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Abstract: In sample surveys, the use of auxiliary variables to estimate the population mean has become crucial for improving the
efficiency of the estimators, including traditional ratio, product and regression estimators. This paper introduces a new logarithmic-
exponential cum ratio-type estimator for the elevated estimation of population mean under simple random sampling. We have obtained
the bias and mean squared error (MSE) of the proposed estimator up to the first order of approximation and identified the situations
in which it performs more efficiently than existing estimators. To verify the theoretical results, we have conducted numerical study
based on eight real data sets belonging from the clinical, agricultural and business fields. Their performances have also been evaluated
through simulation study that utilized two artificially generated datasets. A sensitivity analysis based on the sample estimates has been
investigated to reassert the behaviours of proposed estimators.
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1 Introduction

In sample surveys, the primary objective is to make reliable population inferences while minimizing costs and time. The
efficiency of estimators can be substantially improved by incorporating an auxiliary variable that is highly correlated
with the study variable. The strategic use of auxiliary variables is thus a critical practice that allows researchers to draw
stronger conclusions and make more informed decisions based on survey data. For example, in agricultural surveys, this
approach helps produce accurate crop yield estimates, while in economic studies, it can be used to analyze fixed capital
and income indicators. Cochran (1991) propounded ratio estimator using auxiliary variable, which performs better in case
of highly positive correlation between study and auxiliary variable. Numerous research papers have been published on
estimators based on various transformations, including product-type, exponential ratio-type, regression-type, logarithmic
type and logarithmic ratio and product-type estimators. The primary objective of this paper is to develop a population
mean estimator that surpasses the accuracy of the ratio estimator of Cochran (1977), the product estimator of Murthy
(1967), the regression estimator of Hansen et al. (1953), the modified regression estimator of Grover and Kaur (2011), the
exponential estimation methods proposed by Bahl and Tuteja (1991), the modified exponential type estimator of Kadilar
(2016), the logarithmic type of Bhushan et al. (2015), the logarithmic ratio and product estimators of Brar et al. (2020)
and the logarithmic ratio-type estimator of Adejumobi et al. (2023). To estimate the mean finite population under simple
random sampling, this study has developed an effective logarithmic-exponential cum ratio-type estimator. It is anticipated
that the proposed estimators will outperform the comparable estimators currently discussed in the literature, providing
more accurate estimates of the population mean.

Let U = {U;,U,,...,Uy} denote a finite population of size N. Let Y represent the study variable and X the auxiliary
variable. A sample of size n is drawn from the population using simple random sampling without replacement (SRSWOR).
The corresponding paired observations of the study and auxiliary variables in the sample are denoted by (y;,x;), for
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i=1,2,...,n
Let the sample mean of the study variable y and the auxiliary variable x be defined as

n 12
Zyi and = ;in,
i=1

which represent the mean of the respective variables based on a sample of size n. Similarly, the population mean of the
study variable Y and the auxiliary variable X are given by

_ N N .
Y:NZYi and xzﬁi:):lxi,

where N is the population size.
The sample variance for y and x are expressed as

1 & | R
2 _ 2 _ 2
s 7n_ll§i(y,fy) and sxfn_ll;{(x,fx),
while the corresponding population variance are given by
SZ—Li(Y-ff/)2 d Sszi(X-fX)z
YTN—1 &Y ME TN T e T

i=1 i=1

Furthermore, let px y denote the Pearson correlation coefficient between the population variables X and Y. The coefficient
of variation for Y and X are defined as

¢ =

~il$

and Cy= %,

respectively.
To compute the bias and MSE for the proposed estimator as well as the existing estimators under discussion. The following
sample error terms are introduced:

y=Y(1+e) and x=X(1+e;), suchthatE (e;)=0fori=0,1.

Additionally,
E(eg) =9Cs, E(el)=0C;, and E(ejeq) =¢pCyCy,

_(1=fN\. _n
- (50): 74

In this paper, we present a highly effective logarithmic-exponential cum ratio-type estimator for estimating the finite
population mean. The proposed estimator is shown to be more efficient than all other existing estimators.

where

2 The Existing estimators

This section discusses several existing estimators for the estimation of population mean.
The conventional sample mean is described as:

D=

1
y==) i (D
ni3

The estimator ¥ whose variance is expressed as :
S\ a 22
Var(y) = 9Y°C, (2)

Cochran (1977) introduced an ratio type estimator defined as:

Tr=7y 3)

/N
=i | P
N~
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The approximate expression for the MSE of Tk at the first order is:
MSE(Tx) = 97 (C; + C; — 2pC,Cy) (4)

Murthy (1967) introduced the product estimator for ¥, specifically in situations characterized by a strong negative
correlation between Y and X.
X
Ir=y| = 5
P=y ( X) Q)

The approximate expression for the MSE of 7p at the first order is:
MSE(Tp) = ¢¥* (C; + C; +2pCyCy) (©6)
Hansen et al. (1953) introduced the regression estimator for the population mean ¥ as
Tre =+ B (X —X) (7

The approximate expression for the MSE of Tgg at the first order is:
522 2 1 oo
MSE(Tke) = ¢Y~ |C, —§ﬁPCny+ﬁﬁ C;

where Bo”' =Y p % , therefore
min. MSE(Tgg) = ¢Y>C; (1 - p?) (8)

Grover and kaur (2011) suggested an modified exponential-type estimator of ¥ :

—x
n ) €))

o

TG = [kiy+ k2 (X — X)]exp <

<
=1

The approximate expression for the MSE of 7 at the first order is:

2
MSE(Tg) = 72 [(kl —1)? +i3PL; — % {Lz + (% —pcycx) H +I3X%¢C?

_ C?
| 2aRT0 <k1L2 - 7}6) (10)

The optimal values for k| and k; are as follows:

—C? [2 ~$0+% (%3 - prcx)}
2[¢L3 — (1+¢Ly)C?]

