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Abstract: In sample surveys, the use of auxiliary variables to estimate the population mean has become crucial for improving the

efficiency of the estimators, including traditional ratio, product and regression estimators. This paper introduces a new logarithmic-

exponential cum ratio-type estimator for the elevated estimation of population mean under simple random sampling. We have obtained

the bias and mean squared error (MSE) of the proposed estimator up to the first order of approximation and identified the situations

in which it performs more efficiently than existing estimators. To verify the theoretical results, we have conducted numerical study

based on eight real data sets belonging from the clinical, agricultural and business fields. Their performances have also been evaluated

through simulation study that utilized two artificially generated datasets. A sensitivity analysis based on the sample estimates has been

investigated to reassert the behaviours of proposed estimators.
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1 Introduction

In sample surveys, the primary objective is to make reliable population inferences while minimizing costs and time. The
efficiency of estimators can be substantially improved by incorporating an auxiliary variable that is highly correlated
with the study variable. The strategic use of auxiliary variables is thus a critical practice that allows researchers to draw
stronger conclusions and make more informed decisions based on survey data. For example, in agricultural surveys, this
approach helps produce accurate crop yield estimates, while in economic studies, it can be used to analyze fixed capital
and income indicators. Cochran (1991) propounded ratio estimator using auxiliary variable, which performs better in case
of highly positive correlation between study and auxiliary variable. Numerous research papers have been published on
estimators based on various transformations, including product-type, exponential ratio-type, regression-type, logarithmic
type and logarithmic ratio and product-type estimators. The primary objective of this paper is to develop a population
mean estimator that surpasses the accuracy of the ratio estimator of Cochran (1977), the product estimator of Murthy
(1967), the regression estimator of Hansen et al. (1953), the modified regression estimator of Grover and Kaur (2011), the
exponential estimation methods proposed by Bahl and Tuteja (1991), the modified exponential type estimator of Kadilar
(2016), the logarithmic type of Bhushan et al. (2015), the logarithmic ratio and product estimators of Brar et al. (2020)
and the logarithmic ratio-type estimator of Adejumobi et al. (2023). To estimate the mean finite population under simple
random sampling, this study has developed an effective logarithmic-exponential cum ratio-type estimator. It is anticipated
that the proposed estimators will outperform the comparable estimators currently discussed in the literature, providing
more accurate estimates of the population mean.
Let U = {U1,U2, . . . ,UN} denote a finite population of size N. Let Y represent the study variable and X the auxiliary
variable. A sample of size n is drawn from the population using simple random sampling without replacement (SRSWOR).
The corresponding paired observations of the study and auxiliary variables in the sample are denoted by (yi,xi), for
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i = 1,2, . . . ,n.
Let the sample mean of the study variable y and the auxiliary variable x be defined as

ȳ =
1

n

n

∑
i=1

yi and x̄ =
1

n

n

∑
i=1

xi,

which represent the mean of the respective variables based on a sample of size n. Similarly, the population mean of the
study variable Y and the auxiliary variable X are given by

Ȳ =
1

N

N

∑
i=1

Yi and X̄ =
1

N

N

∑
i=1

Xi,

where N is the population size.
The sample variance for y and x are expressed as

s2
y =

1

n− 1

n

∑
i=1

(yi − ȳ)2 and s2
x =

1

n− 1

n

∑
i=1

(xi − x̄)2,

while the corresponding population variance are given by

S2
y =

1

N − 1

N

∑
i=1

(Yi − Ȳ )2 and S2
x =

1

N − 1

N

∑
i=1

(Xi − X̄)2.

Furthermore, let ρX ,Y denote the Pearson correlation coefficient between the population variables X and Y . The coefficient
of variation for Y and X are defined as

Cy =
Sy

Ȳ
and Cx =

Sx

X̄
,

respectively.
To compute the bias and MSE for the proposed estimator as well as the existing estimators under discussion. The following
sample error terms are introduced:

ȳ = Ȳ (1+ e0) and x̄ = X̄(1+ e1), such that E (ei) = 0 for i = 0,1.

Additionally,

E
(

e2
0

)

= φC2
y , E

(

e2
1

)

= φC2
x , and E (e1e0) = φ ρ Cy Cx,

where

φ =

(

1− f

n

)

; f =
n

N
.

In this paper, we present a highly effective logarithmic-exponential cum ratio-type estimator for estimating the finite
population mean. The proposed estimator is shown to be more efficient than all other existing estimators.

