

# Jordan Journal of Mathematics and Statistics. *Yarmouk University*

DOI:https://doi.org/10.47013/18.3.10

# **Generalized Morphic Group Rings**

Emad Abuosba<sup>1,\*</sup>, Manal Ghanem<sup>2</sup> and Hani A. Khashan<sup>3</sup>

- <sup>1</sup> Department of Mathematics, The University of Jordan, Amman, Jordan
- <sup>2</sup> Department of Mathematics, The University of Jordan, Amman, Jordan

Received: April 22, 2024 Accepted: Feb. 3, 2025

**Abstract:** Let A be a commutative ring with identity, G be an abelian group, and consider the group ring AG. A ring A is called a generalized morphic ring (GM ring) if the annihilator of each element in A is principal. In this article, we showed that if AG is a GM ring, then so is A. The converse was proved to be false. We try to put some conditions on A or G to get the converse. Among many other results, we showed that if A is an Armendariz ring and G is a torsion free group, then AG is a GM ring if and only if A is.Moreover, if  $C_m$  denotes the multiplicative cyclic group of order m and  $\mathbb{Z}_n$  the ring of integers modulo n, we justified that the ring  $\mathbb{Z}_n C_m$  is a GM ring if and only if, whenever p is a prime dividing  $\gcd(n,m)$ , then  $p^2 \nmid n$ . We also proved that for an integral domain D with char(D) = p, the group ring  $DC_p$  is a GM ring.

Keywords: Morphic ring; Generalized morphic ring; Morphic group ring; Generalized morphic group ring.

2020 Mathematics Subject Classification. 13A05; 13A02.

#### 1 Introduction

In this article, we assume that all rings are commutative rings with identity and all groups are abelian. A ring A is said to be a **morphic ring** if for each  $a \in A$  there exists  $b \in A$  such that  $Ann_A(a) = bA$  and  $Ann_A(b) = aA$ . A ring A is called a **generalized morphic ring** (**GM ring**) if the annihilator of each element in A is principal, see [16]. For any ring A, we denote by Z(A), the set of all zero divisors in A. Moreover, the set of regular (non-zero divisors) elements and the set of all units in A are denoted by reg(A) and U(A), respectively. We recall that a ring A is called an **Armendariz ring** if for any two polynomials  $\sum_{i=0}^{n} a_i x^i$  and  $\sum_{i=0}^{m} b_i x^i$  over A,  $(\sum_{i=0}^{n} a_i x^i)(\sum_{i=0}^{m} b_i x^i) = 0$  implies  $a_i b_j = 0$  for all i and j. A group G is called **locally finite** if each finitely generated subgroup of G is finite. For each G, we denote the multiplicative cyclic group of order G by G.

For a ring A and a group G, we consider the group ring

$$AG = \left\{ \sum_{i=1}^{n} a_i g_i : a_i \in A, g_i \in G, n \in \mathbb{N} \right\}$$

Let  $\varepsilon: AG \to A$  be the ring epimorphism defined by  $\varepsilon\left(\sum_{i=1}^n a_i g_i\right) = \sum_{i=1}^n a_i$ , and let

$$\Delta(G) = Ker \ \varepsilon = \left\{ \sum_{i=1}^{n} a_i g_i \in AG : \sum_{i=1}^{n} a_i = 0 \right\}$$

If G is a finite group, then we put  $\hat{G} = \sum_{g \in G} g$ . If  $g \in G$  has a finite order n, then we let  $\hat{g} = 1 + g + \dots + g^{n-1}$ . For more details and terminology on group rings, see [12].

<sup>&</sup>lt;sup>3</sup> Department of Mathematics, Al al-Bayt University, Mafraq, Jordan

 $<sup>*</sup> Corresponding \ author \ e-mail: eabuosba@ju.edu.jo, \ m.ghanem@ju.edu.jo, \ hakhashan@aabu.edu.jo$ 

In [5] the authors studied morphic group rings and showed that for a ring A and a group G, A is a morphic ring whenever AG is so. Then they gave some necessary conditions for the converse to be true. A continuation of this work was carried out in [8], while studying conditions under which a group ring is a principal ideal ring. Similar results were obtained for AG to be Baer (the annihilator of each non-empty subset of the ring is generated by an idempotent), quasi-Baer (the annihilator of any ideal is generated by an idempotent), or a PP-ring (every principal ideal is projective), see [14] and [15]. There are also studies that determine when AG is a clean ring, see [6].

