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1 Introduction

The theory of oscillation in difference equations and its practical applications have sparked substantial interest in recent
decades, see for example [1,2,3] and the references cited therein. The analysis of the oscillatory behaviors of
second-order functional difference equations has garnered considerable interest, notably because of their fundamental
importance in tackling a diverse array of applied problems in various fields such as fluid dynamics, electromagnetism,
acoustic vibrations, quantum mechanics, biological, physical and chemical phenomena, optimization, mathematics of
networks, and dynamical systems, the sources [1,12] can be referred to by the reader. The numerous publications in the
literature demonstrate how much interest there has been in the oscillation and asymptotic behavior of second-order
difference equations with linear, sublinear, and superlinear neutral terms in recent years; see for example [4,5,6,7,8,12,
13,14,15,16,17,18,19] as well as the references cited .

In [5], the authors obtained modified conditions for the oscillation of all solutions of second-order difference
equations with negative neutral term of canonical type. The authors of [11] presented a novel oscillation criteria for a
second-order half-linear neutral dynamic equation. To illustrate how important the delayed function is to the oscillatory
activity, a convincing example was shown. In [9], the oscillation of a second-order nonlinear dynamic equation under the
noncanonical condition was considered. However, the oscillatory behavior of a second-order dynamic equation with a
sublinear neutral component was discussed by the authors in [10]. They arrived at new oscillation criteria by applying the
Riccati transformation and comparison concepts. In [18], the authors suggested oscillation conditions for noncanonical
second-order nonlinear delay difference equations with a superlinear neutral term. The outcomes are acquired with less
restrictive presumptions.In [5], the authors obtained modified conditions for the oscillation of all solutions of
second-order canonical type difference equations with negative neutral term.

Inspired by the results in [9,10,11], our objective in this paper is to develop some new sufficient conditions for the
oscillation of all solutions of the second-order nonlinear noncanonical neutral difference equation

∆ (µ(ς̇)∆ (ξ (ς̇)+α(ς̇)ξ (τ(ς̇))))+w(ς̇)ξ δ (σ(ς̇)) = 0, (E)
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where ς̇ ≥ ς̇0 ≥ 0 and δ is the ratio of odd positive integers with 0 < δ ≤ 1. Hereafter, it is assumed that:

(i) {µ(ς̇)} and {w(ς̇)} are sequences of positive real numbers,
(ii) {α(ς̇)} is a positive real sequence with 0 ≤ α(ς̇)≤ d < 1,

(iii) {τ(ς̇)} is sequences of integers such that τ(ς̇)≤ ς̇ − 1,
(iv) σ(ς̇) is nondecreasing sequence of integers and limn→∞ τ(ς̇) = limς̇→∞ σ(ς̇) = ∞.

Set

Λ(ς̇) =
∞

∑
s=ς̇

1

µ(s)
, ς̇ ≥ ς̇0,

and assume that

Λ(ς̇0)< ∞, (1)

that is, the equation is in noncanonical form.

Under a solution of equation (E), we mean a real sequence {ξ (ς̇)} defined and satisfying (E) for all ς̇ ≥ ς̇0. We
consider only solutions of (E) that satisfy sup{|ξ (ς̇)| : ς̇ ≥ N} > 0 for all ς̇ ≥ ς̇1 ≥ ς̇0, and we tacitly assume that (E)
possesses such solutions. A solution of (E) is said to be oscillatory if it is neither eventually negative nor eventually
positive. Otherwise it is called nonoscillatory. Equation (E) is said to be oscillatory if all its solutions are oscillatory.

Unlike previous findings, the key contributions of this paper are twofold:

(i) We convert the examined equation into a canonical form without imposing any additional restrictions, therefore
reducing the set of nonoscillatory solutions from two to one.

(ii) We use the summation averaging approach to derive new oscillation conditions for the examined equation. Our
results go beyond those of [15,16,17,18,19] by introducing new theorems not addressed in prior literature. We
formulate these theorems within a broad framework that includes specific cases.

Further the results in [5] are applicable only if the neutral coefficient is negative whereas our results are valid for positive
neutral coefficients.

The paper is structured so that in Section 2, we give the primary oscillation results. Two Euler type neutral difference
equations are provided as examples to support the theoretical arguments presented in Section 3. Section 4 concludes with
a succinct statement.

