducible elements. It is well known that if a ring A satisfies the ascending chain condition on principal
ideals (in particular if A is Noetherian), then A is atomic, see [2].

Lemma 3. Let A be a Noetherian ring and y € Z(A) such that yA is a prime principal ideal of A. If x € yA\ {0}, then
x=y"s for somen € Nand s € A\ yA.

Proof. See [1, Lemma 3.25].

Lemmad4. Ler A be a ring and let G be a finite group such that |G| = n. Then n is a unit in A if and only if AG =
(G) ® A(G) as rings.

Proof. 1Tt is clear that for any @ € AG,aG = £(a)G. Thus (n~'G)? = n~'G is an idempotent, and so we have AG =
(n'6)@ (1 —n"'G). But (n7'G) = (G), and 1 —n~'G € A(G). Now, if f € A(G), then

f=m16+f1-n16)=e(f)n 'G+f(1-n'G)=f1-n"'G)c(1-n"'G)

and since we have 1 —n~'G € A (G), then AG = (G) & A (G) as rings. If AG = (G) @ A(G), then 1 = aG + B, where
a € AG, and B € A(G). Thus, 1 = e(aG + B) = e(a)n +0.
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Theorem 6. IfD is a Noetherian integral domain, n € U (D), and C, factors uniquely in DC,, as a product of irreducibles,
then DC, is a GM ring.

Proof. Note that DC, is a reduced Noetherian ring, see [7, Theorem 5]. Assume that C, = (g). Since A(C,) is generated
bytheset {1 —g':1<i<n}and1—g'=(1—g)(1+g+---+g"!), wehave A(C,) = (1 —g)DC, a principal prime ideal,
since D is an integral domain, and so it follows by Lemma 4, that DC,, = (§) @ (1 — g). Thus, we can write any element in
DC, as apg + a1 (1 —g), where o € D and a; € A (C,). Note that 1 — g is an irreducible element in DC, being a prime
element, and assume that § = ¥,% - %, a finite product of irreducibles. Let f = opg + oy (1 — g) € Z(DC,) \ {0} and
h= ﬁ0§+ﬁ1 (1 —g) S A””DC,, (f) \ {0} Then O(oﬁong-i- Ollﬁl (1 —g)2 =0, which implies that (X()ﬁong = —061[51(1 —g)2 S
(8)NA(Cy) = {0}, and so apBong = o1 B1(1 — g)*> = 0. Thus we have, oy = 0, which implies that og = 0 or Sy = 0,
and since DC,, is a reduced ring we have ;i (1 — g) = 0, and so, o1 B € Annpc, (1 —g) NA(C,) = (§) NA(C,) = {0}.
Using Lemma 3, and that DG is an atomic ring with 1 — g is an irreducible element, we get a; = a(1 —g)*, B; = b(1 —g)’,
where a,b € DC,\ (1 —g), and so, 0 = ab(1 — g)**/, and since DC, is reduced, we have ab(1 —g) = 0, and hence ab € (g).

Thus 0o = ¥, ¥, -+~ %, 02 (1 — g)* and B = mﬁz(l —g). If ay =0, then f = 0y (1 —g),

A A

5 8 ! I g
Bog %_1%2”%152( 8)" = (Bo¥iy Yy -+~ ¥y + B 8))(%_1%2“%)

and Annpc, (f) = (7’1'171'5“%) is principal. If ap # 0, then f = g+ (1 —g),h=p1(1—g) €

Annpc, (f) = ('Yi] Vif"'%‘k (1 —g)) is principal. Thus, DC, is a GM ring.

Y
s, (L~ 8). and

Example 2. The ring Q[x]C, is a GM ring for any n € N, but it is not a morphic ring, since Q[x] is not.

We now turn to the case when #n is not a unit in A. We showed in Example 1(4) that if D is an integral domain, then
DC, is a GM ring. Now, we generalize to any prime number.

Theorem 7. Let D be an integral domain with char(D) = p, an odd prime. Then DC,, is a GM ring.

p—1 . p—1 .
Proof. LetC,=(g),andlet f = Y a;g' € Z(DC,)\{0}. Assume h = Y x;g' € Ann(f)\{0}. Then we get the system
i=0 i=0
Yy aixj=0fork=0,1,...,p— 1. Thus we have a circulant matrix
i+j=k (mod p)
ap ap ...dp-3 dp—1
ap—14p -.-Ap-3 dp-2
C=CIRC(a0,a1,...,ap_1): : : :
ay daz ... Qo aj
a a...dp-1 4o

X0 0
X1 0

suchthatC | . | = |.|.Working in the field of fractions Q(D) and using [9, Theorem 1.1], we get 0 = det(C) =
XP,I 0

p—1 p—1 p—1 p p—1
Y. a’+ ptfort € D. Since char(D) = p, we get 0 =det(C) = ¥, a’ = < y ai> ,and hence ¥ a;=0,ie., f €A(C)).
i=0 i=0 i=0 i=0

Ifa,' =ajforall i, j, then f = apg and Ann(f) = (1 — g) is principal.
If a; # a; for some i # j, then C is nonrecurrent circular matrix, and so it follows by [11, Theorem 2.1] that rank(C) = p —
1, and thus, nullity(C) = 1, that is nullspace(C) = (co,c1, ... ,¢p—1)D is a one dimensional D—module. But i € Annpc, (f)

p—1
if and only if (xo,x1,...,Xp—1) € nullspace(C) = (co,c1,...,cp—1)D, and so h € ( Yy c,g’) DCp. Thus, Annpc,(f) =
i=0

p=l .
( Yy cig’) DC, is a principal ideal.
i=0
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