In section 2, we studied when a group ring AG is a GM ring. We showed that if AG is a GM ring, then so is A, but not conversely. So our task is to study some situations in which the converse is true.

In section 3, we showed that if A is an Armendariz ring, and G is a **torsion free** abelian group (every non-identity element has infinite order), then AG is a GM ring if and only if A is a GM ring.

In section 4, we showed that  $\mathbb{Z}_n C_m$  is a GM ring if and only if, whenever p is a prime dividing gcd(n,m), then  $p^2 \nmid n$ . We showed that if D is a Noetherian integral domain,  $n = n.1 \in U(D)$ , and  $\hat{C}_n$  factors uniquely in  $DC_n$  as a product of irreducibles, then  $DC_n$  is a GM ring. Finally, we showed that if D is an integral domain, with char(D) = p, then  $DC_p$  is a GM ring.

# 2 When is AG a GM ring?

In this section, we give necessary conditions for a group ring AG to be a GM ring.

**Theorem 1.** Let S be a ring and A be a subring of S such that both S and A have the same identity A. Assume that A is a free A-module with a multiplicatively closed basis A such that A is a A free A-module with a multiplicatively closed basis A such that A is a A free A-module with a multiplicatively closed basis A such that A is a A free A-module with a multiplicatively closed basis A such that A is a A free A-module with A-m

*Proof.* Let 
$$r \in A$$
. Then  $Ann_S(r) = \alpha S$ , for some  $\alpha \in S$  which implies that  $\alpha = \sum_{i=1}^n a_i g_i$ , with  $a_i \in A$ ,  $g_i \in B$  for each  $i$ .

Let 
$$f: S \to A$$
 be defined by  $f(\sum r_i g_i) = \sum r_i$ . Then clearly  $f$  is a ring homomorphism, and so  $0 = f(0) = f(r\alpha) = r \sum_{i=1}^{n} a_i$ .

Thus, 
$$\left(\sum_{i=1}^{n} a_i\right) A \subseteq Ann_A(r)$$
. If  $b \in Ann_A(r) \subseteq Ann_S(r) = \alpha S$ , then  $0 = rb$ , and hence we have  $b = \alpha \beta$ , for some  $\beta \in S$ .

So 
$$b = f(b.1) = f(b) = \left(\sum_{i=1}^{n} a_i\right) f(\beta) \in \left(\sum_{i=1}^{n} a_i\right) A$$
. Thus,  $A$  is a GM ring.

Corollary 1. If AG is a GM ring for a ring A and a group G, then A is a GM.

It follows by Theorem 1, that A is a GM ring whenever the polynomial ring  $A[x] = \{\sum_{i=0}^{n} a_i x^i : a_i \in A, n \in \mathbb{N}\}$  or  $A[x,x^{-1}] = \{\sum_{i=-m}^{n} a_i x^i : a_i \in A, n, m \in \mathbb{N} \cup \{0\}\}$  is a GM ring, being free A-modules with bases  $B_1 = \{x^n : n \in \mathbb{N} \cup \{0\}\}$  and  $B_2 = \{x^n : n \in \mathbb{Z}\}$ , respectively. In section 3, we will show that if A is an Armendariz ring, then the converse is also true.

In general, we note that the converse of Corollary 1 is not true. For example, the ring  $\mathbb{Z}_4$  is a GM ring, while  $\mathbb{Z}_4C_2$  is not since  $Ann_{\mathbb{Z}_4C_2}(2+2g)=(2,1-g)$  is not principal. Given that a ring A is a GM, the main objective of this paper is to determine some extra conditions on A or G that must be added to ensure that AG is also a GM ring.