2 The Existing estimators

This section discusses several existing estimators for the estimation of population mean.
The conventional sample mean is described as:

ȳ =
1

n

n

∑
i=1

yi (1)

The estimator ȳ whose variance is expressed as :

Var(ȳ) = φȲ 2C2
y (2)

Cochran (1977) introduced an ratio type estimator defined as:

TR = ȳ

(

X̄

x̄

)

(3)
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The approximate expression for the MSE of TR at the first order is:

MSE(TR) = φȲ 2
(

C2
y +C2

x − 2ρCyCx

)

(4)

Murthy (1967) introduced the product estimator for Ȳ , specifically in situations characterized by a strong negative
correlation between Y and X .

TP = ȳ

(

x̄

X̄

)

(5)

The approximate expression for the MSE of TP at the first order is:

MSE(TP) = φȲ 2
(

C2
y +C2

x + 2ρCyCx

)

(6)

Hansen et al. (1953) introduced the regression estimator for the population mean Ȳ as

TRE = ȳ+β (X̄ − x̄) (7)

The approximate expression for the MSE of TRE at the first order is:

MSE(TRE) = φȲ 2

[

C2
y −

2

Ȳ
β ρ CyCx +

1

Ȳ 2
β 2C2

x

]

where β opt = Ȳ ρ
Cy

Cx
, therefore

min.MSE(TRE) = φȲ 2C2
y

(

1−ρ2
)

(8)

Grover and kaur (2011) suggested an modified exponential-type estimator of Ȳ :

TG = [k1ȳ+ k2 (X̄ − x̄)]exp

(

X̄ − x̄

X̄ + x̄

)

(9)

The approximate expression for the MSE of TG at the first order is:

MSE(TG) = Ȳ 2

[

(k1 − 1)2 + k2
1φL1 −

φk1

2

{

L2 +

(

C2
x

2
−ρCyCx

)}]

+ k2
2X̄2φC2

x

+ 2k2X̄Ȳ φ

(

k1L2 −
C2

x

2

)

(10)

The optimal values for k1 and k2 are as follows:

k1(opt) =
−C2

x

[

2− φ
2

L2 +
φ
2

(

C2
x

2
−ρCyCx

)]

2
[

φL2
2 − (1+φL1)C2

x

]

and

k2(opt) =
Ȳ
[

L2

{

2+ φ
2

L2 +
φ
2

(

C2
x

2
−ρCyCx

)}

−C2
x (1+φL1)

]

2X̄
[

φL2
2 − (1+φL1)C2

x

]

where L1 =C2
y +C2

x − 2ρCyCx and L2 =C2
x −ρCyCx.

min.MSE(TG) =
φȲ 2C2

y

(

1−ρ2
)

1+φC2
y (1−ρ2)

−
φ2Ȳ 2C2

x

[

4C2
y

(

1−ρ2
)

+
C2

x
4

]

16
[

1+φC2
y (1−ρ2)

]

Or

min.MSE(TG) = min.MSE(TRE)−M1 −M2 (11)
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where

M1 =

[min.MSE(TRE )]
2

Ȳ 2

1+ min.MSE(TRE )
Ȳ 2

M2 =
φC2

x

[

min.MSE(TRE)+
φȲ 2C2

x
16

]

4
[

1+ min.MSE(TRE )
Ȳ 2

]

Bahl and Tuteja (1991) proposed estimators for Ȳ based on the ratio and product type, are as follows:

TER = ȳexp

[

X̄ − x̄

X̄ + x̄

]

(12)

and

TEP = ȳexp

[

x̄− X̄

x̄+ X̄

]

(13)

The approximate expression for the MSE of TER and TEP at the first order is:

MSE(TER) = φȲ 2

[

C2
y +

C2
x

4
−ρCyCx

]

(14)

and

MSE(TEP) = φȲ 2

[

C2
y +

C2
x

4
+ρCyCx

]

(15)

Kadilar (2016) Suggested a newly exponential estimator is expressed as:

TK = ȳ

(

x̄

X̄

)α

exp

[

X̄ − x̄

X̄ + x̄

]

(16)

The approximate expression for the MSE of TK at the first order is:

MSE(TK) = φȲ 2
(

C2
y +C2

x/4+ 2αρCxCy +ρCxCy +α2C2
x +αC2

x

)

the optimum value of α is given by αopt =
(Cx−2ρCy)

2Cx
.

min.MSE(TK) = φȲ 2C2
y

(

1−ρ2
)

(17)

Bhushan et al. (2016) proposed a class of logarithmic-type estimator in the form of :