2 Oscillation Results

For convenience, we adopt the following notations:

η(ς̇) = ξ (ς̇)+α(ς̇)ξ (τ(ς̇)) and i(ς̇) =
1− p(σ(ς̇))Λ(τ(σ(ς̇ )))

Λ(σ(ς̇))

for ς̇ ≥ ς̇1 ≥ ς̇0. Notice that i(ς̇)≥ 0 for ς̇ ≥ ς̇1 ≥ ς̇0. WLG, we exclusively work with positive solutions of (E) since if
ξ (ς̇) is a solution of (E), then so is −ξ (ς̇).

Theorem 1.Assume (1) holds. The noncanonical operator

Dη(ς̇) = ∆(µ(ς̇)∆η(ς̇))

has the canonical representation

Dη(ς̇) =
1

Λ(ς̇ + 1)
∆

(

µ(ς̇)Λ(ς̇)Λ(ς̇ + 1)∆

(

η(ς̇)

Λ(ς̇)

))

. (2)

Proof.A direct calculation shows that

1

Λ(ς̇ + 1)
∆

(

µ(ς̇)Λ(ς̇)Λ(ς̇ + 1)∆

(

η(ς̇)

Λ(ς̇)

))

=
1

Λ(ς̇ + 1)
∆ (Λ(ς̇)µ(ς̇)∆η(ς̇ )+η(ς̇))

=
1

Λ(ς̇ + 1)
Λ(ς̇ + 1)∆ (µ(ς̇)∆η(ς̇)))

= ∆(µ(ς̇)∆η(ς̇)).
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Therefore,

1

Λ(ς̇ + 1)
∆

(

µ(ς̇)Λ(ς̇)Λ(ς̇ + 1)∆

(

η(ς̇)

Λ(ς̇)

))

= Dη(ς̇).

To see that (2) is in canonical form, note that

∞

∑
ς̇=ς̇0

1

µ(ς̇)Λ(ς̇)Λ(ς̇ + 1)
=

∞

∑
ς̇=ς̇0

∆

(

1

Λ(ς̇)

)

= lim
ς̇→∞

1

Λ(ς̇)
−

1

Λ(ς̇0)
= ∞.

This completes the proof.

From Theorem 1, we see that equation (E) can be written in the equivalent canonical form

∆

(

b(ς̇)∆

(

η(ς̇)

Λ(ς̇)

))

+Λ(ς̇ + 1)w(ς̇)ξ δ (σ(ς̇)) = 0,

where b(ς̇) = µ(ς̇)Λ(ς̇)Λ(ς̇ + 1). Setting z(ς̇) =
η(ς̇)
Λ(ς̇) , we get the following result.

Theorem 2.The noncanonical difference equation (E) own a solution ξ (ς̇) if and only if the canonical equation

∆ (b(ς̇)∆z(ς̇))+Λ(ς̇ + 1)w(ς̇)ξ δ (σ(ς̇)) = 0 (E1)

has same ξ (ς̇) as solution.

Corollary 1.Noncanonical difference equation (E) has an eventually positive solution if and only if the canonical equation
(E1) has an eventually positive solution.

Clearly, Corollary 1 simplifies the investigation of (E) since for (E1) if {ξ (ς̇)} is an eventually positive solution, then the
corresponding sequence {z(ς̇)} satisfies only one class, namely,

z(ς̇)> 0, ∆z(ς̇)> 0, ∆(b(ς̇)∆z(ς̇ ))< 0. (3)

Before stating and proving our main results, we define

̥(ς̇) = Λ(ς̇ + 1)w(ς̇)ג(σ(ς̇)), B(ς̇) =
ς̇−1

∑
s=ς̇1

1

b(s)

and

(ς̇)ג =Λ(ς̇)

(

1−α(ς̇)
Λ(τ(ς̇ ))

Λ(ς̇)

)

for ς̇ ≥ ς̇1 ≥ ς̇0.

Note that ≤(ς̇)ג 0 for ς̇ ≥ ς̇1 ≥ ς̇0. First, we state and prove three criteria for the oscillation of all solutions of (E) in
the case {σ(ς̇)} is a delay argument, that is, for the case σ(ς̇)≤ ς̇ − 1.