#### Example 1.

- 1.It was shown in [5] that if AG is a morphic ring, then G must be a locally finite group. Now using Theorem 3.3 in [13], we see that if A is a PP-ring, then  $A\mathbb{Z}$  is a PP-ring, and so it is a GM ring while  $\mathbb{Z}$  is not locally finite.
- 2.It was shown in [14] that if AG is quasi-Baer and G is finite, then  $|G|^{-1} \in A$ . One can easily see that  $\mathbb{Z}_2C_2$  is a GM ring (in fact it is a morphic ring), but 2 is not even a regular element in  $\mathbb{Z}_2$ . Since  $\mathbb{Z}_2C_2$  is a principal ideal ring it is not a quasi-Baer ring nor a PP-ring.
- 3.It was shown in [14, Lemma 3.1] that if  $2^{-1} \in A$ , then  $AC_2 \simeq A \times A$ , and so A is a GM ring if and only if  $AC_2$  is. In particular, if n is an odd integer, then  $\mathbb{Z}_nC_2$  is a GM ring.
- 4. For any integral domain D,  $Z(DC_2) = \{\alpha(1+g) : \alpha \in D\} \cup \{\beta(1-g) : \beta \in D\}$  with  $Ann_{DC_2}(\alpha(1+g)) = (1-g)DC_2$  and  $Ann_{DC_2}(\beta(1-g)) = (1+g)DC_2$ , and so  $DC_2$  is a GM ring. Moreover, if D is an integral domain that is not a field, with  $2^{-1} \notin D$ , then  $DC_2$  is a GM ring that is not a morphic ring nor a PP-ring.

**Theorem 2.** Let G be a group and A be a ring. Then AG is a GM ring if and only if AK is a GM ring for each finitely generated subgroup K of G.

*Proof.* Using Theorem 1, AK is a subring of AG sharing the same identity 1.e and AG is a free AK-module with the multiplicatively closed basis G. Thus if AG is a GM ring, then AK is also a GM ring.

Conversely, let  $u = \sum_{i=1}^{n} a_i k_i \in AG$ , and let  $K = \langle k_1, k_2, ..., k_n \rangle$ . Then AK is a GM ring and  $u \in AK$ . Therefore,  $Ann_{AK}(u) = \sum_{i=1}^{n} a_i k_i \in AG$ , and let  $K = \langle k_1, k_2, ..., k_n \rangle$ .

cAK is a principal ideal for some  $c \in AK$ , and since uc = 0, we have  $cAG \subseteq Ann_{AG}(u)$ . Let  $v \in Ann_{AG}(u)$  and  $e, g_1', g_2', ...$  be the distinct representatives of the left cosets of K in G, and so  $G = K \cup g_1'K \cup g_2'K \cup \cdots$ . Thus, we have  $v = \sum b_i g_i'$ , with  $b_i \in AK$ . Since  $0 = uv = \sum (ub_i)g_i'$ , we must have  $ub_i = 0$  for each i, and so  $b_i = cc_i$  with  $c_i \in AK$ . Thus,  $v = \sum b_i g_i' = \sum cc_i g_i' \in cAG$ . Hence,  $Ann_{AG}(u) = cAG$  is principal, and AG is a GM ring.

**Corollary 2.** Let A be a ring and let G be a locally finite group. Then AG is a GM ring if and only if AK is a GM ring for each finite subgroup K of G.

**Definition 1.** Let A be a ring and M be an A-module. For each  $m \in M$  let  $Ann_A(m) = \{r \in A : rm = 0\}$ . An A-module M is called a GM A-module if  $Ann_A(m)$  is a principal ideal for each  $m \in M$ .

**Theorem 3.** Let A be a ring and let G be a group. Then A is a GM ring if and only if AG is a GM A-module.

*Proof.* Let  $v = \sum_{i=1}^{n} a_i g_i \in AG$  and let  $Ann_A(a_1, a_2, ... a_n) = cA$ . It is clear that  $cA \subseteq Ann_A(v)$  and if  $r \in Ann_A(v)$ , then  $r \in Ann_A(a_1, a_2, ... a_n) = cA$ . Thus,  $Ann_A(v) = cA$  is principal and AG is a GM A-module. The converse is clear.

# 3 The Group Ring AG with G a Torsion Free Abelian Group

In this section, we discuss the GM group rings AG in the case G is a torsion free abelian group. But first, we will need the following lemma.

**Lemma 1.** Let  $\{A_{\alpha}\}_{\alpha\in\Lambda}$  be a direct system of rings such that each  $A_{\alpha}$  is a GM ring. For  $\alpha,\beta\in\Lambda$  with  $\alpha<\beta$ , let  $\varphi^{\alpha}_{\beta}:A_{\alpha}\longrightarrow A_{\beta}$  be the corresponding ring homomorphism. For  $\alpha,\beta\in\Lambda$  with  $\alpha<\beta$ , let  $a_{\alpha},b_{\alpha}\in A_{\alpha}$  and suppose that whenever  $Ann_{A_{\alpha}}(a_{\alpha})=b_{\alpha}A_{\alpha}$ , we have  $Ann_{A_{\alpha}}(\varphi^{\alpha}_{\beta}(a_{\alpha}))=\varphi^{\alpha}_{\beta}(b_{\alpha})A_{\beta}$ . Then  $A=\lim_{\longrightarrow}A_{\alpha}$  is a GM ring.

