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Abstract: Let A be a commutative ring with identity, G be an abelian group, and consider the group ring AG. A ring A is called a

generalized morphic ring (GM ring) if the annihilator of each element in A is principal. In this article, we showed that if AG is a GM

ring, then so is A. The converse was proved to be false. We try to put some conditions on A or G to get the converse. Among many other

results, we showed that if A is an Armendariz ring and G is a torsion free group, then AG is a GM ring if and only if A is.Moreover, if

Cm denotes the multiplicative cyclic group of order m and Zn the ring of integers modulo n, we justified that the ring ZnCm is a GM ring

if and only if, whenever p is a prime dividing gcd(n,m), then p2 ∤ n. We also proved that for an integral domain D with char(D) = p,

the group ring DCp is a GM ring.
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1 Introduction

In this article, we assume that all rings are commutative rings with identity and all groups are abelian. A ring A is said
to be a morphic ring if for each a ∈ A there exists b ∈ A such that AnnA(a) = bA and AnnA(b) = aA. A ring A is called
a generalized morphic ring (GM ring) if the annihilator of each element in A is principal, see [16]. For any ring A, we
denote by Z(A), the set of all zero divisors in A. Moreover, the set of regular (non-zero divisors) elements and the set of
all units in A are denoted by reg(A) and U(A), respectively. We recall that a ring A is called an Armendariz ring if for

any two polynomials
n

∑
i=0

aix
i and

m

∑
i=0

bix
i over A, (

n

∑
i=0

aix
i)(

m

∑
i=0

bix
i) = 0 implies aib j = 0 for all i and j. A group G is called

locally finite if each finitely generated subgroup of G is finite. For each n ∈ N, we denote the multiplicative cyclic group
of order n by Cn.

For a ring A and a group G, we consider the group ring

AG =

{

n

∑
i=1

aigi : ai ∈ A,gi ∈ G,n ∈ N

}

Let ε : AG → A be the ring epimorphism defined by ε

(

n

∑
i=1

aigi

)

=
n

∑
i=1

ai, and let

∆(G) = Ker ε =

{

n

∑
i=1

aigi ∈ AG :
n

∑
i=1

ai = 0

}

If G is a finite group, then we put Ĝ = ∑
g∈G

g. If g ∈ G has a finite order n, then we let ĝ = 1+ g+ · · ·+ gn−1. For more

details and terminology on group rings, see [12].
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In [5] the authors studied morphic group rings and showed that for a ring A and a group G, A is a morphic ring
whenever AG is so. Then they gave some necessary conditions for the converse to be true. A continuation of this work
was carried out in [8], while studying conditions under which a group ring is a principal ideal ring. Similar results were
obtained for AG to be Baer (the annihilator of each non-empty subset of the ring is generated by an idempotent), quasi-
Baer (the annihilator of any ideal is generated by an idempotent), or a PP-ring (every principal ideal is projective), see
[14] and [15]. There are also studies that determine when AG is a clean ring, see [6].

In section 2, we studied when a group ring AG is a GM ring. We showed that if AG is a GM ring, then so is A, but not
conversely. So our task is to study some situations in which the converse is true.

In section 3, we showed that if A is an Armendariz ring, and G is a torsion free abelian group (every non-identity
element has infinite order), then AG is a GM ring if and only if A is a GM ring.

In section 4, we showed that ZnCm is a GM ring if and only if, whenever p is a prime dividing gcd(n,m), then p2 ∤ n.
We showed that if D is a Noetherian integral domain, n = n.1 ∈ U(D), and Ĉn factors uniquely in DCn as a product of
irreducibles, then DCn is a GM ring. Finally, we showed that if D is an integral domain, with char(D) = p, then DCp is a
GM ring.

2 When is AG a GM ring?

In this section, we give necessary conditions for a group ring AG to be a GM ring.

Theorem 1. Let S be a ring and A be a subring of S such that both S and A have the same identity 1. Assume that S is a

free A-module with a multiplicatively closed basis B such that 1 ∈ B. Then A is a GM ring whenever S is so.

Proof. Let r ∈ A. Then AnnS(r) = αS, for some α ∈ S which implies that α =
n

∑
i=1

aigi, with ai ∈ A, gi ∈ B for each i.

Let f : S → A be defined by f (∑rigi) = ∑ri. Then clearly f is a ring homomorphism, and so 0 = f (0) = f (rα) = r
n

∑
i=1

ai.