Ki(opr) =

d
an ?[L2{2+%Lz+%(%’%—Pcycx)}_c’%(H(bLl)}
2X [¢L3— (1+9Ly) C2]

ka(opr) =

where L; = C; +Cr —2pC,C, and Ly = C; — pC,C,.

% 2
P22 (1-p%)  OTPCHACH(1-p?)+F
min MSE(Tg) = SO (1=P7) sci(1-p7) + &

14+ ¢C2(1-p?) 16 [1+¢C2 (1 —p?)]
Or
min. MSE(Tg) = min. MSE(TRE) — M] — Mz (1 1)
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where
[min. MSE(Tge )]?
My = r

1+ min. MSE(TRI:)

. 722
(PC% [mm. MSE(Tre) + ¢ 16 "}

4 |:1 + min. MSE(TRI:):|

My =

Bahl and Tuteja (1991) proposed estimators for ¥ based on the ratio and product type, are as follows:

T - X—x
=yexp | =

ER = Y€Xp X+x

and _

T B i—X

=yex _

EP =YEXp | = X

The approximate expression for the MSE of Tgr and Tgp at the first order is:
CZ
MSE(Tgg) = ¢7? [CZ X pG,C. }

and
o2 | 2 Cf
MSE(Tgp) = ¢Y [C),+—4 +prCx}

Kadilar (2016) Suggested a newly exponential estimator is expressed as:

N1 > —
(X X—x
T’(:y(i) exp [Y—f—i]

The approximate expression for the MSE of Tk at the first order is:

MSE (Tx) = 07 (C; + C; /4 +20pCiCy + pCiCy + 0°CE + aCy)

(G:=20G))

. . ont
the optimum value of ¢ is given by q°P' = Ter

min. MSE(Tx) = ¢¥*C; (1 - p?)

Bhushan et al. (2016) proposed a class of logarithmic-type estimator in the form of :

= o
x
Tg=y<1+1 =
where « is a chosen scalar.

The approximate expression for the MSE of 7 at the first order is:

MSE(T5) = ¢Y*(C} + a*C; +201p, CCy)
The minimum MSE at the optimal value of Otopt = —Pyy ( ) is given by

min.MSE(Tp) = ¢Y>C;(1—py)

12)

13)

(14)

5)

(16)

A7)

(18)

19)

Brar et al. (2020) proposed ratio and product estimators of the population mean was given new functional representations

as follows:

(20)

X X
=3 (2 ) (3)
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X\, (2%-%
TBP)_}<X—)_()IH< < x) 1)

The approximate expression for the MSEs of Tpgr and Tpp respectively, expressed as:

_ C?
MSE(Tgg) = ¢7> [Cﬁ +- pcycx] (22)
22, G
MSE(TBP) = oY Cy + I +PCny (23)
Adejumobi et al. (2023) suggested a new estimator based on logarithmic ratios for the estimation of the finite population
mean as: -
y—Ln(%)| -
r = Pl 24)
X
The approximate expression for the MSE of T} at the first order is:
MSE(Ty) = ¢ [V (C; +C; —2pCyCy) + (1 42Y) C; — 2Y pCyCy | (25)

3 Proposed Estimator

Inspired by the above researchers, we have proposed a new class of logarithmic-exponential cum ratio-type Estimator for
the population mean Y, using the information on a single auxiliary variable x with a known population mean X which is
described as :

nosfo(5) e (5) o () (R Hoo (i) ) oo

In this situation, 6 and B stand for constants whose optimal value will be determined later, while & and ¥ is a fixed
constant that specifically takes on the values 1, —1, or 0, @ and b is a chosen constant it may be correlation coefficient py,,
coefficient of variation (CyorCy).

To derive the MSE of Tp,
let’s express § = ¥ (1 +e¢g) and ¥ = X (1 +e;), where E(eg) = E(e;) = 0 and E(e}) = 9C2, E(e}) = 9C2, E(eper) =
0pC,Cy.

Reframing equation (26) in terms of e’s, we have:

Tpr = Y{(S(l +eo)(1+e1) %exp (%) +B(1+eo) (X(liel))

ctog (SULY | o (e ke )

17{5 <1ae| +M€%) exp (62_l+§> +B(1+ep)(14e)!

xlog(1+ey)} x {exp (—y0e; +v0%ei) } (27)

Expanding the expression on the right side of (27) and keeping terms up to the second power of e’s, we obtain:

- o(a+1) , er  3e? 3,
_Y{S(l e + 5 el)(l 2+2 + B | e1 +eper 5€l

X {1 —Y0e) + (y+ ?) eze%} (28)

where in (28),

X
"~ 2(aX +b)
sy 6 a8 3§ 3
=7 {o- (sa+3-p)ers (T ro0r -
o) P 2,
+8eg— 5O£+5—ﬁ eper ¢ X 4 1—7v0e; + er? 022 (29)
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To obtain the bias of Tjg, B(Tjg) = E(Tjg) — Y, we get
B(Tpg) =Y [8 — 9E1pCiCy + OE,CY — 1] (30)
where
)
E1 = 5OC+§_B+5'J/6

2 2 2
E, = (a—8+5a+ﬁ—ﬁ+y5a6+5%6—y9ﬁ+925y+y(;6 )

2 2 2
MSE(T}) is obtained by E [Ty, — 7] is

MSE(Tpg) = V?{6% =26 + 1+ ¢ (21128 — 2ur + i) Cr + 9 8°Cy

—0 (4611 —211) pCiCy } 31
Or
MSE(T3g) = ? {D+ 9AC; + 98°C; —¢BpC.C, } (32)
where
A= (28 =21+ i)
B= (46 —2u)
D=8 -25+1
M= (506+§—B+6y9)
Mo = (?+5a+?%+y§a9+5%eyeﬁ+925y+ },2(;92)

To find the optimal values for 6 and B to minimize MSE(7}%). By differentiating MSE(755) with respect to 6 and f3,
setting the derivatives to zero, the optimal values of § and 3 can be determined.