TB = ȳ

{

1+ log

(

x̄

X̄

)}α

(18)

where α is a chosen scalar.
The approximate expression for the MSE of TB at the first order is:

MSE(TB) = φȲ 2(C2
y +α2C2

x + 2αρxyCxCy)

The minimum MSE at the optimal value of αopt =−ρxy

(

Cy

Cx

)

is given by

min.MSE(TB) = φȲ 2C2
y (1−ρ2

xy) (19)

Brar et al. (2020) proposed ratio and product estimators of the population mean was given new functional representations
as follows:

TBR = ȳ

(

X̄

x̄− X̄

)

ln

(

x̄

X̄

)

(20)
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TBP = ȳ

(

X̄

x̄− X̄

)

ln

(

2X̄ − x̄

X̄

)

(21)

The approximate expression for the MSEs of TBR and TBP respectively, expressed as:

MSE(TBR) = φȲ 2

[

C2
y +

C2
x

4
−ρCyCx

]

(22)

MSE(TBP) = φȲ 2

[

C2
y +

C2
x

4
+ρCyCx

]

(23)

Adejumobi et al. (2023) suggested a new estimator based on logarithmic ratios for the estimation of the finite population
mean as:

TA =

[

ȳ−Ln
(

x̄
X̄

)]

x̄
X̄ (24)

The approximate expression for the MSE of TA at the first order is:

MSE(TA) = φ
[

Ȳ 2
(

C2
y +C2

x − 2ρCyCx

)

+(1+ 2Ȳ)C2
x − 2ȲρCyCx

]

(25)

3 Proposed Estimator

Inspired by the above researchers, we have proposed a new class of logarithmic-exponential cum ratio-type Estimator for
the population mean Ȳ , using the information on a single auxiliary variable x with a known population mean X̄ which is
described as :

T ∗
PR = ȳ

{

δ

(

X̄

x̄

)α

exp

(

X̄ − x̄

X̄ + x̄

)

+β

(

X̄

x̄

)

log

(

x̄

X̄

)}{

exp

(

γ
(aX̄ + b)− (ax̄+ b)

(aX̄ + b)+ (ax̄+ b)

)}

(26)

In this situation, δ and β stand for constants whose optimal value will be determined later, while α and γ is a fixed
constant that specifically takes on the values 1, −1, or 0, a and b is a chosen constant it may be correlation coefficient ρyx,
coefficient of variation (Cy orCx).
To derive the MSE of T ∗

PR,

let’s express ȳ = Ȳ (1+ e0) and x̄ = X̄(1+ e1), where E(e0) = E(e1) = 0 and E(e2
0) = φC2

y , E(e2
1) = φC2

x , E(e0e1) =
φρCyCx.
Reframing equation (26) in terms of e’s, we have:

T ∗
PR = Ȳ

{

δ (1+ e0)(1+ e1)
−α exp

(

X̄ − X̄(1+ e1)

X̄ + X̄(1+ e1)

)

+β (1+ e0)

(

X̄

X̄(1+ e1)

)

× log

(

X̄(1+ e1)

X̄

)}

×

{

exp

(

γ
aX̄ − aX̄(1+ e1)

aX̄ + 2b+ aX̄(1+ e1)

)}

= Ȳ

{

δ

(

1−αe1+
(α(α + 1))

2
e2

1

)

exp

(

−
e1

2
+

e2
1

4

)

+β (1+ e0)(1+ e1)
−1

× log(1+ e1)}×
{

exp
(

−γθe1 + γθ 2e2
1

)}

(27)

Expanding the expression on the right side of (27) and keeping terms up to the second power of e’s, we obtain:

= Ȳ

{

δ

(

1−αe1 +
α(α + 1)

2
e2

1

)(

1−
e1

2
+

3e2
1

2

)

+β

(

e1 + e0e1 −
3

2
e2

1

)}

×

{

1− γθe1 +

(

γ +
γ2

2

)

θ 2e2
1

}

(28)

where in (28),

θ =
aX̄

2(aX̄ + b)

T ∗
PR = Ȳ

{

δ −

(

δα +
δ

2
−β

)

e1 +

(

α2δ

2
+ δα +

3δ

2
−

3β

2

)

e2
1

+δe0 −

(

δα +
δ

2
−β

)

e0e1

}

×

{

1− γθe1+

(

γ +
γ2

2

)

θ 2e2
1

}

(29)
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To obtain the bias of T ∗
PR, B(T ∗