Thus,

(

n

∑
i=1

ai

)

A ⊆ AnnA(r). If b ∈ AnnA(r) ⊆ AnnS(r) = αS, then 0 = rb, and hence we have b = αβ , for some β ∈ S.

So b = f (b.1) = f (b) =

(

n

∑
i=1

ai

)

f (β ) ∈

(

n

∑
i=1

ai

)

A. Thus, A is a GM ring.

Corollary 1. If AG is a GM ring for a ring A and a group G, then A is a GM.

It follows by Theorem 1, that A is a GM ring whenever the polynomial ring A[x] = {
n

∑
i=0

aix
i : ai ∈ A,n ∈ N} or

A[x,x−1] = {
n

∑
i=−m

aix
i : ai ∈ A,n,m ∈N∪{0}} is a GM ring, being free A-modules with bases B1 = {xn : n ∈N∪{0}} and

B2 = {xn : n ∈ Z}, respectively. In section 3, we will show that if A is an Armendariz ring, then the converse is also true.

In general, we note that the converse of Corollary 1 is not true. For example, the ring Z4 is a GM ring, while Z4C2 is
not since AnnZ4C2

(2+ 2g) = (2,1− g) is not principal. Given that a ring A is a GM, the main objective of this paper is to
determine some extra conditions on A or G that must be added to ensure that AG is also a GM ring.

Example 1.

1.It was shown in [5] that if AG is a morphic ring, then G must be a locally finite group. Now using Theorem 3.3 in [13],
we see that if A is a PP-ring, then AZ is a PP-ring, and so it is a GM ring while Z is not locally finite.

2.It was shown in [14] that if AG is quasi-Baer and G is finite, then |G|−1 ∈ A. One can easily see that Z2C2 is a GM
ring (in fact it is a morphic ring), but 2 is not even a regular element in Z2. Since Z2C2 is a principal ideal ring it is not
a quasi-Baer ring nor a PP-ring.

3.It was shown in [14, Lemma 3.1] that if 2−1 ∈ A, then AC2 ≃ A×A, and so A is a GM ring if and only if AC2 is. In
particular, if n is an odd integer, then ZnC2 is a GM ring.

4.For any integral domain D, Z(DC2) = {α(1+g) : α ∈ D}∪{β (1−g) : β ∈ D} with AnnDC2
(α(1+g)) = (1−g)DC2

and AnnDC2
(β (1−g)) = (1+g)DC2, and so DC2 is a GM ring. Moreover, if D is an integral domain that is not a field,

with 2−1 /∈ D, then DC2 is a GM ring that is not a morphic ring nor a PP-ring.
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Theorem 2. Let G be a group and A be a ring. Then AG is a GM ring if and only if AK is a GM ring for each finitely

generated subgroup K of G.

Proof. Using Theorem 1, AK is a subring of AG sharing the same identity 1.e and AG is a free AK-module with the
multiplicatively closed basis G. Thus if AG is a GM ring, then AK is also a GM ring.

Conversely, let u=
n

∑
i=1

aiki ∈ AG, and let K = 〈k1,k2, ...,kn〉. Then AK is a GM ring and u∈ AK. Therefore, AnnAK(u) =

cAK is a principal ideal for some c ∈ AK, and since uc = 0, we have cAG ⊆ AnnAG(u). Let v ∈ AnnAG(u) and e,g
′

1,g
′

2, ...

be the distinct representatives of the left cosets of K in G, and so G = K∪g
′

1K∪g
′

2K∪·· · . Thus, we have v =∑big
′

i, with

bi ∈ AK. Since 0 = uv = ∑(ubi)g
′

i, we must have ubi = 0 for each i, and so bi = cci with ci ∈ AK. Thus, v = ∑big
′

i =

∑ccig
′

i = c∑cig
′

i ∈ cAG. Hence, AnnAG(u) = cAG is principal, and AG is a GM ring.

Corollary 2. Let A be a ring and let G be a locally finite group. Then AG is a GM ring if and only if AK is a GM ring

for each finite subgroup K of G.

Definition 1. Let A be a ring and M be an A-module. For each m ∈ M let AnnA(m) = {r ∈ A : rm = 0}. An A-module M

is called a GM A-module if AnnA(m) is a principal ideal for each m ∈ M.

Theorem 3. Let A be a ring and let G be a group. Then A is a GM ring if and only if AG is a GM A-module.