Theorem 3.Let (1) hold. If
∞

∑
ς̇=ς̇0

̥(ς̇)Bδ (σ(ς̇)) = ∞ (4)

and

lim
ς̇→∞

sup

(

1

B(ς̇)

ς̇−1

∑
s=ς̇0

̥(s)B(s+ 1)Bδ(σ(s))+Bδ (ς̇)
∞

∑
s=ς̇

̥(s)
Bδ (σ(s))

Bδ (s)

)

>

{

1 i f δ = 1
0 i f 0 < δ < 1,

(5)

then equation (E) is oscillatory.

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.
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Proof.Let {ξ (ς̇)} be a nonoscillatory solution of (E), say ξ (ς̇) > 0, ξ (σ(ς̇)) > 0, and ξ (τ(ς̇)) > 0 for ς̇ ≥ ς̇1 for some
ς̇1 ≥ ς̇0. Then by Corollary 1, {ξ (ς̇)} is also a positive solution of (E1) and the corresponding sequence z(ς̇)> 0 for all
ς̇ ≥ ς̇1 ≥ ς̇0. Thus, z(ς̇) satisfies (3). Now, from the definition of z(ς̇), we have

z(ς̇)Λ(ς̇) = η(ς̇) = ξ (ς̇)+α(ς̇)ξ (τ(ς̇))

and so

ξ (ς̇) ≥ Λ(ς̇)z(ς̇)−α(ς̇)Λ(τ(ς̇ ))z(τ(ς̇ ))

≥ ,z(ς̇)(ς̇)ג ς̇ ≥ ς̇1 ≥ ς̇0.

Using this in (E1), we obtain

∆ (b(ς̇)∆z(ς̇))+̥(ς̇)zδ (σ(ς̇))≤ 0, ς̇ ≥ ς̇1. (6)

From (3), we see that

z(ς̇) = z(ς̇1)+
ς̇−1

∑
s=ς̇

b(s)∆z(s)

b(s)
≥ B(ς̇)b(ς̇)∆z(ς̇ ),

or

z(ς̇)−B(ς̇)b(ς̇)∆z(ς̇ )≥ 0, (7)

and

∆

(

z(ς̇)

B(ς̇)

)

=
b(ς̇)B(ς̇)∆z(ς̇ )− z(ς̇)

B(ς̇)B(ς̇ + 1)b(ς̇)
≤ 0.

That is
z(ς̇)

B(ς̇)
is decreasing (8)

and so

lim
ς̇→∞

z(ς̇)

B(ς̇)
= M ≥ 0.

We claim that M = 0. If M > 0, then there exists an integer ς̇2 ≥ ς̇1 such that

z(ς̇)≥
M

2
B(ς̇) (9)

for ς̇ ≥ ς̇2. Using (9) in (6) yields

∆ (b(ς̇)∆z(ς̇))+

(

M

2

)α

̥(ς̇)Bδ (σ(ς̇))≤ 0, ς̇ ≥ ς̇2.

Summing up the last inequality from ς̇2 to ς̇ , we have

(

M

2

)α ς̇

∑
s=ς̇2

̥(s)Bδ (σ(s))≤ b(ς̇2)∆z(ς̇2)< ∞,

which is a contradiction, and so

lim
ς̇→∞

z(ς̇)

B(ς̇)
= 0. (10)

On the other hand, we can rewrite (6) in the equivalent form

∆ (z(ς̇)−B(ς̇)b(ς̇)∆z(ς̇ ))−̥(ς̇)B(ς̇ + 1)zδ (σ(ς̇))≥ 0. (11)

Summing up (11) from ς̇2 to ς̇ − 1 and using (7) gives

z(ς̇)−B(ς̇)b(ς̇)∆z(ς̇ )≥
ς̇−1

∑
s=ς̇2

̥(s)B(s+ 1)zδ (σ(s)). (12)
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Summing up (6) from ς̇ to j and letting j → ∞, we get

B(ς̇)b(ς̇)∆z(ς̇ )≥ B(ς̇)
∞

∑
s=ς̇

̥(s)zδ (σ(s)). (13)

It follows from (12) and (13) that

z(ς̇)≥
ς̇−1

∑
s=ς̇2

̥(s)B(s+ 1)zδ (σ(s))+B(ς̇)
∞

∑
s=ς̇

̥(s)zδ (σ(s)). (14)