PR) = E(T ∗
PR)− Ȳ , we get

B(T ∗
PR) = Ȳ

[

δ −φE1ρCxCy +φE2C2
x − 1

]

(30)

where

E1 =

(

δα +
δ

2
−β + δγθ

)

E2 =

(

α2δ

2
+ δα +

3δ

2
−

3β

2
+ γδαθ +

δγθ

2
− γθβ +θ 2δγ +

γ2δθ 2

2

)

MSE(T ∗
PR) is obtained by E [T ∗

PR − Ȳ ]
2

is

MSE(T ∗
PR) = Ȳ 2

{

δ 2 − 2δ + 1+φ
(

2µ2δ − 2µ2 + µ2
1

)

C2
x +φδ 2C2

y

−φ (4δ µ1 − 2µ1)ρCxCy

}

(31)

Or

MSE(T ∗
PR) = Ȳ 2

{

D+φAC2
x +φδ 2C2

y −φBρCxCy

}

(32)

where

A =
(

2µ2δ − 2µ2 + µ2
1

)

B = (4δ µ1 − 2µ1)

D = δ 2 − 2δ + 1

µ1 =

(

δα +
δ

2
−β + δγθ

)

µ2 =

(

α2δ

2
+ δα +

3δ

2
−

3β

2
+ γδαθ +

δγθ

2
− γθβ +θ 2δγ +

γ2δθ 2

2

)

To find the optimal values for δ and β to minimize MSE(T ∗
PR). By differentiating MSE(T ∗

PR) with respect to δ and β ,
setting the derivatives to zero, the optimal values of δ and β can be determined.

βopt =
(A1 +A2 −A3 +A4)

2(A5 −A6)
= β ∗(say) (33)

δopt =
B1 +B2

B3 +B4

= δ ∗(say) (34)

Where

A1 =
[(

4α2 − 8α − 8
)

α −
(

12αγ2 − 8α + 8γ2θ + 24γ + 8
)

γθ 2

− (36α + 18)γθ − 15]C2
x

A2 =
[

(24α + 48)γθ + 36α + 24θ 2γ2 + 18
]

ρCxCy

A3 =

[

16αρ2 + 16γθe2+ 8e2 + 8γθ −
1

φ
8ρ

Cy

Cx

+ 12

]

C2
y

A4 =
1

φ

[

8α2 + 8γθ + 4−ρ
Cy

Cx

]

A5 =
[(

4α2 − 4α − 8γ2θ 2 + 8γθ 2− 24γθ − 3
)

C2
x

]

+[(16γθ + 24)]ρCxCy

A6 =

[

(

16ρ2 + 4
)

C2
y −

1

φ
4

]
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B1 =
(

2α2 − 2α − 6γ2θ 2 + 4γθ 2 − 18γθ − 6
)

C2
x

B2 = (12γθ + 18)ρCyCx − 8ρ2C2
y +

1

φ
4

B3 =
(

4α2 − 4α − 8γ2θ 2 + 8γθ 2 − 24γθ − 3
)

C2
x

B4 = (16γθ + 24)ρCyCx +
(

4− 16ρ2
)

C2
y +

1

φ
4

Upon substituting the optimal values of βopt and δopt into (32), the resulting minimum value of MSE(T ∗
PR) is:

min.MSE(T ∗
PR) = Ȳ 2

{

D∗+φA∗C2
x +φ(δ ∗)2C2

y −φB∗ρCxCy

}

(35)

where

A∗ =
(

2µ∗
2 δ ∗− 2µ∗

2 +(µ∗
1 )

2
)

B∗ = (4δ ∗µ∗
1 − 2µ∗

1 )

D∗ = (δ ∗)2 − 2δ ∗+ 1

µ∗
1 =

(

α +
1

2
−β ∗+ γθ

)

δ ∗

µ∗
2 =

(

α2

2
+α +

3

2
+θ 2γ +

γ2θ 2

2
+ γαθ +

γθ

2

)

δ ∗−

(

3

2
+ γθ

)

β ∗

Some special propertices of proposed estimator:

(a)In cases of positive correlation between populations, setting the values [α,γ] = [1,1] is suitable, provided that
appropriate values are assigned to a and b in the proposed class of estimators T ∗

PR to attain the maximum efficiency
gain over the estimator TG. Hence, the suggested class of estimators for positively correlated populations is expressed
as:

T ∗
PR(1) = ȳ

{

δ

(

X̄

x̄

)

exp

(

X̄ − x̄

X̄ + x̄

)

+β

(

X̄

x̄

)

log

(

x̄

X̄

)}{

exp

(

(aX̄ + b)− (ax̄+ b)

(aX̄ + b)+ (ax̄+ b)

)}

(36)

Note : If we put [α,γ] = [1,0] in (26), we obtain the result.