(Al +A2—A3+Ay)

ﬁopt = ) (AS *Aé) = ﬁ*(sa)’) (33)
_Bi+By .,
o = BB, 0" (say) (34)

Where

Ay = [(4a” —8a—8) a— (12a7* — 8o+ 8Y70 + 247+ 8) y6?
— (360 +18)y8 — 15]C2
Ay = [(24a+48) 0 + 360+ 24077 + 18] pC.C,y

1. G
Ay = {16ap2+16y9e2+8e2+8y6—$8pc—)+12 C;
X

1 C
Ay=—|8a’+8y0+4—p=
4 s { o +8y0 + PCJ
As = [(40? — 40— 87767 + 8y6% — 2470 —3) (2]
+ (1676 +24)| pCCy

Ag = {(16p2+4) C; — %4}
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By = (20 — 20— 67707 + 476 — 18Y0 — 6) C?
1
= (120 + 18)pC,Cy — 8pCa + 54
By = (40 — 40— 87707 + 8Y6? — 2470 — 3) C?
(

1
= (16Y0+24)pC,C, + (4 — 16p*) C; + 54

Upon substituting the optimal values of Bop; and oy into (32), the resulting minimum value of MSE(7}y) is:
min. MSE(T) = ¥* {D* + 9A*C; + ¢(8*)°C; —9B*pC.Cy} (35)
where
A* = (2056 =205 + (1))
B* = (46" pj —2u7)
D" = (6")?—-28"+1

1
U = (ochEB*Jr}/G) 5*

a? 62 0 3
W = ( T tats S e +y2—+yoc6+y2 )5 — (§+y6)ﬁ*
Some special propertices of proposed estimator:

(a)In cases of positive correlation between populations, setting the values [a,y] = [1,1] is suitable, provided that
appropriate values are assigned to a and b in the proposed class of estimators Tpy to attain the maximum efficiency
gain over the estimator 7. Hence, the suggested class of estimators for positively correlated populations is expressed

as:
o o(D)on(§52) 5 (D) for (i)} oo
Note : If we put [0, 7] = [1,0] in (26), we obtain the result.
{8 (355) 9 (2 (1)

Therefore,the suitable selections are [a,y] = [1,1],[1,0] for positively correlated populations, the estimators Tpg(y) and
T;Rm perform more effectively than 7.

(b)In cases of negative correlation between populations, choosing the value (a,y) = (—1, 1) is recommended, with the
adjustment of suitable values for a and b in the proposed class of estimators 7y to improve accuracy over the estimator
Ti. Consequently, the applicable class of estimators is defined as:

oo (en (i) ()} oo (D))

Note : If we put [@, Y] = [—1,0] in (26), we obtain

Tora) =y'{5 (;) exp (;:i) +B (%)log (;)} (39)

Therefore, the suitable selections are [o,y] = [—1,1],[—1,0] for negatively correlated data, the estimators Tpps) and
TI;‘R( 4 perform more effectively than T;; with the appropriate values of a and b to acquire suitable estimators.
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4 Efficiency Comparisons

In this section, criteria for the effectiveness of the newly proposed estimators compared to certain existing estimators
are outlined. The MSEs of commonly used estimators such as y,7g,Tp,Tre, TG, TEr, TEP, Tk, 15, Tpr, Tpp and T, are

contrasted with the MSE of proposed estimator 75p.
TpR is more effective than § when:

Var(y) — min.MSE (Tpg) > 0

072 (A*Cf + ((6*)2 - 1) o B*prCy) LPID" >0
Tpy is more effective than T when:

MSE (Tx) — min.MSE (Tjg) > 0

o7 (A"~ )G+ 2= B)pCCy+ (87 1) G| +72D" >0
Tpy is more effective than Tp when:

MSE (Tp) — min.MSE (T}) > 0

o7 [(A" = 1)C2 — 2+ B") pC,Cy + ((5*)2 - 1) Cyz} +72D" >0
Tpy is more effective than Tgg when:

min.MSE (Tgg) — min.MSE (Tpp) > 0

072 [A*Cf, v ((6*)2 yp2o 1) - B*pcxc)} L 72D >0
Tpy is more effective than 7 when:

MSE(T5) — min.MSE(T}z) > 0
o7 [ACl+ (8" 47— 1) CE—B'pCCy| + D" + My + My > 0

Tpy is more effective than Tgg when:

MSE (Tgg) — min.MSE (T7z) > 0
- 1
NG KA* - Z) 2+ ((5*)2 - 1) Cr+(1 B*)prCy} +7°D* >0
Tpy is more effective than Tgp when:
MSE (Tgp) — min.MSE (Tpg) > 0
- 1
o> KA* - Z) C2+ ((6*)2 — 1) -1 +B*)prC)} +5°D* >0