Proof. Let v =
n

∑
i=1

aigi ∈ AG and let AnnA(a1,a2, ...an) = cA. It is clear that cA ⊆ AnnA(v) and if r ∈ AnnA(v), then

r ∈ AnnA(a1,a2, ...an) = cA. Thus, AnnA(v) = cA is principal and AG is a GM A-module. The converse is clear.

3 The Group Ring AG with G a Torsion Free Abelian Group

In this section, we discuss the GM group rings AG in the case G is a torsion free abelian group. But first, we will need the
following lemma.

Lemma 1. Let {Aα}α∈Λ be a direct system of rings such that each Aα is a GM ring. For α,β ∈ Λ with α < β , let

ϕα
β : Aα −→ Aβ be the corresponding ring homomorphism. For α,β ∈ Λ with α < β , let aα ,bα ∈ Aα and suppose that

whenever AnnAα (aα) = bα Aα , we have AnnAα (ϕ
α
β (aα)) = ϕα

β (bα)Aβ . Then A = lim
−→

Aα is a GM ring.

Proof. Using the terminology of [4, page 33] if α ≤ β , let ϕα : Aα → Aα be a homomorphism such that ϕβ ◦ϕα
β = ϕα

β ◦

ϕα . Let a∈A. Then there exists α ∈Λ such that a= ϕα(aα). Since Aα is a GM ring, AnnAα (aα) = bα Aα . Let b= ϕα(bα).
Then ab = ϕα(aα)ϕα(bα) = ϕα(aα bα) = ϕα(0α) = 0. So bA ⊆ AnnA(a). Let c ∈ AnnA(a). Then there exists β ≥ α such
that c = ϕβ (cβ ). Now 0 = ca = ϕβ (cβ )ϕα (aα) = ϕβ (cβ )ϕβ (ϕ

α
β (aα) = ϕβ (cβ ϕα

β (aα). Thus there exists γ ≥ β such

that 0γ = ϕ
β
γ (cβ ϕα

β (aα)) = ϕ
β
γ (cβ )ϕ

α
γ (aα). By assumption we must have ϕ

β
γ (cβ ) ∈ Annγ(ϕ

α
γ (aα)) = ϕα

γ (bα)Aγ , that is

ϕ
β
γ (cβ ) = ϕα

γ (bα)rγ for some rγ ∈ Aγ . Hence ϕγ(ϕ
β
γ (cβ )) = ϕγ (ϕ

α
γ (bα))ϕγ (rγ ), and so c = ϕβ (cβ ) = ϕα(bα)ϕγ(rγ ) =

bϕγ(rγ ) ∈ bA. Thus, AnnA(a) = bA and A is a GM ring.

Theorem 4. Let A be an Armendariz ring and let G be a torsion free abelian group. Then A is a GM ring if and only if

AG is.

Proof. If AG is a GM ring, then A is a GM ring as shown before, so assume that A is a GM ring. Now, AG = lim
−→

AK is an

ascending union where K ranges over the finitely generated subgroups of G. Moreover, K is a finitely generated torsion
free abelian group, and so K ≈ Zn = Z× ·· ·×Z which implies that AK ≈ A[x±1

1 , . . . ,x±1
n ] which is a GM ring being a

localization of the GM ring A[x1, . . . ,xn], see [10, Theorem 2.1]. Now let K1 ⊆K2 and let A1 =AK1 =A[x±1
1 , . . . ,x±1

n ], A2 =

AK2 = A[x±1
1 , . . . ,x±1

n , . . . ,x±1
s ]. Let a ∈ A1. Then AnnA1

(a) = bA1. We want to show that AnnA2
(a) = bA2. Since ab = 0

we have bA2 ⊆ AnnA2
(a). Let c ∈ AnnA2

(a). Then 0 = ac = a
1

c1
t1

where t1 is a monomial in x1, . . . ,xs, c1 ∈ A[x1, . . . ,xs]. We

can view c1 as a polynomial in A1[xn+1, . . . ,xs]. Since A is Armendariz, αiβ j = 0 for each coefficient αi of a and coefficient
β j of c1. Thus β ja = 0 for each j, and so β j ∈ AnnA1

(a) = bA1 and this implies that c ∈ bA2. Hence, AnnA2
(a) = bA2.

Using Lemma 1, we get that AG is a GM ring.
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Note that AZ is never a morphic ring, since Z is not locally finite, while if A is a GM Armendariz ring, then indeed
AZ is a GM ring.

Corollary 3. Let A be an Armendariz ring. Then A is a GM ring if and only if A[x,x−1] is a GM ring if and only if A[x]
is a GM ring.

