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Abstract: In this article, we investigate a novel three-parameter lifetime distribution constructed from a mixture of the original

Lindley and modified Lindley distributions. The concept behind this construction is to combine the contrasting properties of these two

well-known distributions to provide a new statistical modeling option for lifetime data analysis. In particular, it provides a natural

alternative to the three-parameter, two-component mixture of the Lindley distribution, which has attracted attention in the recent

statistical literature. We investigate its main properties from both a theoretical and practical point of view. The shapes of the

corresponding probability density and hazard rate functions and the formulas for the moments, moment generating functions and

characteristic functions are discussed. The distribution is then subjected to statistical analysis, considering it as a semi-parametric

model. The maximum likelihood approach is used to estimate the parameters. In a simulation analysis, the numerical behavior of the

bias and the mean square error of the obtained estimates are studied. The new model is tested on three data sets and the results show

that it has a better fit behavior than its main competitor, the three-parameter two-component mixture of the Lindley model.
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1 Introduction

The Lindley (L) distribution, introduced by [13], has been widely used in recent decades in fields as diverse as biology,
insurance, lifetime analysis and reliability. The corresponding cumulative distribution function (CDF) is defined as
follows:

FL(x;θ ) = 1−

[

1+
θx

1+θ

]

e−θx, x > 0, (1)

where θ > 0, and FL(x;θ ) = 0 for x ≤ 0. The L distribution thus depends on a single scale parameter, and its CDF can be
represented as a linear combination of the CDFs of the exponential and gamma distributions. A key characteristic is that
its hazard rate function (HRF) is increasing, unlike that of the exponential distribution, which is constant. It is therefore
a natural alternative for fitting data with such a hazard rate feature. Further details of the Lindley distribution and model
can be found in the literature, for example in [27], [15], [21], [8], [19], [20], [22], [28], [10], [17], [3], [1], [5] and [14].
For a comprehensive overview of the Lindley distribution, see [24,25].

On the other hand, on the same mathematical basis, [6], proposed the modified L (ML) distribution. It is defined with
a CDF that can be presented as a plug-in weighted version of the CDF of the L distribution. More precisely, it is indicated
as follows:

FML(x;θ ) = 1−

[

1+
θx

1+θ
e−θx

]

e−θx, x > 0,
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where θ > 0, and FML(x;θ ) = 0 for x ≤ 0. Like the L distribution, the ML distribution depends on a single scale parameter,
and its CDF can be represented as a linear combination of the CDFs of the exponential and gamma distributions. The main
difference with the L distribution is that the ML distribution has a unimodal HRF, which makes it useful for analyzing
data with analogous empirical characteristics. Furthermore, the following first-order stochastic ordering holds: FL(x;θ )≤
FML(x;θ ), x ∈R. Given this result, the ML model has been used to fit several relevant practical data sets better than the L
model. See [6].

The inspiration for this article comes from an accurate mixture strategy based on the L distribution that was recently
investigated in [3]. In this reference, the capabilities of mixing two L distributions with different parameters are examined.
The mixture L-L (L-L) distribution is created and defined by the following CDF:

FL−L(x;θ1,θ2, p) = pFL(x;θ1)+ (1− p)FL(x;θ2), (2)

where p ∈ [0,1], θ1 > 0 and θ2 > 0. Obviously, we have FL−L(x;θ1,θ2,0) = FL(x;θ2) and FL−L(x;θ1,θ2,1) = FL(x;θ1).
It is concluded in [3] that the L-L model is a perfect model for fitting data compared to other mixture models, such as
a two-component exponential mixture model (see, [11]), a two-component gamma mixture model (see, [26]), or a two-
component Weibull mixture model (see, [9]). With this in mind, we try to use this mixture strategy to positively exploit
a ”functional gap” between the L and ML distributions.The aim is to achieve new modeling purposes and competitive
results compared to the capabilities of the L-L distribution in some statistical scenarios. Thus, based on the construction
in Equation (2), we propose to investigate the mixture L-ML (L-ML) distribution defined by the following CDF:

FL−ML(x;θ1,θ2, p) = pFL(x;θ1)+ (1− p)FML(x;θ2), x ∈ R, (3)

where p ∈ [0,1], θ1 > 0 and θ2 > 0. Obviously, we have FL−ML(x;θ1,θ2,0) = FML(x;θ2) and
FL−ML(x;θ1,θ2,1) = FL(x;θ1), the parameters θ1 and θ2 can be different, and the parameter p serves as a connection
between the L and ML distributions. This CDF is thus defined as the mixture of the L and ML distributions and the
weight p. In an expanded form, for x > 0, it can be expressed as

FL−ML(x;θ1,θ2, p) = p

{

1−

[

1+
θ1x

1+θ1

]

e−θ1x

}

+(1− p)

{

1−

[

1+
θ2x

1+θ2

e−θ2x

]

e−θ2x

}

= 1− p

[

1+
θ1x

1+θ1

]

e−θ1x − (1− p)

[

1+
θ2x

1+θ2

e−θ2x

]

e−θ2x.

We have FL−ML(x;θ1,θ2, p) = 0 for x ≤ 0. This function is the basis for further properties and applications of the L-ML
distribution, and an in-depth study is proposed in this article. At the heart of the discussion, we have made a comparison
with the study of [3] from an applied point of view.

The rest of the article is divided into the following sections: Section 2 presents the L-ML distribution. Some of its
properties are given in Section 3; Section 4 discusses estimation and simulation; Section 5 proposes several applications
to the analysis of three well-referenced real-world data sets. Finally, Section 6 provides some concluding remarks.

2 Definition

Immediately from Equation (3), the probability density function (PDF) of the L-ML distribution is obtained as

fL−ML(x;θ1,θ2, p) = p fL(x;θ1)+ (1− p) fML(x;θ2), x ∈ R,

where fL(x;θ1) and fML(x;θ2) are the PDFs of the L and ML distributions wih parameters θ1 and θ2, respectively. That
is, for x > 0, we have

fL−ML(x;θ1,θ2, p) = p
θ 2

1

1+θ1

(1+ x)e−θ1x +(1− p)
θ2

1+θ2

[

(1+θ2)e
θ2x + 2θ2x− 1

]

e−2θ2x.

This completed by fL−ML(x;θ1,θ2, p) = 0 for x ≤ 0.

At the boundaries of the support, it can be noticed that

fL−ML(0;θ1,θ2, p) = p
θ 2

1

1+θ1

+(1− p)
θ2

1+θ2

(1+θ2 − 1),
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showing the interaction of all the parameters at the initial value, and

lim
x→+∞

fL−ML(x;θ1,θ2, p) = 0,

for all the values of the parameters.
The shape of the PDF fL−ML(x;θ1,θ2, p) can be studied analytically. However, given its complexity, we have chosen to

provide a graphical analysis, mainly to illustrate its functional flexibility. For this PDF, Figure 1 shows plots of unimodal,
decreasing and decreasing-increasing-decreasing shapes.
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Fig. 1: Graphs of the PDF of the L-ML distribution for different values of parameters

These figures therefore show a wide variety of non-monotonic shapes. Compared to the L-L distribution, we can
see that the PDF of the L-ML distribution has decreasing-increasing-decreasing shapes, whereas the PDF of the L-L
distribution does not, but has alternative bimodal shapes (see [3, Figure 1]). In addition, the L-ML distribution is clearly
more flexible in this respect than the L and ML distributions.

As a complementary reliability function, the HRF of the L-ML distribution needs investigation. To begin, it is
expressed as follows:

hL−ML(x;θ1,θ2, p) =
fL−ML(x;θ1,θ2, p)

1−FL−ML(x;θ1,θ2, p)
=

p fL(x;θ1)+ (1− p) fML(x;θ2)

1− [pFL(x;θ1)+ (1− p)FML(x;θ2)]
, x ∈ R.

Hence, for x > 0, it is explicitly defined as

hL−ML(x;θ1,θ2, p) =
pθ 2

1 (1+ x)e−θ1x/(1+θ1)+ (1− p)θ2

[

(1+θ2)e
θ2x + 2θ2x− 1

]

e−2θ2x/(1+θ2)

p [1+θ1x/(1+θ1)]e−θ1x +(1− p) [1+θ2xe−θ2x/(1+θ2)]e−θ2x
.
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This completed by hL−ML(x;θ1,θ2, p) = 0 for x ≤ 0.
As an immediate asymptotic property, we have

hL−ML(0;θ1,θ2, p) = p
θ 2

1

1+θ1

+(1− p)
θ2

1+θ2

(1+θ2 − 1)

and

lim
x→+∞

hL−ML(x;θ1,θ2, p) =

{

θ1 if θ2 > θ1

θ2 otherwise
.