Tpy is more effective than Ty when:

min.MSE(Tx) — min. MSE(Tjz) > 0

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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o7 [A°Cl+ ((8) +p2 1) C2—B'pC.Gy | +72D" >0 (47)
Tpy is more effective than Tz when:

min. MSE(Tg) — min.MSE(Tpg) > 0

o7 [A°Cl+ ((8°) +p2 1) C2—B'pC.G | +72D" >0 (48)
Tpy is more effective than Tz when:

MSE(Tg) — min. MSE(Tjiz) > 0

o7 [(A* - %) C+ (87 -1)c+(1 —B*)prCy] +¥2D" >0 “9)

Tpy is more effective than Tgp when:

MSE(Tp) — min. MSE(Tji) > 0

o7 KA - %) G+ ()7 -1)c+( +B*)prCy] +72D" >0 (50)

Tpy is more effective than T, when:
min.MSE(Ty) — min. MSE(Tjg) > 0
072 {(A* —1C+ ((5*)2 - 1) 2+ (2 —B*)prCy}
+¢ (2VpCiCy — (1 -2Y)C3) +7?D* >0 (51

It is noted that T, consistently outperforms the existing estimators y,Tr, Tp, Tre, TG, Ter, TeP, Tk, T, TR, Tpp and Ty as
the conditions are satisfied in equations (40) to (51) are consistently met.

5 Numerical study

The following data sets have been used to confirm the suitability of the suggested estimator 7pg. We have collected nine
sets of data, identified as Data Set-1, Data Set-2, Data Set-3, Data Set-4, Data Set-5, Data Set-6, Data Set-7 and Data
Set-8. Which are as follows:

Data set-1: [Murthy (1967)]: Consider the study variable Y as the fixed capital, and the auxiliary variable X represents the
output of the 80 factories. The parameters characterizing this dataset are: N = 80,n = 20,¥ = 11.264,X = 51.826,p =
0.941,Cy = 0.750,C, = 0.354

Data set-2: [Shabbir et al. (2014)]: Consider the study variable Y as the level of apple production (in 1000 tons), and let
the auxiliary variable X represent the number of apple trees in 104 villages in 1999. The parameters characterizing this
data are as follows: N = 104,n = 20,Y = 6.254,X = 13931.680, p = 0.860,Cy = 1.860,C, = 1.650

Data set-3: [US Environmental Protection Agency 1991]: Let the study variable Y be the average miles per gallon and
X be the engine horsepower (as an auxiliary variate). The parameters that describe this data are as follows: N = 80,n =
5,¥ =33.5175,X = 118.1625,p = —0.801,C,, = 0.2877,C, = 0.4804

Data set-4: [Murthy (1967)]: The number of workers is denoted by the auxiliary variable X, and the study variable Y
corresponds to the output of 80 factories in a region. The parameters that describe this data are as follows: N =34,n =
15,¥ =199.44,X = 208.88,p = 0.98,C, = 0.75,C, = 0.72

Data set-5: [Singh and Chaudhary (1986)]: the parameters that describe these data are as follows: N = 204,n = 50,Y =
26441,X =966,p =0.71,C, = 2.4739,C, = 1.7171

Data set-6: [Das (1988)]: Let Y be the number of agricultural labourers in 1971 and X be the number of agricultural
labourers in 1971: N = 278,n = 25,Y =39.068,X =25.111,p = 0.7213,Cy, = 1.4451,C, = 1.6198

Data set-7: [Singh and Chaudhary(1986)]: The parameters that describe this data are as follows: N = 34,n = 20,Y =
84.6412,X = 19.9441,p = 0.4453,C, = 0.7532,C, =2

Data set-8: [Gupta and Kothwala (1990)]: Let Y denote the proportion of the irrigated area, and let X represent the
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area under the crop gram and mixture. The parameters that describe this data are as follows: N = 400,n = 100,Y =
36.71438,X = 6.56383,p = —0.4020,C, = 0.9928,C, = 0.9617
The percentage relative efficiency (PRE) of the estimators can be calculated using the formula

Var(T)

PRE(O,T) = VSE(®)

x 100 (52)

Where, ©® =T or y, Tr,Tp, Tre, TG, Ter, Tep, Tk, T8, TBr, Tep, Ta and Tpp. The results are presented in Table 1 and 2 at
a=1,y=p,a=—1 and b = 1 for the proposed estimator. For a clearer and more immediate interpretation of Table 1
and 2, the results have been presented graphically in Figure 1 in terms of PREs.

Interpetation of the results:

It is observed from Table 1 and 2:

(1)The MSE and PRE values of the proposed estimator 755 and existing estimators have been evaluated across Data Sets
1 to 10 to examine comparative performance.

(ii)For Data Sets 1 and 2, T, attains the lowest MSE values (0.30532 and 0.54111, respectively) and the highest PRE
values (876.552 and 1009.9), clearly outperforming all the existing estimators.

(iii)In Data Set 3, where the correlation between the variables is negative, the proposed estimator still demonstrates
remarkable efficiency, with an MSE of 1.91849 and a PRE of 908.791—significantly better than the classical product
estimator 7p.

(iv)For Data Sets 4, 5, and 7, the estimator 75y consistently maintains superior performance. In Data Set 4, it achieves an
MSE of 13.1386 and PRE of 6344.25 compared to the baseline estimator y with an MSE of 833.548.

(v)In Data Set 5, despite the presence of high variability in data, the proposed estimator shows excellent performance
with an MSE of 25981934 and a PRE of 248.639, outperforming other estimators with notably larger MSEs.

