JIMS 18, No. 3, 449-460 (2025 ) St il 449

YARMOUK UNIVERSITY

Jordan Journal of Mathematics and Statistics.
Yarmouk University

DOTI:https://doi.org/10.47013/18.3.11

On the Dirichlet-hypergeometric distribution on
symmetric matrices

Mohamed Ben Farah *

Laboratory of Probability and Statistics, Sfax University, B.P. 1171, 3000, Stax, Tunisia.

Received: April 24, 2024 Accepted: Jun. 29, 2025

Abstract: In this paper, we introduce an extension of the real Dirichlet-hypergeometric distribution to symmetric matrices, motivated
by the need for structured matrix-valued distributions in multivariate analysis and random matrix theory. This matrix-variate
generalization preserves the combinatorial and probabilistic foundations of the classical Dirichlet model while adapting them to the
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1 Introduction

The Dirichlet distribution has numerous applications across diverse fields. In particular, it has been employed as a
conjugate prior for the multinomial distribution in Bayesian analysis. Additionally, it has been utilised in machine
learning, where it has been employed in topic modelling and probabilistic graphical modelling. Furthermore, it has been
applied in genetics, where it has been used to model allele frequencies within a given population. It has been extensively
studied by Aitchison [1,2], Fang [3], Tang et al. [4], Tsagris and Stewart [5] and Balakrishnan and Nevzorov [6]. A
number of different generalisations of the Dirichlet distribution have been proposed in the literature. These include
Connor and Mosimann’s distribution (Connor and Mosimann [7]), the scaled Dirichlet distribution (Libby and Novick
[8], Chen and Novick [9], and Monti et al. [10]), the Liouville distribution (Marshall and Olkin [11], Bhattacharya [12]
and Rayens and Srinivasan [13]), and the hyper-Dirichlet distribution (Hankin [14]). Nagar et al. [15] proposed another
generalization of the Dirichlet distribution using the hypergeometric Gauss function. Its probability density function
(pdf) is as follows:

51
F(E i+ 8- B)T (T g+ 6—7) ¢ 1( n ) ( " )
i i X 1—Y) x; F ﬁ,7;5;1— Xi |, (D

i (e () (Ll i +6—B—7) it

n
where (xi,...,x,) € (0,40°0)" such that Zx,- <l,06>0,i=1,...,n,0 >0, B, yeRsuchthat}y" ,o;+6>B+7v,I(.)
i=1
is the gamma function defined by

I'a)= / e *x* ldx,
0
and ,F is the Gauss hypergeometric function (see Luke [16]).

The extension of the generalized real Dirichlet distribution to symmetric matrices is of significant importance, as it
provides a powerful and flexible tool for the modelling of complex, symmetric compositional data that arises in various
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fields. It facilitates the capture of intricate dependencies, enables Bayesian inference for matrix-valued parameters, and
opens up new avenues for the analysis of structured multivariate data, particularly in network analysis and other domains
where symmetric relationships are fundamental. In this paper, we introduce and study an extension of the density (1) to
symmetric matrices that involves the Gauss hypergeometric function of the matrix argument.

Let r be a positive integer. We denote the space of real symmetric r X r matrices by V, and the cone of positive definite
elements of V, by Q,. The identity matrix is denoted by I,, the determinant of an element x in V, by det(x), and its trace
by tr(x). In our study, we use the concept of a “quotient” which is defined by the division algorithm on matrices. More
precisely, we exploit the fact that a symmetric positive definite matrix x can be uniquely expressed as the square of a

. 1 . . 1 1 1 . . 1

matrix denoted x2. The quotient of y by x is then defined as x~2yx™2, where x~ 2 represents the inverse of the matrix x2.