Regarding the PDF, due to its complexity, we have chosen to present a graphical analysis of this HRF, mainly to highlight
its functional adaptability. Figure 2 shows different types of unimodal shapes, decreasing and decreasing-increasing-
decreasing shapes.
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Fig. 2: Graphs of the HRF of the L-ML distribution for different values parameters

There are many monotonic shapes in the figure above. Thus, the HRF of the L-ML distribution is much more adaptive
than the HRFs of the L and ML distributions.

3 Properties of the L-ML distribution

Some notable properties of the L-ML distribution are presented in this section. First, the following first-order stochastic
ordering property holds: for any x ∈ R, we have

FL−ML(x;θ1,θ2, p)≥ FL−L(x;θ1,θ2, p).
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In this stochastic sense, the CDF functional capabilities of the L-ML distribution ”are over” those of the L-L distribution,
which may imply different goals in terms of statistical modeling.

Now, let X1 be a random variable having the L distribution with parameter θ1, X2 be a random variable having the ML
distribution with parameter θ2, and Y be a random variable having the Bernoulli distribution with parameter p ∈ (0,1).
These three random variables are supposed to be independent. Then, the following mixture random variable:

X = Y X1 +(1−Y)X2

has the L-ML distribution. As a result, for any measurable function ψ(x) for which the introduced quantity exists, one can
observe that

E(ψ(X)) = E(E(ψ(X) | Y )) = pE(ψ(X1))+ (1− p)E(ψ(X2)),

where E denotes the classical expectation operator and E(. | Y ) denotes the conditional expectation operator with respect
to Y . Several properties of the L-ML distribution can be derived from this moment formula. Some of these are described
below.

–For any positive integer r, the r-th ordinary moment of X may be expressed in terms of the r-th ordinary moments of
X1 and X2 as

E(X r) = pE(X r
1)+ (1− p)E(X r

2).

Hence, based on the existing formulas for the r-th ordinary moment of the L and ML distributions, we have

E(X r) = r!

[

p
θ1 + r+ 1

θ r
1(1+θ1)

+ (1− p)
1

θ r
2

(

1+
r

2r+1(1+θ2)

)]

.

In particular, the mean of X is obtained as

E(X) = p
θ1 + 2

θ1(1+θ1)
+ (1− p)

1

θ2

(

1+
1

4(1+θ2)

)

.

Using the previous formula and the expression of E(X), the variance of X is given by

V(X) = 2

[

p
θ1 + 3

θ 2
1 (1+θ1)

+ (1− p)
1

θ 2
2

(

1+
2

8(1+θ2)

)]

−

[

p
θ1 + 2

θ1(1+θ1)
+ (1− p)

1

θ2

(

1+
1

4(1+θ2)

)]2

.

There is no condensed expression for this variance.
–The r-th central moment of X is given by

m(r) = E((X −E(X))r) =
r

∑
k=0

(

r

k

)

(−1)r−k
E(X k)E(X)r−k

= r!
r

∑
k=0

(−1)r−k

(r− k)!

[

p
θ1 + k+ 1

θ k
1 (1+θ1)

+ (1− p)
1

θ k
2

(

1+
k

2k+1(1+θ2)

)]

×

[

p
θ1 + 2

θ1(1+θ1)
+ (1− p)

1

θ2

(

1+
1

4(1+θ2)

)]r−k

.

Thanks to this formula, we can easily calculate the coefficient of skewness, which is given as SK = m(3)/V(X)3/2 and
the coefficient of kurtosis, which is given as KU = m(4)/V(X)2. The expressions for these moment measures are very
large, but can be easily calculated numerically using mathematical software (by varying the values of the parameters).

–The moment generating function of X may be expressed in terms of the moment generating functions of X1 and X2 as

M(t) = E(etX ) = pE(etX1)+ (1− p)E(etX2), t ∈ (−∞,min(θ1,θ2, p)).