T ∗
PR(2) =ȳ

{

δ

(

X̄

x̄

)

exp

(

X̄ − x̄

X̄ + x̄

)

+β

(

X̄

x̄

)

log

(

x̄

X̄

)}

(37)

Therefore,the suitable selections are [α,γ] = [1,1], [1,0] for positively correlated populations, the estimators T ∗
PR(1) and

T ∗
PR(2) perform more effectively than TG.

(b)In cases of negative correlation between populations, choosing the value (α,γ) = (−1,1) is recommended, with the
adjustment of suitable values for a and b in the proposed class of estimators T ∗

PR to improve accuracy over the estimator
TG. Consequently, the applicable class of estimators is defined as:

T ∗
PR(3) = ȳ

{

δ

(

x̄

X̄

)

exp

(

X̄ − x̄

X̄ + x̄

)

+β

(

X̄

x̄

)

log

(

x̄

X̄

)}{

exp

(

(aX̄ + b)− (ax̄+ b)

(aX̄ + b)+ (ax̄+ b)

)}

(38)

Note : If we put [α,γ] = [−1,0] in (26), we obtain

T ∗
PR(4) =ȳ

{

δ

(

x̄

X̄

)

exp

(

X̄ − x̄

X̄ + x̄

)

+β

(

X̄

x̄

)

log

(

x̄

X̄

)}

(39)

Therefore, the suitable selections are [α,γ] = [−1,1], [−1,0] for negatively correlated data, the estimators T ∗
PR(3) and

T ∗
PR(4) perform more effectively than TG with the appropriate values of a and b to acquire suitable estimators.
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4 Efficiency Comparisons

In this section, criteria for the effectiveness of the newly proposed estimators compared to certain existing estimators
are outlined. The MSEs of commonly used estimators such as ȳ,TR,TP,TRE ,TG,TER,TEP,Tk,TB,TBR,TBP and TA are
contrasted with the MSE of proposed estimator T ∗

PR.
T ∗

PR is more effective than ȳ when:

Var(ȳ)−min.MSE(T ∗
PR)> 0

φȲ 2
(

A∗C2
x +

(

(δ ∗)2 − 1
)

C2
y −B∗ρCxCy

)

+ Ȳ2D∗ > 0 (40)

T ∗
PR is more effective than TR when:

MSE(TR)−min.MSE (T ∗
PR)> 0

φȲ 2
[

(A∗− 1)C2
x +(2−B∗)ρCxCy +

(

(δ ∗)2 − 1
)

C2
y

]

+ Ȳ2D∗ > 0 (41)

T ∗
PR is more effective than TP when:

MSE(TP)−min.MSE (T ∗
PR)> 0

φȲ 2
[

(A∗− 1)C2
x − (2+B∗)ρCxCy +

(

(δ ∗)2 − 1
)

C2
y

]

+ Ȳ2D∗ > 0 (42)

T ∗
PR is more effective than TRE when:

min.MSE(TRE)−min.MSE(T ∗
PR)> 0

φȲ 2
[

A∗C2
x +

(

(δ ∗)2 +ρ2 − 1
)

C2
y −B∗ρCxCy

]

+ Ȳ2D∗ > 0 (43)

T ∗
PR is more effective than TG when:

MSE(TG)−min.MSE(T ∗
PR)> 0

φȲ 2
[

A∗C2
x +

(

(δ ∗)2 +ρ2 − 1
)

C2
y −B∗ρCxCy

]

+ Ȳ 2D∗+M1 +M2 > 0 (44)

T ∗
PR is more effective than TER when:

MSE(TER)−min.MSE (T ∗
PR)> 0

φȲ 2

[(

A∗−
1

4

)

C2
x +

(

(δ ∗)2 − 1
)

C2
y +(1−B∗)ρCxCy

]

+ ȳ2D∗ > 0 (45)

T ∗
PR is more effective than TEP when:

MSE(TEP)−min.MSE (T ∗
PR)> 0

φȲ 2

[(

A∗−
1

4

)

C2
x +

(

(δ ∗)2 − 1
)

C2
y − (1+B∗)ρCxCy

]

+ ȳ2D∗ > 0 (46)