*Proof.* Using the terminology of [4, page 33] if  $\alpha \leq \beta$ , let  $\varphi_{\alpha}: A_{\alpha} \to A_{\alpha}$  be a homomorphism such that  $\varphi_{\beta} \circ \varphi_{\beta}^{\alpha} = \varphi_{\beta}^{\alpha} \circ \varphi_{\alpha}$ . Let  $a \in A$ . Then there exists  $\alpha \in A$  such that  $a = \varphi_{\alpha}(a_{\alpha})$ . Since  $A_{\alpha}$  is a GM ring,  $Ann_{A_{\alpha}}(a_{\alpha}) = b_{\alpha}A_{\alpha}$ . Let  $b = \varphi_{\alpha}(b_{\alpha})$ . Then  $ab = \varphi_{\alpha}(a_{\alpha})\varphi_{\alpha}(b_{\alpha}) = \varphi_{\alpha}(a_{\alpha}b_{\alpha}) = \varphi_{\alpha}(0_{\alpha}) = 0$ . So  $bA \subseteq Ann_{A}(a)$ . Let  $c \in Ann_{A}(a)$ . Then there exists  $\beta \geq \alpha$  such that  $c = \varphi_{\beta}(c_{\beta})$ . Now  $0 = ca = \varphi_{\beta}(c_{\beta})\varphi_{\alpha}(a_{\alpha}) = \varphi_{\beta}(c_{\beta})\varphi_{\beta}(\varphi_{\beta}^{\alpha}(a_{\alpha}) = \varphi_{\beta}(c_{\beta})\varphi_{\beta}^{\alpha}(a_{\alpha})$ . Thus there exists  $\gamma \geq \beta$  such that  $0_{\gamma} = \varphi_{\gamma}^{\beta}(c_{\beta}\varphi_{\beta}^{\alpha}(a_{\alpha})) = \varphi_{\gamma}^{\beta}(c_{\beta})\varphi_{\gamma}^{\alpha}(a_{\alpha})$ . By assumption we must have  $\varphi_{\gamma}^{\beta}(c_{\beta}) \in Ann_{\gamma}(\varphi_{\gamma}^{\alpha}(a_{\alpha})) = \varphi_{\gamma}^{\alpha}(b_{\alpha})A_{\gamma}$ , that is  $\varphi_{\gamma}^{\beta}(c_{\beta}) = \varphi_{\gamma}^{\alpha}(b_{\alpha})r_{\gamma}$  for some  $r_{\gamma} \in A_{\gamma}$ . Hence  $\varphi_{\gamma}(\varphi_{\gamma}^{\beta}(c_{\beta})) = \varphi_{\gamma}(\varphi_{\gamma}^{\alpha}(b_{\alpha}))\varphi_{\gamma}(r_{\gamma})$ , and so  $c = \varphi_{\beta}(c_{\beta}) = \varphi_{\alpha}(b_{\alpha})\varphi_{\gamma}(r_{\gamma}) = b\varphi_{\gamma}(r_{\gamma}) \in bA$ . Thus,  $Ann_{A}(a) = bA$  and A is a GM ring.

**Theorem 4.** Let A be an Armendariz ring and let G be a torsion free abelian group. Then A is a GM ring if and only if AG is.