Hence, based on the existing formulas for the moment generating functions of the L and ML distributions, we have

M(t) = p
θ 2

1 (θ1 − t + 1)

(1+θ1)(θ1 − t)2
+(1− p)

[

θ2

θ2 − t
+

tθ2

(1+θ2)(2θ2 − t)2

]

, t ∈ (−∞,min(θ1,θ2, p)).
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–The characteristic function of X may be expressed in terms of the characteristic functions of X1 and X2 as

ϕ(t) = E(eitX ) = pE(eitX1 )+ (1− p)E(eitX2), t ∈R,

where i is the imaginary unit, i.e., such that i2 =−1. Rudely written, we have ϕ(t) = M(it), which gives

ϕ(t) = p
θ 2

1 (θ1 − it + 1)

(1+θ1)(θ1 − it)2
+(1− p)

[

θ2

θ2 − it
+

itθ2

(1+θ2)(2θ2 − it)2

]

, t ∈ R.

Many mathematical or statistical manipulations of the L-ML distribution can be made using all these probabilistic
measures.

4 Estimation and simulation

In this section, we derive the unknown parameters of the L-ML distribution using the maximum likelihood method.
Based on n Observations of a random variable X having the L-LM distribution, say X1‖dots,xn, this method consists of

estimating the parameters θ1, θ2 and p by θ̂1, θ̂2 and p̂, such that

(θ̂1, θ̂2, p̂) = argmax(θ1,θ2,p)∈[0,+∞]2×[0,1] logL(θ1,θ2, p),

where L(θ1,θ2, p) denotes the likelihood function defined by

L(θ1,θ2, p) =
n

∏
i=1

fL−ML(xi;θ1,θ2, p),

so that

logL(θ1,θ2, p) =
n

∑
i=1

log

[

p
θ 2

1

1+θ1

(1+ xi)e
−θ1xi +(1− p)

θ2

1+θ2

[

(1+θ2)e
θ2xi + 2θ2xi − 1

]

e−2θ2xi

]

.

The estimates obtained are called the maximum likelihood estimates (MLEs). Once they are obtained, adopting the

substitution approach, the estimated PDF of the L-ML distribution is given as fL−ML(x; θ̂1, θ̂2, p̂), and the estimated CDF

of the L-ML distribution is given as FL−ML(x; θ̂1, θ̂2, p̂). Similarly, the estimated HRF of the L-ML distribution is given as

hL−ML(x; θ̂1, θ̂2, p̂).

We now examine the performance of the MLEs using a Monte Carlo simulation study for selected values of the
parameters θ1, θ2, and p. The simulation experiment was repeated 100,000 times each with sample sizes of
n = 10,20, . . . ,100, and the parameter combinations are chosen as follows:

SET 1: θ1 = 1, θ2 = 1, and p = 0.5
SET 2: θ1 = 2, θ2 = 2, and p = 0.5
SET 3: θ1 = 1.5, θ2 = 1.5, and p = 0.5

We therefore study the numerical properties of the corresponding MLEs, biases, mean square errors (MSEs), lower bound
(LB), upper bound (UB), and coverage probability (CP) with respect to the 95% confidence interval of the parameters.
Tables 1, ?? and 3 show the simulation results for SET 1, SET 2 and SET 3 respectively. The R software [23] was used
for the calculations.

From these tables, we can see that the biases and MSEs decrease as the sample size increases. Therefore, the estimation
approach considered works effectively for estimating the parameters of the L-ML model. Figure 3 graphically shows the
shapes of the biases for the MLEs for n, which varies continuously from 10 to 100, by taking certain values of the
parameters.
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Table 1: Simulation results for SET 1