Taking into account the fact z(ς̇) is increasing and
z(ς̇)
B(n) is decreasing, we have from (14) that

z(ς̇)≥
zδ (ς̇)

Bδ (ς̇)

ς̇−1

∑
s=ς̇2

̥(s)B(s+ 1)Bδ (σ(s))+B(ς̇)zδ (ς̇)
∞

∑
s=ς̇

̥(s)Bδ (σ(s))

Bδ (s)
,

or
(

z(ς̇)

B(ς̇)

)1−δ

≥
1

B(ς̇)

ς̇−1

∑
s=ς̇2

̥(s)B(s+ 1)Bδ(σ(s))+Bδ (ς̇)
∞

∑
s=ς̇

̥(s)Bδ (σ(s))

Bδ (s)
.

Now taking the lim sup as ς̇ → ∞ and then using (10), we get a contradiction with (5).

Theorem 4.Let (1) and (4) hold. If

lim
ς̇→∞

sup

(

1

B(σ(ς̇))

σ(ς̇)−1

∑
s=ς̇0

̥(s)B(s+ 1)Bδ (σ(s))+B1−δ (σ(ς̇))
ς̇−1

∑
s=σ(ς̇)

̥(s)Bδ (σ(s))

+B(σ(ς̇))
∞

∑
s=ς̇

̥(s)

)

>

{

1 i f δ = 1
0 i f 0 < δ < 1,

(15)

then equation (E) is oscillatory.

Proof.Let {ξ (ς̇)} be a positive solution of (E) such that ξ (ς̇) > 0, ξ (σ(ς̇)) > 0, and ξ (τ(ς̇)) > 0 for ς̇ ≥ ς̇1 for some
integer ς̇1 ≥ ς̇0. Then by Corollary 1, we see that {ξ (ς̇)} is also a positive solution of (E1) and the corresponding sequence
z(ς̇) > 0 for all ς̇ ≥ ς̇1. Thus z(ς̇) satisfies (3). Proceeding as in the proof of Theorem 3, we again at (14), which can be
written as below

z(σ(ς̇))≥
σ(ς̇)−1

∑
s=ς̇2

̥(s)B(s+ 1)zδ (σ(s))+B(σ(ς̇))
ς̇−1

∑
s=σ(ς̇)

̥(s)zδ (σ(s))

+B(σ(ς̇))
∞

∑
s=ς̇

̥(s)zδ (σ(s)).

The remainder of the proof is identical to that of Theorem 3 and is thus omitted.

Theorem 5.Let (1) and (4) hold. If

lim
ς̇→∞

sup

(

1

B(ς̇)

ς̇−1

∑
s=σ(ς̇)

̥(s)B(s+ 1)Bδ(σ(s))

)

>

{

1 i f δ = 1
0 i f 0 < δ < 1,

(16)

then equation (E) is oscillatory.

Proof.Let {ξ (ς̇)} be a positive solution of (E) such that ξ (σ(ς̇))> 0, and ξ (τ(ς̇))> 0 for ς̇ ≥ ς̇1 for some integer ς̇1 ≥ ς̇0.
Proceeding as in the proof of Theorem 3, we again get (7) and (11). Letting

h(ς̇) = z(ς̇)−B(ς̇)b(ς̇)∆z(ς̇ ),

we have 0 ≤ h(ς̇)≤ z(ς̇) since ∆z(ς̇)> 0. It then follows from (11) that

∆h(ς̇)−̥(ς̇)B(ς̇ + 1)zδ (σ(ς̇))≥ 0.
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Summing the last inequality from σ(ς̇) to ς̇ − 1, we obtain

h(ς̇) ≥
ς̇−1

∑
s=σ(ς̇)

̥(s)B(s+ 1)zδ (σ(s))≥
zδ (ς̇)

Bδ (ς̇)

ς̇−1

∑
s=σ(ς̇)

̥(s)B(s+ 1)Bδ(σ(s))

≥
hδ (ς̇)

Bδ (ς̇)

ς̇−1

∑
s=σ(ς̇)

̥(s)B(s+ 1)Bδ (σ(s)),

so
(

h(ς̇)

B(ς̇)

)1−δ

≥
1

B(ς̇)

ς̇−1

∑
s=σ(ς̇)

̥(s)B(s+ 1)Bδ (σ(s)).