Furthermore, we define the multivariate gamma function, which is commonly used in multivariate statistical analysis,
by

r+1
L(a) = / ) det(x) %3 dx
o
1 r—1

r(r—1) r l—
=" Ir (a-==), Re(a)>
T ,IJ (oc 3 >, e(a) 5

The generalized hypergeometric coefficient is defined by

(a)p :ﬁ(a_%)m7

i=1

()j=o(a+1)...(a+j—1), j=1.2,... and (a)y =1,

where p = (p1,...,pr), P1 > ... > pr > 0. The generalized hypergeometric function of matrix argument is defined by
e (0 (@) ke Cie(x)
F((X],...,(X;ﬁl,...,ﬁ;x): (2)
ra P ! kg('); (ﬁl)K---(Bq)K k!
where o, i =1,...,p, Bj, j=1,...,q are complex numbers so long as none of f8; is zero or an integer or half integer

< %, Ci(x) is the zonal polynomial of r x r complex symmetric matrix x corresponding to the partition k and ¥, denotes
summation over all partition k. Conditions of the convergence of the serie in (2) have been documented in the literature,
see, for example, Constantine [17] and James [18]. From (2), it can be seen that

. X > (tr(x))¥
OFO()C) = Z ZCKk(‘ ) — Z (t 5{2) — eu«(x)
k=0 & 7 k=0
R Cr(x) o -
IFO(OCI,X) = Z Z(Oﬂl)K o0 det(I, x) ,XEQN (Ir -Qr)
k=0 K .

and
x C(x)
k!

2Fi(an,00;B15x) = i Z (algg(az) , X € QN (I — Q).
k=0 K D

The Gauss hypergeometric function ,F) is defined by the following integral

L(Y)
L)L (r—a)
where B € C, Re(a) > (r—1)/2 and Re(y— o) > (r— 1) /2. It can be observed from the above that

L(L(y—a—B)
L(y=P)L(y—a)

SFi(a, B yix) = /Q . det(u)® "2 det(l, —u)?""%"7 det(l, —xu) Pdu 3)

Re(y—a—p)> "1, @

2 (a,Biysl) = >

Also, we have

()T (B)

E(a+ﬁ) 3F2(ﬁ7v7’y;a+ﬁ75;u>a (5)

/ det(x) %~ 5" det(l, — )P~ 5" L Fy (v, 7 8;u(l, — x))dx =
0(—8)

for all u € V,, where v,y € C, Re(t),Re(B),Re(8) > (r—1)/2.
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Finally, we define the Dirichlet distribution on symmetric matrices. To explore the properties of this distribution,
readers are advised to refer to the works of Ben Farah and Hassairi [19,20], Ben Farah and Ghorbel [21], Gupta and
Nagar [22], and Olkin and Rubin [23]. The vector of random matrices (Xi,...,X,) is said to have a Dirichlet distribution
on V, with parameters (¢, ..., Qy; &,+1), denoted by D.(ay,. .., 0; 04,41 ), if its pdf is given by

r+l

. n A1~
Hdet x) % det(I,Zx,) o (X1, X)) €T, (6)

i=1

F 11051

I—IVH—I

where o; > %,izl,...,n—i—landTn is given by

n
T, = {(xl,...,xn)GQf;inGQ,ﬁ([r_Qr)}'
i=1

For n = 1 in (6), the distribution of the random matrix X; is called the beta distribution on V, with parameters (¢, o) and
is denoted by B,(a;, 0 ). Its pdf is given by

(o + o) ot oIl

————det 1772 det(1, — C I € Q. NI — ). 7

E(al)E(QZ) e(Xl) e(r xl) X1 r (r r) @)
Let f(.) be a continuous function and ¢; > % i =1,...,n. The Liouville-Dirichlet’s integral is defined (see Gupta and

Richards [24]) by

_rtl " n
Ln((xl,...,ocn, /’]‘ Hdet a‘ Zf <in> dei.
nj= i=1 i=1

Substituting

n
1 1 .
Vi=Xx 2xx 2, lzl,...,n—landx:in,

)r+1

with the Jacobian J(x1,...,Xy—1,X3 — Y1,-« -, Yn—1,X) = det(x)("_1 "2 in the above integral and using (6), we obtain

L) — Hzr',:l L(os) [ Y oL
Lo(ou, ..., 0 f) = Lo, o) /9,0(1, o) det(x) T f(x)dx. (8)

2 The Dirichlet-hypergeometric distribution on symmetric matrices

In this section, we begin by extending the definition of the generalized real Dirichlet distribution given by Nagar et al.
[15], to symmetric matrices. We then prove that this distribution is considered to be the distribution of the beta matrix
multiplied by a vector of Dirichlet matrices.