n Parameter MLE Bias MSE CP LB UB

10

θ1 1.114 0.114 0.187 0.923 0.856 1.372

θ2 1.399 0.399 2.167 0.977 0.521 2.278

p 0.391 -0.109 0.179 0.962 0.138 0.645

20

θ1 1.056 0.056 0.165 0.925 0.880 1.232

θ2 1.332 0.332 1.650 0.932 0.760 1.904

p 0.411 -0.089 0.170 0.944 0.234 0.587

30

θ1 1.044 0.044 0.159 0.932 0.902 1.185

θ2 1.315 0.315 1.567 0.909 0.856 1.773

p 0.424 -0.076 0.165 0.927 0.281 0.567

40

θ1 1.027 0.027 0.150 0.940 0.896 1.159

θ2 1.311 0.311 1.500 0.885 0.982 1.695

p 0.434 -0.066 0.160 0.921 0.312 0.556

50

θ1 1.024 0.024 0.140 0.945 0.916 1.133

θ2 1.306 0.306 1.500 0.895 0.949 1.663

p 0.439 -0.061 0.154 0.915 0.331 0.546

60

θ1 1.024 0.024 0.130 0.943 0.928 1.119

θ2 1.300 0.300 1.460 0.889 0.982 1.617

p 0.446 -0.054 0.154 0.915 0.348 0.545

70

θ1 1.021 0.021 0.120 0.944 0.936 1.107

θ2 1.290 0.290 1.450 0.882 0.999 1.622

p 0.446 -0.054 0.150 0.901 0.356 0.536

80

θ1 1.017 0.017 0.125 0.953 0.933 1.101

θ2 1.276 0.276 1.400 0.880 1.001 1.539

p 0.445 -0.055 0.148 0.916 0.362 0.528

90

θ1 1.016 0.016 0.120 0.952 0.936 1.110

θ2 1.270 0.270 1.375 0.878 1.023 1.529

p 0.448 -0.052 0.144 0.909 0.370 0.525

100

θ1 1.014 0.014 0.110 0.952 0.951 1.081

θ2 1.250 0.250 1.350 0.875 1.019 1.481

p 0.455 -0.045 0.141 0.908 0.382 0.528

Table 2: Simulation results for SET 2

n Parameter MLE Bias CP LB UB

10

θ1 2.184 0.184 0.950 1.750 2.620

θ2 2.488 0.488 0.930 2.100 2.880

p 0.376 -0.124 0.940 0.320 0.430

20

θ1 2.103 0.103 0.960 1.880 2.330

θ2 2.446 0.446 0.940 2.190 2.700

p 0.401 -0.099 0.950 0.360 0.440

30

θ1 2.090 0.090 0.970 1.920 2.260

θ2 2.418 0.418 0.950 2.210 2.630

p 0.405 -0.095 0.960 0.370 0.440

40

θ1 1.920 -0.080 0.980 1.760 2.080

θ2 2.398 0.398 0.960 2.200 2.600

p 0.419 -0.081 0.970 0.380 0.450

50

θ1 1.975 -0.025 0.980 1.850 2.100

θ2 2.354 0.354 0.970 2.180 2.520

p 0.424 -0.076 0.970 0.390 0.450

60

θ1 1.977 -0.023 0.990 1.860 2.100

θ2 2.359 0.359 0.970 2.190 2.530

p 0.427 -0.073 0.980 0.390 0.450
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n Parameter MLE Bias CP LB UB