Now take the limsupς̇→∞ on both sides of the last inequality. Recalling the fact that
z(ς̇)
B(ς̇)

→ 0, which implies
h(ς̇)
B(ς̇)

→ 0,

we obtain a contradiction with (16). This completes the proof.

Next, we present two oscillation results for equation (E) in the case {σ(ς̇)} is an advanced argument, that is σ(ς̇)≥ ς̇ +1.

Theorem 6.Let (1) and (4) hold. If

lim
ς̇→∞

sup

(

Bδ−1(ς̇)

Bδ (σ(ς̇))

ς̇−1

∑
s=ς̇0

̥(s)B(s+ 1)Bδ(σ(s))

+Bδ (ς̇)
∞

∑
s=ς̇

̥(s)

)

>

{

1 i f δ = 1
0 i f 0 < δ < 1,

(17)

then equation (E) is oscillatory.

Proof.Let {ξ (ς̇)} be a positive solution of (E) such that ξ (σ(ς̇))> 0, and ξ (τ(ς̇))> 0 for ς̇ ≥ ς̇1 for some integer ς̇1 ≥ ς̇0.

Following the proof of Theorem 3, we reach (14). . Applying that z(ς̇) is increasing and
z(ς̇)
B(ς̇) is decreasing, we see that if

s ≤ ς̇ , we have s ≤ σ(s)≤ σ(ς̇) and σ(ς̇)≥ ς̇ + 1, so

z(σ(s))

B(σ(s))
=

z(σ(t))

B(σ(t))
.

Now

ς̇−1

∑
s=ς̇2

̥(s)B(s+ 1)zδ (σ(s)) ≥

(

ς̇−1

∑
s=ς̇2

̥(s)B(s+ 1)Bδ (σ(s))

)

zδ (σ(t))

Bδ (σ(t))

≥
zδ (t)

Bδ (σ(t))

ς̇−1

∑
s=ς̇2

̥(s)B(s+ 1)Bδ(σ(s)). (18)

Also, if s > ς̇ , we have σ(s)≥ σ(ς̇), and so

zδ (σ(s)) ≥ zδ (σ(ς̇))≥ zδ (ς̇).

Thus

∞

∑
s=ς̇

̥(s)zδ (σ(s)) ≥

(

∞

∑
s=ς̇

̥(s)

)

zδ (ς̇). (19)

Using (18) and (19) in (14) gives

z1−δ (ς̇)≥
1

Bδ (σ(t))

ς̇−1

∑
s=ς̇2

̥(s)B(s+ 1)Bδ (σ(s))+B(ς̇)
∞

∑
ς̇

̥(s)

or
(

z(ς̇)

B(ς̇)

)1−δ

≥
Bδ−1(ς̇)

Bδ (σ(ς̇))

ς̇−1

∑
s=ς̇2

̥(s)B(s+ 1)Bδ(σ(s))+Bδ (ς̇)
∞

∑
ς̇

̥(s).

The proof reminder bears similarities to that Theorem 3 and hence is left out.
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Theorem 7.Let (1) and (4) hold. If

lim
ς̇→∞

sup

(

1

B(σ(ς̇))

ς̇−1

∑
s=ς̇0

̥(s)B(s+ 1)Bδ(σ(s))+Bδ−1(σ(ς̇))
σ(ς̇)−1

∑
s=n

̥(s)B(s+ 1)

+Bδ (σ(ς̇))
∞

∑
s=σ(ς̇)

̥(s)

)

>

{

1 i f δ = 1
0 i f 0 < δ < 1,

(20)

then equation (E) is oscillatory.

Proof.Let {ξ (ς̇)} be a positive solution of (E) such that ξ (σ(ς̇))> 0, and ξ (τ(ς̇))> 0 for ς̇ ≥ ς̇1 for some integer ς̇1 ≥ ς̇0.
Following the steps in the Theorem 3 proof, we once more reach (14), which may be expressed as

z(σ(ς̇))≥
ς̇−1

∑
s=ς̇2

̥(s)B(s+ 1)zδ (σ(s)) +
σ(ς̇)−1

∑
s=ς̇

̥(s)B(s+ 1)zδ (σ(s))

+ B(σ(ς̇))
∞

∑
s=σ(ς̇)

̥(s)zδ (σ(s)).