*Proof.* If AG is a GM ring, then A is a GM ring as shown before, so assume that A is a GM ring. Now,  $AG = \varinjlim AK$  is an ascending union where K ranges over the finitely generated subgroups of G. Moreover, K is a finitely generated torsion free abelian group, and so  $K \approx \mathbb{Z}^n = \mathbb{Z} \times \cdots \times \mathbb{Z}$  which implies that  $AK \approx A[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$  which is a GM ring being a localization of the GM ring  $A[x_1, \dots, x_n]$ , see [10, Theorem 2.1]. Now let  $A[x_1, \dots, x_n]$  which is a GM ring being a  $A[x_1, \dots, x_n]$  has  $A[x_1, \dots, x_n]$ . Let  $A[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$  has  $A[x_1, \dots, x_n^{\pm 1}]$  where  $A[x_1, \dots, x_n^{\pm 1}]$  has  $A[x_1, \dots, x_n^{\pm 1}]$ . We want to show that  $A[x_1, \dots, x_n^{\pm 1}]$  where  $A[x_1, \dots, x_n^{\pm 1}]$  has  $A[x_1, \dots, x_n^{\pm 1}]$ . We can view  $A[x_1, \dots, x_n^{\pm 1}]$  has  $A[x_1, \dots, x_n^{\pm 1}]$ . Since  $A[x_1, \dots, x_n^{\pm 1}]$  has a monomial in  $A[x_1, \dots, x_n^{\pm 1}]$ . We can view  $A[x_1, \dots, x_n^{\pm 1}]$  has  $A[x_1, \dots, x_n^{\pm 1}]$  has a monomial in  $A[x_1, \dots, x_n^{\pm 1}]$ . We can view  $A[x_1, \dots, x_n^{\pm 1}]$  has  $A[x_1,$ 

Note that  $A\mathbb{Z}$  is never a morphic ring, since  $\mathbb{Z}$  is not locally finite, while if A is a GM Armendariz ring, then indeed  $A\mathbb{Z}$  is a GM ring.

**Corollary 3.** Let A be an Armendariz ring. Then A is a GM ring if and only if  $A[x,x^{-1}]$  is a GM ring if and only if A[x] is a GM ring.

*Proof.* A is a GM ring  $\Leftrightarrow$   $A\mathbb{Z}$  is a GM ring  $\Leftrightarrow$   $A[x,x^{-1}]$  is a GM ring. For A is a GM ring  $\Leftrightarrow$  A[x] is a GM ring, see [10].

### 4 The Group Ring $AC_n$

To work with torsion groups, we will consider the finite cyclic group  $C_n$ .

Following [3], a ring A is called an **EM ring** if for each finitely generated ideal  $I_1$  of A there exist an element  $x \in A$  and a finitely generated ideal  $I_2$  with  $I_1 = xI_2$  and  $Ann_A(I_2) = \{0\}$ . We recall that a ring A is said to have the **property** (A), if whenever I is a finitely generated ideal contained in Z(A), then we must have  $Ann_A(I) \neq 0$ .

**Lemma 2.** Let A be a Noetherian ring such that U(A) = reg(A). Then A is an EM ring if and only if A is a principal ideal ring.

*Proof.* Suppose that *A* is an EM ring and  $I_1$  is an ideal of *A*. Then there exist  $x \in A$  and an ideal  $I_2$  of *A* such that  $I_1 = xI_2$  with  $Ann_A(I_2) = \{0\}$ . Since *A* has the property (A), the ideal  $I_2$  must be regular. Hence,  $I_2 = A$ , and so  $I_1 = xA$  is principal.

It was shown in [16, Proposition 2.8] that if A is a local ring with nilpotent Jacobson radical, then A is morphic if and only if A is GM. So if A is a finite ring, it is a product of quasi-local rings, and so a finite ring is morphic if and only if it is a GM ring. Now, we can give other equivalent conditions to the results 3.6, 3.8, 3.10 and 3.11 in [5]. The main result is:

**Theorem 5.** *The following are equivalent for*  $n, m \in \mathbb{N} \setminus \{1\}$ *.* 

```
1.\mathbb{Z}_n C_m is a morphic ring.
```

 $2.\mathbb{Z}_n C_m$  is a GM ring.

 $3.\mathbb{Z}_n C_m$  is an EM ring.

 $4.\mathbb{Z}_n C_m$  is a principal ideal ring.

5.If a prime integer p divides gcd(n, m), then  $p^2 \nmid n$ .

*Proof.* (1) $\Leftrightarrow$ (2) Follows immediately, since  $\mathbb{Z}_n C_m$  is a finite ring.

 $(2)\Leftrightarrow(3)$  Follows by [1, Theorem 3.26].

 $(3)\Leftrightarrow (4)$  Follows from Lemma 2.

 $(1)\Leftrightarrow(5)$  See [5, Theorem 3.10].