Definition 1.7he random matrices X1, ..., X, are said to have a Dirichlet-hypergeometric distribution on V,, denoted by
DH,(oy,...,0:;B,7;98), if their pdf is given by

r+l
2

S_rtl
C((X[,...,Otn;B,’}/;5)Hdet(Xi)ai_r_JrTldet <Ir2x,’> 2 Fi <ﬁ,’}/;5;lr2xi> R )
i=1 j

i=1

and

n —
where (x1,...,x,) € T,, o > %, i=1,...,n, § > r;zl, B,y € R such that Zai+5 >B+y+ r2
i=1

C(ot,...,0;B,7;0) is the normalizing constant.

Using (8) , the normalizing constant in (9) is given by
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57r+1

2

{Clou,...,00:B,7:8)} !

/. Iﬁldet(xi)ai_%l det <Ir — ix,)

Ini=1 i=1

_Ijlmai)

= 7/ det(x)Ei=1 -5 det(1, —x)sf% 2F1(B,7;0;1, — x)dx,
QN1 -8,

I (Z. a,.>

Using (5) and (4), we get

2F <ﬁ7?’;5;lr - i%’) ﬁdxi
=1 )=

D=

lﬁIFr(OCi)Fr(5)E< oc,»+5lgy>
{C(ay,..., 00 B,7:8)} ' = =l i=1

F,<Za,-+5ﬁ>17< ai+5}’>
i=1 i=1

The particular case when n = 1 in (9), the distribution of the random matrix X is called the beta-hypergeometric
distribution on V, with parameters (a;;3,v;6) and is denoted by BH,(a; 8,7;6). Its pdf is given by

(10)

C(al;ﬁ,y;é)det(xl)“‘*% det (I, —M)sfré_l 2F1(B,7, 051 —x1),

L(q+6—B) (a1 +6—7)
L(a)L(S) (o +6-B—7)
This distribution have been introduced by Gupta and Nagar [22].

Note that if § = J, the beta-hypergeometric distribution BH,(o; B, ¥; 8) reduces to the beta distribution B, (ct; — 7, B).
Further, if we take § = & and y = 0 in (9), the Dirichlet-hypergeometric distribution DH,(¢y,...,0y; 3,7; 8) reduces to
the Dirichlet distribution D, (¢, ..., 0; B).

The following theorem shows that the Dirichlet-hypergeometric distribution on symmetric matrices is K-invariant,
where K is the orthogonal group of V.

where x; € QN (I, — Q,) and C(ay;B,7;6) =

Theorem 1.Let X = (X,...,X,) ~ DH,(Qy,...,0,;B,7;0). Then the distribution of X is K-invariant.

ProofLet k be an orthogonal r x r matrix independent of X. By transforming y; = kx;k’, i = 1,...,n, in the pdf (9), with
the Jacobian J(x1,...,x, —> y1,-..,yn) = 1, we get that the conditional distribution of kXk" | k is DH, (¢, ..., B,7:6).
As this distribution is independent of k, it follows that kXk' ~ DH, (a1, ..., 0;3,7;6).

In the next theorem, the Dirichlet-hypergeometric distribution on V; is derived from the Dirichlet distribution.

Theorem 2.Let (Yy,...,Y,) ~Dy(ay,...,0,;8) and Z ~ B,(B,7) be independent. Define
X, =Z1YZ, i=1,....n.
Then (Xi,...,Xn) ~DH (0y,..., 057, X0 0+ 06— B;7+9).

Proof. According to the conditions of the theorem, the pdf of (Y1,...,Y,,Z) is given by

r+1
- 1

n n
c]'Idet(yi)O‘f—’5—1 det <1, - Zyi> det(z)P T det(l, — 2)7 T, (11)
i=1 i=1

L, 0+8)(B+7Y)

iz [ () IH(8)I(B)I(7)
Making the transformation

where ¢ = s 15y yn) €ETyand z € Q,N (1 — Q,).
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with the Jacobian J(yy,...,Yn,2 = X1,...,%n,2) = det(z) 7" 2 in (11), we get the pdf of (X1,...,X,,Z) as

n n
cHdet(x,-)O‘"*% det <Z — Zx,) det(z)~&iz1 %+9-B) dey(1, — z)yf%1 : (12)
i=1 i=1
where (x1,...,%,) € T, 2€ 2N ([, — ;) and z— Y7 | x; € Q,.
1 r+1
2 =

n n 77 n
Now, Transform zto w = <Ir — Z ,) (I, —z < Z ) , with the Jacobian J(z — w) = det (Ir — Zx,) in
i=1 i=1

i=1

(12), the pdf of (Xi,...,X,,W) is given by
n 1 N 1 1 n —(Zf) %+5-B)
r r+ r+
cHdet(xl-)O"'_% det <Ir — Zx,-) det(w)?™ 2 det(l, — w)‘s_T det <Ir — <I, — Zx,) w) ,
i=1 i=1 i=1
where (x1,...,x,) € T, and w € Q, N (I, — ©,). Finally, Integrating out the variable w using (3) yields the desired result.