(vi)In Data Set 7, the estimator again demonstrates dominance with an MSE of 11.2414 and PRE of 762.054,
outperforming all estimators, including Trg, T, Tk, and Ty.

(vii)In Data Set 7, the correlation is again negative, yet the proposed estimator yields the lowest MSE (8.13122) and highest
PRE (122.547), surpassing both product-type and generalized estimators in performance.

(viii)Overall, across Data Sets 1 to 10, the proposed estimator 7, consistently achieves the lowest MSE and highest PRE,
establishing its efficiency and robustness in comparison to the existing methods.

Table 1: MSEs and PREs of proposed estimator and existing estimators for data sets 1 to 5

Estimator Data 1 Data 2 Data 3 Data 4 Data 5
MSE PRE MSE PRE MSE PRE MSE PRE MSE PRE
y 2.67633 100 5.4646 100 17.4351 100 833.548 100 64601200 100
Tr 0.895178 298.972 1.427 382.94 112.687 15.4721 33.3419 2500 32052095  201.551
Tp 5.64996  47.3689 18.103 30.186  19.4088  89.8308 3170.15 26.2936 159394301  40.5292
TrE 0.30649  873.218 1.423 384.02 6.24872  279.019 33.0085 2525.25 32035735  201.654
TG 0.305349 876.482 1.3282 411.44 6.11424  285.155 32.5903 2557.66 30270495  213.413
Ter 1.63669 163.521 2.3707 230.5 529078  32.9537 241.395 345.304 40546148 159.328
Tep 4.01408  66.6734 10.709 51.03 6.26875  278.127 1809.8 46.0575 104217251 61.9871
Tx 0.30649  873.218 1.423 384.02 6.24872  279.019 33.0085 2525.25 32035735  201.654
Tp 0.30649  873.218 1.423 384.02 6.24872  279.019 33.0085 2525.25 32035735  201.654
TBr 1.63669 163.521 2.3707 230.5 529078  32.9537 241.395 345304 40546148 159.328
Tgp 4.014083 66.6734 10.70862 51.030 6.26875 278.1270  1809.79887  46.0575 104217251 61.9871
Ty 0.794683  336.779 1.5789 346.09 117.022 14.89 33.2007 2510.63 32052041 201.551
Tpr 0.30532 876.552 0.54111 1009.9 1.91849 908.791 13.1386 6344.25 25981934  248.639
©2025 YU
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Table 2: MSEs and PREs of proposed estimator and existing estimators for data sets 6 to 10
Estimator Data 6 Data 7 Data 8 Data 9 Data 10

MSE PRE MSE PRE MSE PRE MSE PRE MSE PRE

y 116.0310  100.0000  85.6654 100 9.96454 100 0.588426 100 0.00590638 100
Tr 74.1901 156.3967  487.091 17.5871  27.0751  36.8033  0.210335 279.756  0.0280158 21.0823
Tp 449.4337 258171 892.261 9.60093 11.554 86.2429 2.95985 19.8803 0.00181148  326.052
TrRE 55.6631  208.4522  68.6786 124734 835423  119.275  0.114356 514.554 0.00114171  517.327
TG 52.2123  222.2292  65.8706 130.051 828737  120.238  0.114293  514.84  0.00114114  517.585
Ter 58.6653 197.7846 135.375 63.2798 16.1823  61.5767  0.150214 391.725  0.0147093 40.1542
Tep 246.2871  47.1121 337.961 25.3477  8.42178  118.319 1.52497 38.586  0.00160712  367.513
Tx 55.6631  208.4522  68.6786 124.734  8.35423 119.275  0.114356 514.554 0.00114171 517.327
Tp 55.6631  208.4522  68.6786 124734 835423  119.275  0.114356 514.554 0.00114171  517.327
TBr 58.6653 197.7846 135.375 63.2798 16.1823  61.5767  0.150214 391.725  0.0147093 40.1542
Tpp 246.2871  47.1121 337.9606 25.34774  8.42178 1183186 1.524970 38.5860 0.00160712 367.5133
Ty 498.913 17.1704 498.913 17.1704  27.8027  35.8401  0.232054 253.573  0.0393767 14.9997
Tpr 27.7616 4179549 11.2414 762.054  8.13122  122.547  0.112126 524.789 0.00114112  517.597
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PREs of Estimators for Data Sets 1 to 10
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Figure 1. The PRE values of proposed estimator
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6 Simulation study

To evaluate the effectiveness of the estimators, we conducted a simulation involving two synthetic populations generated
using the R programming language to imitate real-world data characteristics provided below. The majority of social and
economic surveys often show that the variable under consideration, denoted as y, follows a normal distribution. As a
result, we have evaluated the performance of the suggested class of estimators 7.

Data set-9: [Artificial data]: The pair (y,x) is generated with a Population size of N = 5000 using a bivariate normal
distribution (¥,X) ~ .47(30,10,0.9,35%,15%). The sample size of (n = 1500) is specifically considered.
N =5000,n = 1500,Y = 30.0105,X = 10.0315, p = 0.897584,C, = 1.18323,C, = 1.53992

Data set-10: [Artificial data]: A data set of size (N = 5000) with two variables (y,x) is generated using a bivariate
normal distribution (Y,X) ~ .#7(3,1,-0.9,3.5%,1.5%). A sample size of n = 1500 has been selected.
N =5000,n = 1500,Y =3.00293,X = 1.00157,p = —0.898164,C, = 1.18471,C, = 1.46301

The absolute bias (ABS) of proposed estimator can be obtained using equation (30), we have calculated the ABS and
PRE of the suggested class of estimators with respect to T for various values of [(¢,¥), (a,b)]. The results are displayed
in Table 3 and 4.