It was shown in [6, Lemma 3.3] that if A is a division ring, then  $AC_n$  is a morphic ring. We now give a generalization of this result. Let A be a ring, and let  $a \in A$  be nonunit. Then a is called **irreducible** if a = bc implies b or c is **associate** with a, that is (a) = (b) or (a) = (c). A commutative ring A is called **atomic** if every nonzero nonunit element of A is a finite product of irreducible elements. It is well known that if a ring A satisfies the ascending chain condition on principal ideals (in particular if A is Noetherian), then A is atomic, see [2].

**Lemma 3.** Let A be a Noetherian ring and  $y \in Z(A)$  such that yA is a prime principal ideal of A. If  $x \in yA \setminus \{0\}$ , then  $x = y^n s$  for some  $n \in \mathbb{N}$  and  $s \in A \setminus yA$ .

*Proof.* See [1, Lemma 3.25].

**Lemma 4.** Let A be a ring and let G be a finite group such that |G| = n. Then n is a unit in A if and only if  $AG = (\hat{G}) \oplus \triangle(G)$  as rings.

*Proof.* It is clear that for any  $\alpha \in AG$ ,  $\alpha \hat{G} = \varepsilon(\alpha)\hat{G}$ . Thus  $(n^{-1}\hat{G})^2 = n^{-1}\hat{G}$  is an idempotent, and so we have  $AG = (n^{-1}\hat{G}) \oplus (1 - n^{-1}\hat{G})$ . But  $(n^{-1}\hat{G}) = (\hat{G})$ , and  $1 - n^{-1}\hat{G} \in \triangle(G)$ . Now, if  $f \in \triangle(G)$ , then

$$f = fn^{-1}\hat{G} + f(1-n^{-1}\hat{G}) = \varepsilon(f)n^{-1}\hat{G} + f(1-n^{-1}\hat{G}) = f(1-n^{-1}\hat{G}) \in (1-n^{-1}\hat{G})$$

and since we have  $1 - n^{-1}\hat{G} \in \triangle(G)$ , then  $AG = (\hat{G}) \oplus \triangle(G)$  as rings. If  $AG = (\hat{G}) \oplus \triangle(G)$ , then  $1 = \alpha \hat{G} + \beta$ , where  $\alpha \in AG$ , and  $\beta \in \triangle(G)$ . Thus,  $1 = \varepsilon(\alpha \hat{G} + \beta) = \varepsilon(\alpha)n + 0$ .

**Theorem 6.** If D is a Noetherian integral domain,  $n \in U(D)$ , and  $\hat{C}_n$  factors uniquely in  $DC_n$  as a product of irreducibles, then  $DC_n$  is a GM ring.

*Proof.* Note that  $DC_n$  is a reduced Noetherian ring, see [7, Theorem 5]. Assume that  $C_n = \langle g \rangle$ . Since  $\Delta(C_n)$  is generated by the set  $\{1-g^i: 1 \le i < n\}$  and  $1-g^i = (1-g)(1+g+\cdots+g^{i-1})$ , we have  $\Delta(C_n) = (1-g)DC_n$  a principal prime ideal, since D is an integral domain, and so it follows by Lemma 4, that  $DC_n = (\hat{g}) \oplus (1-g)$ . Thus, we can write any element in  $DC_n$  as  $\alpha_0 \hat{g} + \alpha_1 (1 - g)$ , where  $\alpha_0 \in D$  and  $\alpha_1 \in \triangle(C_n)$ . Note that 1 - g is an irreducible element in  $DC_n$  being a prime element, and assume that  $\hat{g} = \gamma_1 \gamma_2 \cdots \gamma_m$  a finite product of irreducibles. Let  $f = \alpha_0 \hat{g} + \alpha_1 (1 - g) \in Z(DC_n) \setminus \{0\}$  and  $h = \beta_0 \hat{g} + \beta_1 (1 - g) \in Ann_{DC_n}(f) \setminus \{0\}$ . Then  $\alpha_0 \beta_0 n \hat{g} + \alpha_1 \beta_1 (1 - g)^2 = 0$ , which implies that  $\alpha_0 \beta_0 n \hat{g} = -\alpha_1 \beta_1 (1 - g)^2 \in Ann_{DC_n}(f) \setminus \{0\}$ .  $(\hat{g}) \cap \triangle(C_n) = \{0\}$ , and so  $\alpha_0 \beta_0 n \hat{g} = \alpha_1 \beta_1 (1-g)^2 = 0$ . Thus we have,  $\alpha_0 \beta_0 = 0$ , which implies that  $\alpha_0 = 0$  or  $\beta_0 = 0$ , and since  $DC_n$  is a reduced ring we have  $\alpha_1 \beta_1 (1-g) = 0$ , and so,  $\alpha_1 \beta_1 \in Ann_{DC_n} (1-g) \cap \triangle(C_n) = (\hat{g}) \cap \triangle(C_n) = \{0\}$ . Using Lemma 3, and that DG is an atomic ring with 1-g is an irreducible element, we get  $\alpha_1 = a(1-g)^s$ ,  $\beta_1 = b(1-g)^l$ , where  $a,b \in DC_n \setminus (1-g)$ , and so,  $0 = ab(1-g)^{s+l}$ , and since  $DC_n$  is reduced, we have ab(1-g) = 0, and hence  $ab \in (\hat{g})$ . Thus  $\alpha_1 = \gamma_{i_1} \gamma_{i_2} \cdots \gamma_{i_k} \alpha_2 (1-g)^s$  and  $\beta_1 = \frac{\hat{g}}{\gamma_{i_1} \gamma_{i_2} \cdots \gamma_{i_k}} \beta_2 (1-g)^l$ . If  $\alpha_0 = 0$ , then  $f = \alpha_1 (1-g)$ ,