As corollary of this theorem, we have

Corollary 1.Let Y ~ B.(a,8) and Z ~ B,(B,7) be independent. Then X = Z3YZH ~ BH.(a;y,a+ 06— B;7+ ).

3 Properties

This section is devoted to the study of certain properties of the Dirichlet-hypergeometric distribution on symmetric
matrices. The marginal distributions of this distribution are presented in the following theorem.

Theorem 3.Let (X,...,X,) ~ DH.(Q,...,0y;B,7;06). Then, for any integerk =1,...,n,

n
(X17"'5Xk)NDHr(ala"'7ak;ﬁay; Z al+5)
i=k+1

Proof.-We first find the pdf of (Xi,...,X,—) by integrating x,, from the pdf of (Xi,...,X,). Substituting

n—1 -3 n—1 -2
= Ir_zxi Xn Ir_z-xi s
i=1 =1

r+1

n—1 2
with the Jacobian J(x, — z) = det (I, — Z x,~> in (9), the pdf of (Xy,...,X,_1,Z) is obtained as
i=1

+1
1 O t+6—"157
Xi
1

n—1
X det(z)o‘”*ré_1 det(I,—z)‘SJé_l »F (B,y;é; (I,— Zx,) (b—z)) .

i=1

n—1 n
Clay,...,au;B,7;96) IIdet(xi)O‘iJé_l det (I, —
i=1

1

Integrate the previous expression with respect to z using (3), we obtain that the pdf of (Xi,...,X,_) is given by

)

=

n—1 n—1 a”+6_—
C(OC],...,(Xn,|,ﬁ,’}/;OCn+5)Hdet(Xi)a"7%] det <Ir Zx,) 2 Fi <ﬁ,y;an+5; <Ir
=1

i=1

where (x1,...,x,—1) € T,,—. Performing this process n — k times yields the pdf of (Xi,...,X).
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Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



454 M. Ben Farah : The Dirichlet-hypergeometric distribution

Corollary 2.Let (X1,...,X,) ~ DH.(Qy,...,00,;B,7;06). Then, for any integerk =1,....n
Xy ~ BH(04: 3,7, — o+ 6),

where o0 = Y1 ¢4

_1 _1
If (X1,....Xn) ~ Dy(0u, ..., 03 i), and define, fori=k+1,...,n, Y= (I, = X5 X;) > X; (I, — L, X;) 2. Then,

i=1
it is well know that (Yj11,...,Y,) ~ Dp(Q11,. .., 0; 041 ).In the subsequent theorem, we present an analogous result for
the Dirichlet-hypergeometric distribution.

Theorem 4.Let (X,...,X,) ~ DH.(0,...,00;B,7;8). Define, for any integerk=1,...,n—1,

. -4
i=1

Then, the pdf of (Yii1,-..,Yn) is given by

[ines

S—rtl
n o n 2 n n n
K [T det(y)% 2 det{,— ) i BBy Y, ai+8:8,Y a+8:L— Y v,
i=k+1 i=k+1 i=k+1 i=1 i=k+1

L 0i+86—B)L (X 0i+8 -7 (X y 0+ 6)
i () (8L (X 0 +6 —B—v) [ (X 0+ 6)

where (Yii1,...,9n) € Ty_x and K =

Proof.:Making the transformation

R ARS
Vi = <Ir2x,-> X; <Ir2x,-> yi=k+1,....n,
i=1 i=1

with the Jacobian J(Xgr1,...,Xn — Yerl,---,¥n) = det(l, — ):f-‘:lx,) (=K i (9) and integrating with respect to
X1y, X, we get the pdf of (Yi1,...,Y,) as

r+l
-5

1 (13)
i=k+1 i=kt1

Cla,...,0m:B8,7:8) [] det(y;) %~ 5 det (b— Y yi)

where (ygi1,---,Yn) € T— and

k " K\ D 0= n k k
IZ/ Hdet(x,-)o"'_T det Ir—Zx,- 2k B,y 6 | I — Z Vi Ir—in dei-
Tii=1 i=1 i i=1 i=1

=k+1

By evaluating / using (8) and ( 3), we obtain

L) (T a~+6) 4
] = el A=kl 0;+68:8,Y o;+ 81, — - (14)
E(Zi;lai+5) B yz%l Z l%ly

Substituting (14) in (13) and simplifying using (10), the required result is obtained.