70

θ1 1.975 -0.025 0.990 1.870 2.090

θ2 2.324 0.324 0.980 2.160 2.490

p 0.428 -0.072 0.980 0.390 0.460

80

θ1 1.976 -0.024 0.990 1.870 2.090

θ2 2.317 0.317 0.980 2.150 2.480

p 0.429 -0.071 0.980 0.390 0.460

90

θ1 1.977 -0.023 0.990 1.880 2.090

θ2 2.292 0.292 0.980 2.130 2.450

p 0.435 -0.065 0.980 0.400 0.460

100

θ1 1.960 -0.040 0.990 1.850 2.070

θ2 2.200 0.200 0.980 2.050 2.350

p 0.440 -0.060 0.980 0.410 0.470

Table 3: Simulation results for SET 3

n Parameter MLE Bias MSE CP LB UB

10

θ1 1.748 0.248 0.745 0.914 1.236 2.260

θ2 1.920 0.420 2.203 0.977 1.038 2.803

p 0.373 -0.127 0.186 0.948 0.118 0.628

20

θ1 1.559 0.059 0.229 0.924 1.351 1.767

θ2 1.899 0.399 2.143 0.931 1.282 2.517

p 0.401 -0.099 0.176 0.950 0.222 0.579

30

θ1 1.529 0.029 0.192 0.928 1.373 1.685

θ2 1.906 0.406 2.197 0.906 1.396 2.416

p 0.421 -0.079 0.169 0.939 0.276 0.565

40

θ1 1.518 0.018 0.189 0.934 1.383 1.652

θ2 1.879 0.379 2.096 0.891 1.446 2.312

p 0.425 -0.075 0.165 0.940 0.301 0.548

50

θ1 1.518 0.018 0.180 0.942 1.400 1.636

θ2 1.841 0.341 1.911 0.890 1.469 2.212

p 0.430 -0.070 0.163 0.937 0.320 0.540

60

θ1 1.504 0.014 0.176 0.940 1.398 1.610

θ2 1.841 0.341 1.873 0.877 1.506 2.177

p 0.432 -0.068 0.160 0.934 0.332 0.531

70

θ1 1.512 0.012 0.191 0.947 1.409 1.614

θ2 1.824 0.324 1.808 0.875 1.519 2.130

p 0.437 -0.063 0.158 0.933 0.345 0.529

80

θ1 1.506 0.006 0.174 0.944 1.415 1.597

θ2 1.792 0.317 1.645 0.874 1.518 2.066

p 0.434 -0.055 0.157 0.938 0.348 0.519

90

θ1 1.497 -0.003 0.200 0.945 1.405 1.590

θ2 1.799 0.299 1.695 0.865 1.538 2.061

p 0.435 -0.051 0.152 0.939 0.356 0.514

100

θ1 1.503 0.003 0.200 0.949 1.413 1.592

θ2 1.809 0.190 1.625 0.870 1.559 2.059

p 0.446 -0.049 0.151 0.936 0.370 0.521

The observations noted are for the particular initial values of θ1, θ2 and p, but the same observations held for a wide
range of other values of θ1, θ2 and p. In particular, the magnitude of the biases always decreased to zero as n increased, and

the MSE always decreased to zero as n increased. Therefore, the MLEs θ̂1, θ̂2 and p̂ associated with the L-ML distribution
can be considered to behave according to the large sample theory of the MLE.
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Fig. 3: Plots illustrating the biases of the estimated parameters θ1, θ2 and p, respectively. The first graph depicts the biases
associated with θ1, the second associated with θ2, and the third associated with p.

5 Applications

5.1 Framework

In this section, we use three real data sets to demonstrate the capabilities of the proposed model. To do this, we compare
the adaptability of the L-ML model with that of the L-L model by [3].

To check the goodness-of-fit, we derive the unknown parameters using the maximum likelihood method, maximized
−log-likelihood (− logLik), and compare the values of the Akaike information criterion (AIC) and Bayesian information
criterion (BIC), the values of the Kolmogorov-Smirnov (K-S) statistic, the corresponding p-values, and the values of
the Anderson-Darling (A∗) and Cramér-von Mises (W ∗). They are evaluated using the R software via the commands
FITDIST(), KS.TEST(), AD.TEST() and CVM.TEST().

5.2 Data Set 1 (Bladder cancer data)

The real data set presents the remission times (in months) of a random sample of 128 bladder cancer patients, which has
been given by [12]. Several authors have studied this data set. See [16] for further information. The data are displayed as
follows:
0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02,13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22,
13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62,
3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96,
36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49,
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7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85,
8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07,
21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

The results of the descriptive investigation for the fitted L-ML and L-L models for data set 1 are summarized in Table
4.

Table 4: Estimated values, − logLik, AIC, BIC, K-S statistics, p-value, A∗ and W ∗ for data set 1

Model Estimates − log Lik AIC BIC K-S p-value A∗ W ∗

L-ML θ̂1 = 0.0529 406.7274 819.4547 828.0108 0.027029 0.9999 0.093177 0.0116

θ̂2 = 0.1780

p̂ = 0.1443

L-L θ̂1 = 0.1991 416.8962 839.7925 848.3486 0.071674 0.5265 2.9633 0.38142

θ̂2 = 0.2569

p̂ = 0.1469

From the study, the smallest − logLik, AIC, BIC, K-S statistic, A∗, W ∗ and the highest p-values are found for the
L-ML model, so far. It can therefore be considered as the best.

The estimated PDFs and CDFs of the L-L and L-ML models are plotted in Figure 4.