Proof. A is a GM ring ⇔ AZ is a GM ring ⇔ A[x,x−1] is a GM ring.
For A is a GM ring ⇔ A[x] is a GM ring, see [10].

4 The Group Ring ACn

To work with torsion groups, we will consider the finite cyclic group Cn.
Following [3], a ring A is called an EM ring if for each finitely generated ideal I1 of A there exist an element x ∈ A and
a finitely generated ideal I2 with I1 = xI2 and AnnA(I2) = {0}. We recall that a ring A is said to have the property (A), if
whenever I is a finitely generated ideal contained in Z(A), then we must have AnnA(I) 6= 0.

Lemma 2. Let A be a Noetherian ring such that U(A) = reg(A). Then A is an EM ring if and only if A is a principal

ideal ring.

Proof. Suppose that A is an EM ring and I1 is an ideal of A. Then there exist x ∈ A and an ideal I2 of A such that I1 = xI2

with AnnA(I2) = {0}. Since A has the property (A), the ideal I2 must be regular. Hence, I2 = A, and so I1 = xA is principal.

It was shown in [16, Proposition 2.8] that if A is a local ring with nilpotent Jacobson radical, then A is morphic if and
only if A is GM. So if A is a finite ring, it is a product of quasi-local rings, and so a finite ring is morphic if and only if it is
a GM ring. Now, we can give other equivalent conditions to the results 3.6,3.8,3.10 and 3.11 in [5]. The main result is:

Theorem 5. The following are equivalent for n,m ∈N\ {1}.

1.ZnCm is a morphic ring.
2.ZnCm is a GM ring.
3.ZnCm is an EM ring.
4.ZnCm is a principal ideal ring.
5.If a prime integer p divides gcd(n,m), then p2 ∤ n.

Proof. (1)⇔(2) Follows immediately, since ZnCm is a finite ring.
(2)⇔(3) Follows by [1, Theorem 3.26].
(3)⇔(4) Follows from Lemma 2.
(1)⇔(5) See [5, Theorem 3.10].

It was shown in [6, Lemma 3.3] that if A is a division ring, then ACn is a morphic ring. We now give a generalization
of this result. Let A be a ring, and let a ∈ A be nonunit. Then a is called irreducible if a = bc implies b or c is associate
with a, that is (a) = (b) or (a) = (c). A commutative ring A is called atomic if every nonzero nonunit element of A is a
finite product of irreducible elements. It is well known that if a ring A satisfies the ascending chain condition on principal
ideals (in particular if A is Noetherian), then A is atomic, see [2].

Lemma 3. Let A be a Noetherian ring and y ∈ Z(A) such that yA is a prime principal ideal of A. If x ∈ yA \ {0}, then

x = yns for some n ∈ N and s ∈ A\ yA.

Proof. See [1, Lemma 3.25].

Lemma 4. Let A be a ring and let G be a finite group such that |G| = n. Then n is a unit in A if and only if AG =
(

Ĝ
)

⊕△(G) as rings.

Proof. It is clear that for any α ∈ AG ,αĜ = ε(α)Ĝ. Thus (n−1Ĝ)2 = n−1Ĝ is an idempotent, and so we have AG =
(n−1Ĝ)⊕ (1− n−1Ĝ). But (n−1Ĝ) = (Ĝ), and 1− n−1Ĝ ∈△(G). Now, if f ∈△(G), then

f = f n−1Ĝ+ f (1− n−1Ĝ) = ε( f )n−1Ĝ+ f (1− n−1Ĝ) = f (1− n−1Ĝ) ∈ (1− n−1Ĝ)

and since we have 1− n−1Ĝ ∈ △(G), then AG =
(

Ĝ
)

⊕△(G) as rings. If AG =
(

Ĝ
)

⊕△(G), then 1 = αĜ+β , where

α ∈ AG, and β ∈△(G). Thus, 1 = ε(αĜ+β ) = ε(α)n+ 0.
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Theorem 6. If D is a Noetherian integral domain, n∈U(D), and Ĉn factors uniquely in DCn as a product of irreducibles,

then DCn is a GM ring.