This next theorem determines the joint distribution of partial sums derived from random matrices that are distributed
jointly according to a Dirichlet-hypergeometric distribution.

Theorem 5.Ler (Xi,...,X,) ~ DH.(ay,...,0,;B,7;8) and ny,...,n; be non-negative integers such that Zf:l n; = n.
Denote, for j=1,...,1,

OC(j)Z Z Q;, k()—o k —Zn,
i= k, 1+1
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Define, for j=1,...,1,
kj 1 1
Si= Y Xiand Y,=S2XS;? i=kj1+1,... k1.
i=kj_1+1

Then

(i) (S1,...,S;) and (ijflJrl,...,ij,l), j=1,...,1, are independent.

(i) (Y153 Yij—1) ~ Dr(O;_y 155 0130, ), J =1,

(iii) (Sl,...,S,)NDH,(a(,),...,a(l);ﬁ,y;é).

Proof.Substituting
kj

sj= Z X; andy,—s
i=kj_1+1

1
2y

_1
sz, i=kj1+1,...kj—1,j=1,...,1,

with the Jacobian

:N

J(X],...,.xn —>)’1a---7)’n1—1,31a---7)’k1,1+la---7Yn—17sl) = J(-xkj,lJrla"'rxkj —>ij,]+17---;ij7|;5])

1

~.
Il

l
det(sj)(”f D
[

el
2

~.
I

in the pdf of (Xi,...,X,) given by (9), we get the joint pdf of ¥y, | 11,....¥Y;—1, S, where j=1,....1, as

s—rtl
1 2 1
Cloq,...,a,;B,7;0) Hdet 5;) %0 5 det <Ir Zsj> 2 F <ﬁ,y;5;[r Zsj>
& =
gl
1| k-t kj—1 %j
<[] H det(y)% Fdet [ L,— ¥ (15)
J=1|i=kj_1+1 i=kj_1+1

where (si,...,s;)) € T} and (ij71+1,...,Yk/._1) € Ti;—k;_1—1, j = 1,...,1. From the factorization in (15), it can be
observed that (Si,...,S) and (Y +1,...,Yk-1), j = 1,...,I, are distributed independently. Moreover,
(ij,ﬁ—lv' . aYk_/—l) ~ Dr(akj,l-klv' . 'aak_i—l;akj)’ j= 1; s 71’ and (Slv' .. aSl) ~ DHr(a(l)a .. '7a(l);ﬁ7y;5)'

Corollary 3.Let (X1,...,X,) ~ DH.(a,...,00;3,7;0). Define
/! 1 1
S=Y Xjand Y, =52XS"2,i=1,....n—1.
j=1
Then (Y1,...,Y,—1) and S are independent, (Y,...,Y,_1) ~ D.(Q1,...,0,_1;0,) and S ~ BH. (Y1, ai; B,7;5).
Corollary 4.Let (Xi,...,X,) ~ DH.(aty,...,0;,Y;0). Then, for any integerk=1,....n—1,

<§Xi> z <Zx> (gx,)% ~B, (ga,»,i;lai)

Next, we derive a factorization of the Dirichlet-hypergeometric distribution on V..

Theorem 6.Let (X,...,X,) ~ DH,(0,...,00;B,7;8). Define
n k+1 _% k k+1 _%
V=YX and Y=Y X; Yxi|lYx| . k=1..n-1
i=1 i=1 i=1 i=1