Fig. 4: Plots of the estimated PDFs and the estimated CDFs of the L-L and L-ML models for data set 1
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From this figure, we see that the fitted PDF for the L-ML model is closer to the empirical histogram than the fits for
the L-L model.
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5.3 Data Set 2 (Vinyl chloride data)

Data set 2 presents the vinyl chloride data obtained from clean upgradient monitoring wells in mg/l, provided by [4]. The
data are:
5.1, 1.2 ,1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8, 0.8, 0.4, 0.6, 0.9, 0.4, 2, 0.5, 5.3 ,3.2 ,2.7, 2.9, 2.5, 2.3, 1, 0.2, 0.1, 0.1, 1.8, 0.9, 2, 4,
6.8, 1.2, 0.4, 0.2.

The studied statistical parameters are listed in Table 5.

Table 5: Estimated values, − logLik, AIC, BIC, K-S statistics, p-value, A∗ and W ∗ for data set 2

Models Estimates − logLik AIC BIC K-S p-value A∗ W ∗

L-ML θ̂1 = 0.4199 55.05361 116.1072 120.6863 0.078915 0.9839 0.18398 0.024671

θ̂2 = 1.3799

p̂ = 0.5437

L-L θ̂1 = 0.8238 56.30364 118.6073 123.1864 0.17907 0.2256 1.4339 0.23251

θ̂2 = 4.3997

p̂ = 0.7650

From Table 5, the smallest − logLik, AIC, BIC, K-S statistic, A∗, W ∗ and the highest p-values are found for the L-ML
model. It can therefore be considered as the best.

The estimated PDFs and CDFs of the L-L and L-ML models are shown in Figure 5.

Fig. 5: Plots of the estimated PDFs and the estimated CDFs of the L-L and L-ML models for data set 2
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From this figure, we see that the fitted PDF for the L-ML model is closer to the empirical histogram than the fits for
the L-L model. In addition, the empirical CDF is very close to the fitted CDF. Looking at these plots, it is clear that the
L-ML model outperforms the L-L model in terms of model fit.
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5.4 Data Set 3 (Wheaton river flood data)

Data set 3 consists of 72 exceedances of flood peaks (in m3 /s) of the Wheaton river near Carcross in Yukon Territory,
Canada for the years 1958-1984, provided by [7]. The data are:
1.7, 2.2, 14.4, 1.1, 0.4 ,20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3,1.4 ,18.7 ,8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 27.0, 14.4 ,1.7,37.6,
0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0.

Table 6 displays the considered statistical measures.

Table 6: Estimated values, − logLik, AIC, BIC, K-S statistics, p-value, A∗ and W ∗ for data set 3

Models Estimates − log Lik AIC BIC K-S p-value A∗ W ∗

L-ML θ̂1 = 0.0795 153.905 313.8101 319.4237 0.078915 0.9839 0.18398 0.024671

θ̂2 = 0.8798

p̂ = 0.6409

L-L θ̂1 = 0.8096 167.7116 341.4232 347.0368 0.19202 0.05804 21.844 2.5884

θ̂2 = 0.1821

p̂ = 0.6125

From Table 6, the smallest − logLik, AIC, BIC, K-S statistic, A∗, W ∗ and the highest p-values are found for the L-ML
model. It can therefore be considered as the best.

Figure 6 shows the estimated PDFs and CDFs of the L-L and L-ML models.

Fig. 6: Plots of the estimated PDFs and the estimated CDFs of the L-L and L-ML models for data set 3
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From this figure, we see that the fitted PDF for the L-ML model is closer to the empirical histogram than the fits for
the L-L model. Examining these plots, it is clear that the L-ML model outperforms the L-L model in terms of model fit.
This confirms the performance of the L-ML model.
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6 Concluding remarks

In this article, we propose a new mixture distribution, called the L-ML distribution, which is a mixture of the Lindley
and modified Lindley distributions in the analysis of data with positive real support. An obvious reason for generalizing a
standard distribution is that the generalized form allows greater flexibility in modelling real data. The expansions for the
moments and the moment generating function are given. A simulation study is carried out to investigate the maximum
likelihood estimation approach. The good results support the use of the L-ML distribution to describe data sets. Three
practical applications of the L-ML model show that it can be expected to provide better fits than its main competitor, the
L-L distribution.
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