Table 3: The ABS for the proposed class of estimator 75, with respect to ¥

ABS(-) fory=p

Data Sets
(a,[a,b]) 1 2 3 4 5 6 7 8 9 10
(1,[-1,1] 0.0271062  0.086522  0.173106  0.0658776  0.627382  0.710597  0.329378 0.225248 0.00376007  0.00129651
(—1,[-1,1])  0.0265519 0.1049 0.0572386  0.164165  0.372445 0.27854 1.05167  0.219526  0.00363761  0.00129652

0.0271092  0.086523  0.173214  0.0658987  0.629001 0.710308  0.324613  0.225334  0.0037591 0.000380185
0.0271062  0.086522  0.173106  0.0658776  0.627382  0.710597  0.319868  0.225248  0.00376007  0.00129651
1,[0,1]) 0.0271902  0.077632  0.186044  0.0484058  0.537021 0.593894  0.131261 0.226248 0.00373623  0.000378533
ABS(-) for y=Cy
Data Sets
1 2 3 4 5 6 7 8 9 10
) 0.0271606  0.11675 0.168678 0.057407  0.816994  0.986772  0.678977 0.227539  0.00378459  0.00610211
, J1]) 0.026696  0.072704  0.164148 0.178236  0.038749 0.0434 0.373301  0.225941 0.00368625  0.00610171
(—1,]0,1]) 0.0268057  0.11117 0.126612 0.192263  0.423219  0.399943 1.3274 0.221472  0.00359564  0.000380001
)
)

)

]
(—1,[0,1])  0.0268057 0.11117  0.126612  0.192263  0.423219  0.399943 1.3274  0.221472  0.00359564  0.000380001

)

)

0.0271616  0.11675 0.168885  0.0574614  0.823178  0.975526  0.732428 0.227539  0.00378152  0.000364492
0.0271606  0.11675 0.168678 0.057407  0.816994  0.986772  0.678977 0.227539  0.00378459  0.00610211
1,[0,1]) 0.0271902  0.11675 0.186044  0.0484058  0.537021 0.593894  0.131261 0.226248  0.00373623  0.000378533
ABS(-) for y=Cy
Data Sets
(a,[a,b]) 1 2 3 4 5 6 7 8 9 10
) 0.0271232  0.12811 0.179337  0.0582533  0.742007  0.923349  0.480564 0.227528 0.00377077  0.00131865

(—1,[-1,0]) 0.0265946 0.059853  0.179406 0.17675 0.036751 0.0412442  0.832121 0.225635 0.00365418  0.000368766
(—1,[-1,1]) 0.0265882  0.059851  0.150233 0.176848  0.029653  0.0339548  0.81822  0.226056 0.00365788  0.00131865
(—1,[0,1])  0.0268057 0.11117  0.126612  0.192263  0.423219  0.399943 1.3274  0.221472  0.00359564  0.000380001
(1,[-1,0])  0.0265946  0.12811 0.179406  0.0583051 0.733452  0.91498  0.470643  0.227546  0.00376886  0.000368766
0,[-1,1])  0.0271257  0.12811 0.179337  0.0582533  0.742007  0.923349  0.480564 0.227528 0.00377077  0.00131865

(0,10,1]) 0.0271902  0.077632  0.186044  0.0484058 0.537021  0.593894  0.131261 0.226248 0.00373623  0.000378533
ABS(-) fory=0

Data Sets
o 1 2 3 4 5 6 7 8 9 10
-1 0.0268057  0.11117 0.126612 0.192263  0.423219  0.399943 1.3274 0.221472  0.00359564  0.000380001
Oorl 0.0271902  0.077632  0.186044  0.0484058 0.537021 0.593894  0.131261 0.226248 0.00373623  0.000378533

Main Findings:

Table 4 presents the PREs for the proposed class of estimator 75 with respect to the unbiased estimator ¥ under various
combinations of a, ¥ € {p Cy,Cy,0}, and (a,b). It is observed that » demonstrates notably higher efficiency than the
generahzed estimator Tg i 1n many cases, particularly when ¢ =0 or 1, and Y is closer to 1.

®[(e,y),(a,b)] =[(0,p),(—1,1)] in Data Set 1 shows max1mum efficiency (PRE = 876.552).
(i[(0t,7), (a,b)] = [(0.p ),( 1,0)], [(1 p),(=1,0),[(0,p),(—1,1)],{(0,p), (0, 1)],
[(1;P)7( 7 )] [( 7Cx ,(0, ] [( )7(071)]a[(.07(;}‘)a(031)]7[.(1ac)')7(071)]5
[(0,0),(0,0)],[(1,0),(0,0)] in Data Set 2 consistently yield high PREs (> 1009.9).
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Table 4: The PRE:s for the proposed class of estimator 75, with respect to y