$$h = \beta_0 \hat{g} + \frac{\hat{g}}{\gamma_{i_1} \gamma_{i_2} \cdots \gamma_{i_k}} \beta_2 (1 - g)^l = (\beta_0 \gamma_{i_1} \gamma_{i_2} \cdots \gamma_{i_k} + \beta_2 (1 - g)^l) (\frac{\hat{g}}{\gamma_{i_1} \gamma_{i_2} \cdots \gamma_{i_k}})$$

and  $Ann_{DC_n}(f) = \left(\frac{\hat{g}}{\gamma_1 \gamma_2 \cdots \gamma_k}\right)$  is principal. If  $\alpha_0 \neq 0$ , then  $f = \alpha_0 \hat{g} + \alpha_1 (1-g), h = \beta_1 (1-g) \in \frac{\hat{g}}{\gamma_1 \gamma_2 \cdots \gamma_k} (1-g)$ , and  $Ann_{DC_n}(f) = \left(\frac{\hat{g}}{\gamma_1 \gamma_2 \cdots \gamma_k} (1-g)\right)$  is principal. Thus,  $DC_n$  is a GM ring.

*Example 2.* The ring  $\mathbb{Q}[x]C_n$  is a GM ring for any  $n \in \mathbb{N}$ , but it is not a morphic ring, since  $\mathbb{Q}[x]$  is not.

We now turn to the case when n is not a unit in A. We showed in Example 1(4) that if D is an integral domain, then  $DC_2$  is a GM ring. Now, we generalize to any prime number.

**Theorem 7.** Let D be an integral domain with char(D) = p, an odd prime. Then  $DC_p$  is a GM ring.

*Proof.* Let  $C_p = \langle g \rangle$ , and let  $f = \sum\limits_{i=0}^{p-1} a_i g^i \in Z(DC_p) \setminus \{0\}$ . Assume  $h = \sum\limits_{i=0}^{p-1} x_i g^i \in Ann(f) \setminus \{0\}$ . Then we get the system  $\sum\limits_{i+j\equiv k \pmod p} a_i x_j = 0$  for  $k=0,1,\ldots,p-1$ . Thus we have a circulant matrix

$$C = CIRC(a_0, a_1, \dots, a_{p-1}) = \begin{bmatrix} a_0 & a_1 \dots a_{p-2} & a_{p-1} \\ a_{p-1} & a_0 \dots a_{p-3} & a_{p-2} \\ \vdots & \vdots & \vdots & \vdots \\ a_2 & a_3 \dots & a_0 & a_1 \\ a_1 & a_2 \dots a_{p-1} & a_0 \end{bmatrix}$$

such that  $C\begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{p-1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ . Working in the field of fractions Q(D) and using [9, Theorem 1.1], we get  $0 = \det(C) = \sum_{i=0}^{p-1} a_i^p + pt$  for  $t \in D$ . Since char(D) = p, we get  $0 = \det(C) = \sum_{i=0}^{p-1} a_i^p = \left(\sum_{i=0}^{p-1} a_i\right)^p$ , and hence  $\sum_{i=0}^{p-1} a_i = 0$ , i.e.,  $f \in \Delta(C_p)$ . If  $a_i = a_j$  for all i, j, then  $f = a_0 \hat{g}$  and Ann(f) = (1 - g) is principal.