Then the random matrices Yi,...,Y, are independent, Y, ~ B(Zl 106,0611), k = 1,....n — 1, and
Yy~ BH (L 043, 7:6).
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Proof. The transformation mentioned above makes it possible to observe that

n
det(x) = det(l, — ye—1) [ [ det(vi), k=2,...,n
i=k

and

det(x;) = ﬁ det(yi).
i=1

Substituting this with the Jacobian of transformation
n r+l
J(X1y oo X — Y1yeeeyVn) = Hdet(yk)T
k=2

in the density (9), one obtains the pdf of (¥1,...,¥,) as

n—1

Clan....0:B,7:8) [T {det()

k=1

n L r+l _r+l _
X{det(y”)zizlal 5 det(]r—yn)s 7 2 F (ﬁ,y;&(],—yn) ')},

where y;, € Q,N (I, — 2,), k=1,...,n. Now, observing that

n r(£e)
Clau,...,0:B,7:6) = C(Za,;ﬁ,y;é) _\=L 7
i=1

{'(:1 ai—% det([r ,yk)awl—% }

n

- HU(%)

k+1
. I; o
:C(Z%;B,)/;é) = p :
- kZIFr(OCkH)Fr <Z 0‘1‘)

we get the desired result.

We will now calculate the moments of various functions associated with the random matrices that jointly follow a
Dirichlet-hypergeometric distribution on V..

Theorem 7.Let (Xi,...,X,) ~ DH,(04,...,0;B,7;0). Then

. n A rrlat+p) L(a+d-—p) L(a+8—7) L(a+8—B—7v+p)
(Z)Ellgldet(xi)l’ —l_I:_Il L(a) L(ex+6—B+p)L{a+6—y+p) Lia+6—p—7y) ’

where p; >0,i=1,....n, =Y} 0 and p=Y" | p;.

. Cwn ] L(6+h) L(a+d—B)(a+d-7) , ,
(u)E[det(I, "=1X’)}*Fr(a+6+h) O T CEN S8+ h,oy, 0+ 8+ h,8:1,),

where h>0and 0t =Y} | @;.

Proof.(i) Using (9) and (8), we obtain

E [ﬁdet(Xi)p"
i=1

where o =Y} 04, p =31, pi and

[T (o + pi)

=Clon,., 0 B, 158) =

J; (16)

J= / det(x)®+7="5 det(l, — x)5~5 LR (B, 7:8:1, — x)dx.
2N(1—8)
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Now, using (5) and (4), the integral J is equal to

L(a+p)L(O)(a+8+p—a—7y)

J= .
L(a+6+p—a)l(a+d+p—7)

a7

Substituting (17) in (16) and simplifying by using (10) yields the desired result.
(ii) By following the same steps, we obtain

h
E |det I,fZX,' C(al,...,an;ﬁ,y;S)l—Ii%l;rt(fm/ det(x)a_%det(lrfx)rhh—% 2F1(B,Y;6;1, —x)dx,
im1 r er‘l(lrf.Qr)

The desired result is obtained by evaluating the integral above using (5).

4 Related distributions
Within the framework of related distributions to the Dirichlet-hypergeometric distribution, two notable extensions are the
inverted Dirichlet-hypergeometric distribution and the ordered Dirichlet-hypergeometric distribution. These distributions

emerge from specific transformations or considerations of the Dirichlet-hypergeometric distribution and are designed to
address diverse data and modelling requirements.

4.1 The inverted Dirichlet-hypergeometric distribution on symmetric matrices

In this subsection, we introduce the inverted Dirichlet-hypergeometric distribution on symmetric matrices.

Theorem 8.Let (Xi,...,X,) ~ DH,(0y,...,0:;B,7;8). Define

-
Ui = (1, Zx,-)
j=1

Then the pdf of (Uy,...,U,) is given by

D=

S
Xi(1— Y X L i=1,...,n.
j=1

n n —( ;’:la,-+5) n -1
C(Oﬂl,---706n;ﬁ77§5)Hdet(Mi)a’Jé_ldet (HZui) 2F1 | B,Y:6; (Ir+zui> , (18)
=1 =1

where u; € Q,,i=1,...,n.