PRE (Tpy,y) fory=p

Data Sets
(e, (a,b)] 1 2 3 4 5 6 7 8 9 10
[1,(=1,0)]  sotskx sk 90AS32 sokskokx skokokkok ok Kk K wokkkk 123546 wxxxx  520.895
[1,(=1,1)]  sokskokx swkork 908791 sk wkokkk  sokokkok kokokkokx 1230622 kkxxx 455.557
[—1,(0,1)] sokkkok kokkokx 410.845  wkokkx wokwokk * ok ok K K skkxx 122547 xxxxx  517.597
[z,(—1,0)]  876.454 1009.9  xxxxx 6342.22 248.635 418.1247 308.146 s xxxx 521597  wkkkk
[0,(—1,1)] 876.552 1009.9  sxxxx 6344.25 248.639 417.9549 303.689  sxxxx  521.462  sxxxx
[z,(0,1)] 873.844  1125.5  xxxxx  8634.17 250.196 500.0847 762.054  xxxxx 524789  sxxkx
PRE (Tpy,y) for y =C,
Data Sets
(e, (a,b)] 1 2 3 4 5 6 7 8 9 10
[-1,(-1,0 skl skokokokok 3170261 skokokskk skokokokok Kok K K K sockokk 120344 kokkkk 524,111
[1,(=1,1)]  sskkkx wxkork 316.896  kokkkx  wkokkk sokokkk okokkokx 12001230 kkxxx 96,7988

874765  748.41  kxxxx  T7273.48 237.865 304.4486 136.571  xxxxx 518503  xokxx

)
)
] skkxx kxxxk 410.845 kxxxx * % ok ok k % % ok sk K sxxxx 122547  xxxxx  517.597
]
| 874797 7484 wokkok k728036 237.857  300.9788  147.322 sk xxkkx  S18.084  xokkokx

[z,(0,1 873.844 11255  sxxxx  8634.17 250.196 500.0847 762.054  xxxxx 524789  kxxxx
PRE (Tpg,y) for y=C,
Data Sets
[et, (a,b)] 1 2 3 4 5 6 7 8 9 10
[1,(=1,0)]  sskskkx  wxkokk 346541 kokkkx  kkokokok ok Kk K sokkkx 120286 wxkxk  521.005
[1,(=1,1)]  sxskx skokoxkk 346,248 swoxskkx kokokkok ok koK K wxokkx 120,062 xokxxk  447.947
[—1,(0,1)]  skkxx wkorkk 410.854  kokrxx okskkk kokkokk kokkokx 122,547 kxxxx 517.597
[z,(—1,0)] 875924 682.05 sxxxx 7168.23 225459 324.5945 212.535 xxxxx 520245  wwkkk
[0,(—1,1)] 876.001 682.03  sxxxx 7174.61 225435 321.6523 208.147  sxxxx  519.981 sk
[z,(0,1)] 873.844  1125.5  sxxxx  8634.17 250.196 500.0847 762.054  sxxkxx 524789  skwxx
PRE (Tpg,y) for y=0
Data Sets
o 1 2 3 4 5 6 7 8 9 10
-1 sokkokk kokkokx 410.845 wkokkx wokowkx ok %k K sokkokk 122547 sxxxx 517.597
b4 873.844  1125.5  sxxxx  8634.17 250.196 500.0847 762.054  sxxxx  524.789  srwxx

(i)[(e,y),(a,b)], forall o« = —1, y € {p,Cy,Cy}, a € {—1,0}, and b = 1, give strong performance in Data Set 3 with
PREs such as 904.532,908.791, 410.845, 317.261, 346.541, and 410.854.

(iv)[(e,7),(a,b)], forall @ € {0,1}, y € {p,Cy,Cy}, a € {—1,0}, and b = 1, demonstrate high efficiency in Data Sets 4,
5, 6, and 8, with PREs like 6342.22, 248.639, 417.9549, 500.0847, and 762.054.

(V)[(Oﬂ, Y)v (avb)] = [(_lvp)a (_170)]a [(_lap)v (_la 1)]7 [(_17P); (Oa 1)]7
[(-1,Cy),(—1,0)],[(—1,Cy),(0,1)],[(—1,Cy),(0,1)] are efficient combinations in Data Set 7, with values such as
308.146, 303.689, 136.571, 147.322, and 212.535.

(Vi)[(aa Y)v (avb)] = [(_lvp)a (_170)]a [(_lap)v (07 1)]5 [(—I,Cx), (_170)]a
[(-1,Gy), (—1,0)],[(—1,Cy),(0,1)],[(—1,0),(0,0)] perform well in Data Set 9 with PREs like 521.597, 518.503,
524.789, and 521.005.

(vii)The pair [(¢t,7), (a,b)] = [(1,p), (—1,0)] indicates that T, is more efficient than 7 in six positively correlated data
sets (1,2, 4,5, 6, 8). However, its superiority is less pronounced at [(@, ), (a,b)] = [(1,Cy or Cy),(—1,0)]. Therefore,
for higher gains in efficiency, it is advisable to choose 7y values closer to 1 when y and x are positively correlated.

(viii)The case [(a,7),(a,b)] = [(—1,p),(0,1)] is significant in negatively correlated data sets (3, 7, 9), where Tpg
consistently outperforms 7. It is recommended to select y values near -1 for such cases.

The suggested class of estimators 75, perform better than the usual unbiased estimator y in Table 4. The suggested
estimators 75y differ in their biases up to the first-order approximation. The biases and MSEs measured up to the first-
order approximation are sufficient for formulating a population mean estimator, with very few biases. These findings can
be broadly applied to various real populations. The extensive simulation study in Section 6 substantiates our theoretical
assertions favoring the proposed estimators.
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7 Sensitivity analysis

In numerical and simulation studies, the MSEs and PREs are computed using the known values of population parameters
Cy,C, and py y, whereas in this sensitivity analysis, these metrics are derived from sample estimates. In real-life survey
sampling, the parameters Cy,C, and py y are unknown for population. Therefore, we have used the estimates cy,c, and
px,y of these parameters based on the sample to calculate the MSEs and PREs of the estimators under this sensitivity
analysis.