If  $a_i \neq a_j$  for some  $i \neq j$ , then C is nonrecurrent circular matrix, and so it follows by [11, Theorem 2.1] that rank(C) = p - 11, and thus, nullity(C) = 1, that is  $nullspace(C) = (c_0, c_1, \dots, c_{p-1})D$  is a one dimensional D—module. But  $h \in Ann_{DC_n}(f)$ 

if and only if  $(x_0, x_1, \dots, x_{p-1}) \in nullspace(C) = (c_0, c_1, \dots, c_{p-1})D$ , and so  $h \in \binom{\sum\limits_{i=0}^{p-1} c_i g^i}{\sum\limits_{i=0}^{p} C_i g^i}DC_p$ . Thus,  $Ann_{DC_p}(f) = (c_0, c_1, \dots, c_{p-1})D$ , and so  $h \in \binom{\sum\limits_{i=0}^{p-1} c_i g^i}{\sum\limits_{i=0}^{p} C_i g^i}DC_p$ .  $\left(\sum_{i=0}^{p-1} c_i g^i\right) DC_p$  is a principal ideal.

#### **Declarations**

**Competing interests**: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Authors' contributions: All authors contributed to the study conception and design.

**Funding**: The authors received no financial support for the research, authorship, and publication of this paper.

**Availability of data and materials**: No new data were created or analyzed during the study. Data sharing is not applicable to this paper.

**Acknowledgments**: We thank the reviewers for their careful reading and valuable comments which have improved the results and the presentation of the paper.

#### References

- [1] E. Abuosba, M. Ghanem, Annihilating Content for Polynomial and Power Series Rings, J. Korean Math. Soc., **56** (5)(2019), 1403-1418.
- [2] D.D. Anderson, Silvia Valdes-leon, Factorization in Commutative Rings with Zero Divisors, Rocky Mountain Journal of Mathematics, **26** (2)(1996), 439-472.
- [3] D.D. Anderson, E. Abuosba, M. Ghanem, Annihilating Content Polynomials and EM-rings, J. Alg. Appl., 21(5)(2022), Article No. 2250092.
- [4] M. Atiyah and I. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publication Company, USA, (1969).
- [5] J. Chen, Y. Li, Y. Zhou, Morphic Group Rings, J. Pure & Applied Alg., 205 (2006), 621-639.
- [6] J. Chen, W. Nicholson, Y. Zhou, Group Rings in which Every Element is Uniquely the Sum of a Unit and an Idempotent, J. Algebra, **306** (2006), 453-460.
- [7] I. Connel, On Group Rings, Can. J. of Math., 15 (1963), 650-685.
- [8] T. Dorsey, Morphic and Principal-ideal Group Rings, J. Algebra, 318 (2007), 393-411.
- [9] M. Ghanem, A. Wyn-Jones, H. AL-Ezeh, Presimplifiable and Cyclic Group Rings, Comm. Alg., 40(8)(2012),3036-3046.
- [10] M. Ghanem, E. Abuosba, Some Extensions of Generalized Morphic Rings and EM-rings, Analele Stiintifice ale Universitatii Ovidius Constanta (Seria Matematica), **26(1)**(2018), 111-123.
- [11] A. Ingleton, The Rank of Circulant Matrices, Journal of the London Mathematical Society, 1-31(4)(1956), 445-460.
- [12] C. Milies, S. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Netherlands, (2002).
- [13] R. Schwarz, S. Glaz, Commutative Group Rings with Von Neumann Regular Total Rings of Quotients. J. Algebra, 388 (2013), 287-293.
- [14] Z. Yi, Y. Zhou, Baer and Quasi-Baer Properties of Group Rings, J. Aust. Math. Soc., 83 (2007), 285-296.
- [15] L. Zan, J. Chen, P.P. Properties of Group Rings, Inter. Electronic J. Algebra, 3 (2008), 117-124.
- [16] H. Zhu, N. Ding, Generalized Morphic Rings and their Applications, Comm. Alg., 35 (2007), 2820-2837.