Proof.The pdf of (Xy,...,X,) is given by (9). Making the transformation

n _% n _%
wi=\L—=Y xj| xi|L—Yx L i=1,....n, (19)
j=1 j=1

n 7% n 7%
X, = Ir+Zuj Uu; IrJrZuj , i=1,...,n.
j=1 j=1

The Jacobian of this transformation is

so that

J=J(x1, oo Xn — Uty yty) = J(X0, oy X1 X0 — X1y e ey Xn—1,2)

X T (X150 X 1,2 = ULy Un—1,2)
XJ(M],---,Mnf],Z >ulv"'aunflvun)v
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where

n
[ R
z:Ierxj, U=z 2xz 2, i=1,....n—1
j=1

n—1
Uy :Z_l _ <[r+ Z uj> .
j=1

Using the results given in Deemer and Olkin [25], we obtain

and

J(X1y ey X1y X0 —> X1y Xp—1,2) = 1

n —5 (1)
J(X1, ooy Xp—1,2 —> Ul y—1,2) = det <Ir+ Z”J>
=1

" —(r+1)
J(Wiy oo 1,2 —> Ul .. Up—1,Uy) = det <Ir+2uj> .
j=1

a O\ D
Jdet<[r+2uj> .
1

j:
Substituting this and (19) in (9), we obtain that the pdf of (Uy,...,U,) is (18).

Then

Definition 2.The distribution of (Uy,...,U,) given by (18) is called the inverted Dirichlet-hypergeometric distribution on
V, with parameters (Q.,...,0;B,v;0), and is denoted by IDH, (0, . .., 0; B,7;5).

When n = 1, that is when we have the beta-hypergeometric random matrix X with parameters (o; 3,7; 6), the random
matrix U = (I, — X)*%X(I, - X)*% has the distribution

L(+a—B)(6+a—7)
LO)(a)(6+a—f—7)

det(u) T det(l, + u)~(@+9) L7, ([5, :68:(1I, +u)“) 1o, (u), (20)

which we call the inverted beta-hypergeometric distribution on V, with parameters (o;f3,7;6) and is denoted by
IBH,(a;B,7;9).
For B = &, the inverted beta-hypergeometric distribution IBH,(o;,7;06) reduces to the inverted beta distribution

IBr(a -7 ﬁ)

The specific case where r = 1, § = 6 and ¥ = 0 corresponds to the real inverted Dirichlet distribution which has
numerous properties documented within the statistical literature and a lot of applications across diverse fields, including
statistics, finance, ecology and genetics. See, for example, Ben Farah [26], Otto et al. [27] and Ling et al. [28].

Theorem 9.Let (Uy,...,U,) ~ IDH(04,...,04;B,7;8). Define
1 1
" 2 n —32
Xi=|L+) U Ui 1+ ) U; ci=1,...,n.
j=1 j=1
Then (X1,...,Xn) ~ DH.(,...,00;B,7;0).
Proof. The proof is similar to that of Theorem 8.

Corollary 5.Let U ~ IBH,(a; B,7;0) and define

X=(L+U) 2 UL+U) 2.

Then X ~ BH,(e; 3,7;6).
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4.2 The ordered Dirichlet-hypergeometric distribution on symmetric matrices

The ordered Dirichlet-hypergeometric distribution is a closely related distribution to the Dirichlet-hypergeometric
distribution.

Definition 3.Let (X1,...,X,) ~ DH,(a,...,0,;B,7;8). Define

Then the distribution of (Si,...,Sy) is called the ordered Dirichlet-hypergeometric distribution on V, with parameters
(ai,...,00;B,7;0), denoted by ODH, (0, ..., 0;;B,7;8). Its pdf is given by

n—1
Clo,..., 03 B, 7:8) [T det(sir — ) %1~ det(s))® "> det (I, — )%~ % 2F, (B,7:8:0 — ), Q1)
3

1

where 5| € Qy, sit1—Si €Qpi=1,...,n—1and s, € QN (I, — Q,).

5 Conclusion

The Dirichlet-hypergeometric distribution on symmetric matrices provides a robust framework for modeling complex
multivariate data structures, particularly in the context of covariance matrices and other symmetric positive definite
matrices. This distribution extends the classical Dirichlet distribution, allowing for greater flexibility in capturing
relationships among variables and accommodating various constraints inherent to symmetric matrices. The theoretical
properties established in this paper, including marginal distributions and conditional distributions, distribution of partial
sums, moments, and relationships to other distributions, highlight its utility in statistical applications such as Bayesian
inference, machine learning, and multivariate analysis. Future work may focus on computational methods for estimation
and inference, as well as applications in diverse fields such as finance, bioinformatics, and network analysis, where
understanding the underlying structure of data is crucial. Overall, the Dirichlet-hypergeometric distribution on
symmetric matrices represents a significant advancement in the field of multivariate statistics, offering new avenues for
research and practical applications.
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