7.1 For real data sets

We have taken two populations (data sets 1 and 2), which are already given in Section 5. We computed MSEs and PREs of
the estimators based on ¢y, cy and py, estimated from the sample data, where Cy,C and px y are unknown for population
parameters. The results are presented in Table 5.

Table 5: MSEs and PREs of estimators for population 1 and 2

. Population 1 Population 2
Estimators —grop PRE MSE PRE
5 33946.74 100.00 6548530  100.00
Tr 9398.54  361.19 302865.80 21.62
p 7858230 4320 173187.00  37.81
Tre 4161.87 815.66 59393.80  110.26
s 413699  820.57 59153.60  110.70
Ter 19161.72  177.16 14104020  46.43
Tep 53753.60  63.15 7620090  85.94
Tk 4161.87 815.66 59393.80  110.26
Ty 4161.87 815.66 59393.80  110.26
Tor 1916172 177.16 14104020  46.43
Tep 53753.60  63.15 7620090  85.94
n 9385.16  361.71 30294430 21.62
The 407537 83297 58407.30 112.12

7.2 For Artifically generated data sets

The procedure for sensitivity analysis as follows:

Generate a population N = 10000 using bivariate normal distribution (¥,X) ~ .47(30,10, px v,8,4). Draw a sample of
size n = 1500 using SRSWOR. Estimate cy,cy and p,, from sample data. We have computed MSEs and PREs for
proposed estimator and existing estimators with different amount of correlation p,, = —0.9,-0.5,0.5,0.9 to evaluate
there effectiveness in highly positive and negative correlated sample data. The results are displayed in Table 5.
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Table 6: MSEs and PREs of estimators for various correlation values p

. p=-09 p=-05 p=05 p=09
Estimators —grem PRE MSE PRE MSE PRE MSE PRE
5 0.0351 100.0000 0.0352 100.0000 0.0349 100.0000 0.0351 _ 100.0000
Tk 02114 166119 0.1774 19.8394 0.0672 51.9760 02114  16.6119
Tp 0.0199 1761793 0.0668 52.6932 0.1778 19.6427  0.0199 176.1793
Tk 0.0067 5263158 0.0264 133.3333  0.0262 133.3333  0.0067 5263158
e 0.0067 5263403 0.0264 1333411 0.0262 1333411 0.0067 526.3403
Ter 0.1031  34.0545 0.0846 41.6155 0.0292 119.7437 0.1031  34.0545
Tep 0.0074 4753341 0.0293 1202489 0.0845 413460 0.0074 4753341
Tk 0.0067 5263158 0.0264 133.3333  0.0262 133.3333  0.0067 5263158
n 0.0067 5263158 0.0264 133.3333  0.0262 133.3333  0.0067 5263158
Tor 0.1031  34.0545 0.0846 41.6155 0.0292 119.7437 0.1031  34.0545
Tep 0.0074 4753341 0.0293 120.2489 0.0845 41.3460 0.0074 475.3341
T 02201 159594  0.1851 19.0114 00713 489934 02201  15.9594
The 0.0067 5263465 0.0264 133.3596 0.0262 133.3968 0.0067 526.3465

Interpetataion of the results:

The sensitivity analysis results, as detailed in Tables 5 and 6, reveals that the proposed estimator 7, significantly
outperforms existing estimators in terms of MSE and PRE across both real and simulated datasets.

For the real data sets (Populations 1 and 2) in Table 5, the proposed estimator 755 consistently outperforms the other
considered estimators in terms of minimum MSE and highest PRE. Notably, for Population 1, it achieves the lowest
MSE (4075.37) and the highest PRE (832.97), highlighting its efficiency. A similar pattern is observed for Population 2,
with Tpp maintaining superior performance (MSE = 58407.30, PRE = 112.12).

In the artificially generated data sets (Table 6) across varying levels of correlation p, T, consistently yield the lowest
MSEs and highest PREs, especially when correlation is strong (|p| = 0.9). The performance remains efficitive for both
highly negative and highly positive correlations, demonstrating the stability and adaptability of the proposed estimator
under different dependency structures.

Thus from the above findings, we can reassert that the effectiveness of the proposed estimator remains consistent and
exhibits no sensitivity for the considered parameters Cy, Cy, and py y at their known values or estimated values.

8 Conclusions

This paper proposes a novel logarithmic-exponential cum ratio-type estimator that targets the estimation of population
mean. To verify the theoretical results, we have taken eight real and two artificially generated datasets in numerical and
simulation studies, respectively, based on the assumption that the population parameters Cy, C, and px y are known. In
light of this, we also investigated situations where the population parameters are unknown through sensitivity analysis.
This analysis, conducted using two real and two artificially generated datasets, focused on cases with highly positive and
negative correlation between the study and auxiliary variables. For this, the parameters cy, ¢y, and py, were estimated
from sample data. The proposed estimator demonstrates its practical applicability and is widely used across various
fields, including population studies (where the objective is to estimate demographic characteristics); agriculture (to
assess crop yields and labor statistics); economics and industry (for analyzing fixed capital, factory output, and income
indicators); and environmental and engineering studies (focusing on vehicle efficiency and horsepower). It is also useful
for social and demographic research for understanding regional and village-level characteristics. The findings suggest
promising directions for advancing estimator performance under different sampling schemes, notably ranked set
sampling and stratified random sampling. Based on these truthful findings, this may encourage survey researchers to
implement the proposed estimator in real-world scenarios for estimation of the population mean.
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