As in the proof of Theorem 3, using that z(ς̇) is increasing and
z(ς̇)
B(ς̇)

is decreasing, we arrive at the intended conclusion.

3 Examples

Two examples that highlight the outcomes from the previous part are provided in this section. We consider two second-
order Euler type neutral difference equations whose study has the potential to shed light on a wide range of technological
and scientific problems. For example, these equations can be used to study the behavior of complex systems such as power
grids, transportation networks, and communication systems.

Example 1.Consider the equation

∆

(

ς̇(ς̇ + 1)∆

(

ξ (ς̇)+
ς̇ + 1

4ς̇ + 6
ξ (ς̇ − 2)

))

+λ ξ (ς̇ − 3) = 0, ς̇ ≥ 4. (21)

Here, we have µ(ς̇) = ς̇(ς̇ + 1), α(ς̇) = ς̇+1
4ς̇+6

, τ(ς̇) = ς̇ − 2, σ(ς̇) = ς̇ − 3, δ = 1, and w(ς̇) = λ > 0 is a constant.

Then

Λ(ς̇) =
1

ς̇
, b(ς̇) = 1, B(ς̇)≈ ς̇ , ≈(ς̇)ג

1

ς̇

(

1−
ς̇ + 1

4ς̇ + 6

ς̇

ς̇ − 2

)

≈
3

4ς̇

and ̥(ς̇)≈ 3λ
4(ς̇+1)(ς̇−3)

. The condition (1) is clearly satisfied. The condition (4) becomes

∞

∑
ς̇=4

3λ

4(ς̇ + 1)
= ∞,

that is, condition (4) holds. The condition (5) becomes

lim
ς̇→∞

sup

(

1

ς̇

ς̇−1

∑
s=4

3λ

4
+ ς̇

∞

∑
s=ς̇

3λ

4s(s+ 1)

)

=
3

2
λ > 1,

that is, condition (5) holds if λ > 2
3
. All conditions of Theorem 3 are satisfied if λ > 2

3
. Therefore, equation (21) is

oscillatory if λ > 2
3
. Further by Theorem 4, the equation (21) is oscillatory if λ > 2

3
.

Example 2.Consider the equation

∆

(

ς̇(ς̇ + 1)(ς̇ + 2)

2
∆

(

ξ (ς̇)+
1

8
ξ (ς̇ − 2)

))

+ ς̇ξ
1
3 (2ς̇) = 0, ς̇ ≥ 1 (22)
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Here, we see that µ(ς̇) = ς̇(ς̇+1)(ς̇+2)
2

, α(ς̇) = 1
8
, τ(ς̇) = ς̇ − 2, σ(ς̇) = 2ς̇ , δ = 1

3
, and w(ς̇) = ς̇ . Then

Λ(ς̇) =
1

ς̇(ς̇ + 1)
, b(ς̇) =

1

2(ς̇ + 1)
, B(ς̇)≈ (ς̇ + 1)ς̇ , ≈(ς̇)ג

7

8ς̇(ς̇ + 1)
,

and ̥(ς̇)≈
(

7
8

)
1
3 1

ς̇ 5/3 . The condition (1) clearly holds and the condition (4) becomes

∞

∑
ς̇=1

(

7

8

)1/3
41/3

ς̇
= ∞,

that is, condition (4) holds. Further, one can easily see that condition (17) is satisfied. Hence by Theorem 6, the equation
(22) is oscillatory.

Remark.It is evident that none of the results from the earlier papers could explain the oscillatory behavior of equations
(21) and (22), highlighting the relevance and importance of our recent findings.

Conclusion

Several oscillation criteria for the equation (E) under noncanonical conditions have been presented in this study. We
demonstrate the primary theorems by first putting the examined equation into canonical form and then using the
summation averaging method.The results obtained are completely novel and go beyond earlier findings. Two examples
are developed to validate and highlight the relevance of theoretical discoveries, demonstrating that earlier findings cannot
be applied to these situations.

The main equation is studied when 0 < δ ≤ 1 and 0 ≤ α(ς̇)≤ d < 1. Therefore, it would be interesting to expand the
results for the situation α > 1 where α(ς̇) is either unbounded or negative.
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