Proof. Note that DCn is a reduced Noetherian ring, see [7, Theorem 5]. Assume that Cn = 〈g〉. Since ∆(Cn) is generated
by the set {1−gi : 1≤ i< n} and 1−gi = (1−g)(1+g+ · · ·+gi−1), we have ∆(Cn) = (1−g)DCn a principal prime ideal,
since D is an integral domain, and so it follows by Lemma 4, that DCn = (ĝ)⊕ (1−g). Thus, we can write any element in
DCn as α0ĝ+α1(1− g), where α0 ∈ D and α1 ∈ △(Cn). Note that 1− g is an irreducible element in DCn being a prime
element, and assume that ĝ = γ1γ2 · · ·γm a finite product of irreducibles. Let f = α0ĝ+α1(1− g) ∈ Z(DCn) \ {0} and
h = β0ĝ+β1(1−g)∈ AnnDCn( f )\{0}. Then α0β0nĝ+α1β1(1−g)2 = 0, which implies that α0β0nĝ =−α1β1(1−g)2 ∈
(ĝ)∩△(Cn) = {0}, and so α0β0nĝ = α1β1(1− g)2 = 0. Thus we have, α0β0 = 0, which implies that α0 = 0 or β0 = 0,
and since DCn is a reduced ring we have α1β1(1− g) = 0, and so, α1β1 ∈ AnnDCn(1− g)∩△(Cn) = (ĝ)∩△(Cn) = {0}.

Using Lemma 3, and that DG is an atomic ring with 1−g is an irreducible element, we get α1 = a(1−g)s,β1 = b(1−g)l,
where a,b∈ DCn\(1−g), and so, 0 = ab(1−g)s+l, and since DCn is reduced, we have ab(1−g)= 0, and hence ab∈ (ĝ) .

Thus α1 = γi1 γi2 · · ·γik α2(1− g)s and β1 =
ĝ

γi1
γi2

···γik

β2(1− g)l. If α0 = 0, then f = α1(1− g),

h = β0ĝ+
ĝ

γi1 γi2 · · ·γik

β2(1− g)l = (β0γi1 γi2 · · ·γik +β2(1− g)l)(
ĝ

γi1 γi2 · · ·γik

)

and AnnDCn( f ) =
(

ĝ
γi1

γi2
···γik

)

is principal. If α0 6= 0, then f = α0ĝ+α1(1− g),h = β1(1− g) ∈ ĝ
γi1

γi2
···γik

(1− g), and

AnnDCn( f ) = ( ĝ
γi1

γi2
···γik

(1− g)) is principal. Thus, DCn is a GM ring.

Example 2. The ring Q[x]Cn is a GM ring for any n ∈ N, but it is not a morphic ring, since Q[x] is not.

We now turn to the case when n is not a unit in A. We showed in Example 1(4) that if D is an integral domain, then
DC2 is a GM ring. Now, we generalize to any prime number.

Theorem 7. Let D be an integral domain with char(D) = p, an odd prime. Then DCp is a GM ring.

Proof. Let Cp = 〈g〉, and let f =
p−1

∑
i=0

aig
i ∈ Z(DCp)\{0}. Assume h =

p−1

∑
i=0

xig
i ∈ Ann( f )\{0}. Then we get the system

∑
i+ j≡k (mod p)

aix j = 0 for k = 0,1, . . . , p− 1. Thus we have a circulant matrix

C =CIRC(a0,a1, . . . ,ap−1) =













a0 a1 . . . ap−2 ap−1

ap−1 a0 . . . ap−3 ap−2

...
...

...
...

a2 a3 . . . a0 a1

a1 a2 . . . ap−1 a0













such that C









x0

x1

...
xp−1









=









0
0
...
0









. Working in the field of fractions Q(D) and using [9, Theorem 1.1], we get 0 = det(C) =

p−1

∑
i=0

a
p
i + pt for t ∈ D. Since char(D) = p, we get 0 = det(C) =

p−1

∑
i=0

a
p
i =

(

p−1

∑
i=0

ai

)p

, and hence
p−1

∑
i=0

ai = 0, i.e., f ∈ ∆(Cp).

If ai = a j for all i, j, then f = a0ĝ and Ann( f ) = (1− g) is principal.
If ai 6= a j for some i 6= j, then C is nonrecurrent circular matrix, and so it follows by [11, Theorem 2.1] that rank(C) = p−
1, and thus, nullity(C)= 1, that is nullspace(C)= (c0,c1, . . . ,cp−1)D is a one dimensional D−module. But h∈AnnDCp( f )

if and only if (x0,x1, . . . ,xp−1) ∈ nullspace(C) = (c0,c1, . . . ,cp−1)D, and so h ∈

(

p−1

∑
i=0

cig
i

)

DCp. Thus, AnnDCp( f ) =
(

p−1

∑
i=0

cig
i

)

DCp is a principal ideal.
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