T ∗
PR is more effective than TK when:

min.MSE(TK)−min.MSE(T ∗
PR)> 0
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φȲ 2
[

A∗C2
x +

(

(δ ∗)2 +ρ2 − 1
)

C2
y −B∗ρCxCy

]

+ Ȳ2D∗ > 0 (47)

T ∗
PR is more effective than TB when:

min.MSE(TB)−min.MSE(T ∗
PR)> 0

φȲ 2
[

A∗C2
x +

(

(δ ∗)2 +ρ2 − 1
)

C2
y −B∗ρCxCy

]

+ Ȳ2D∗ > 0 (48)

T ∗
PR is more effective than TBR when:

MSE(TBR)−min.MSE(T ∗
PR)> 0

φȲ 2

[(

A∗−
1

4

)

C2
x +

(

(δ ∗)2 − 1
)

C2
y +(1−B∗)ρCxCy

]

+ Ȳ 2D∗ > 0 (49)

T ∗
PR is more effective than TBP when:

MSE(TBP)−min.MSE(T ∗
PR)> 0

φȲ 2

[(

A∗−
1

4

)

C2
x +

(

(δ ∗)2 − 1
)

C2
y +(1+B∗)ρCxCy

]

+ Ȳ 2D∗ > 0 (50)

T ∗
PR is more effective than TA when:

min.MSE(TA)−min.MSE(T ∗
PR)> 0

φȲ 2
[

(A∗− 1)C2
x +

(

(δ ∗)2 − 1
)

C2
y +(2−B∗)ρCxCy

]

+φ
(

2ȲρCxCy − (1− 2Ȳ)C2
x

)

+ Ȳ2D∗ > 0 (51)

It is noted that T ∗
PR consistently outperforms the existing estimators ȳ,TR,TP,TRE ,TG, TER,TEP,Tk,TB,TBR,TBP andTA as

the conditions are satisfied in equations (40) to (51) are consistently met.

5 Numerical study

The following data sets have been used to confirm the suitability of the suggested estimator TPR. We have collected nine
sets of data, identified as Data Set-1, Data Set-2, Data Set-3, Data Set-4, Data Set-5, Data Set-6, Data Set-7 and Data
Set-8. Which are as follows:
Data set-1: [Murthy (1967)]: Consider the study variable Y as the fixed capital, and the auxiliary variable X represents the
output of the 80 factories. The parameters characterizing this dataset are: N = 80,n = 20,Ȳ = 11.264, X̄ = 51.826,ρ =
0.941,Cy = 0.750,Cx = 0.354
Data set-2: [Shabbir et al. (2014)]: Consider the study variable Y as the level of apple production (in 1000 tons), and let
the auxiliary variable X represent the number of apple trees in 104 villages in 1999. The parameters characterizing this
data are as follows: N = 104,n = 20,Ȳ = 6.254, X̄ = 13931.680,ρ = 0.860,Cy = 1.860,Cx = 1.650
Data set-3: [US Environmental Protection Agency 1991]: Let the study variable Y be the average miles per gallon and
X be the engine horsepower (as an auxiliary variate). The parameters that describe this data are as follows: N = 80,n =
5,Ȳ = 33.5175, X̄ = 118.1625,ρ =−0.801,Cy = 0.2877,Cx = 0.4804
Data set-4: [Murthy (1967)]: The number of workers is denoted by the auxiliary variable X , and the study variable Y

corresponds to the output of 80 factories in a region. The parameters that describe this data are as follows: N = 34,n =
15,Ȳ = 199.44, X̄ = 208.88,ρ = 0.98,Cy = 0.75,Cx = 0.72
Data set-5: [Singh and Chaudhary (1986)]: the parameters that describe these data are as follows: N = 204,n = 50,Ȳ =
26441, X̄ = 966,ρ = 0.71,Cy = 2.4739,Cx = 1.7171
Data set-6: [Das (1988)]: Let Y be the number of agricultural labourers in 1971 and X be the number of agricultural
labourers in 1971: N = 278,n = 25,Ȳ = 39.068, X̄ = 25.111,ρ = 0.7213,Cy = 1.4451,Cx = 1.6198
Data set-7: [Singh and Chaudhary(1986)]: The parameters that describe this data are as follows: N = 34,n = 20,Ȳ =
84.6412, X̄ = 19.9441,ρ = 0.4453,Cy = 0.7532,Cx = 2
Data set-8: [Gupta and Kothwala (1990)]: Let Y denote the proportion of the irrigated area, and let X represent the
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area under the crop gram and mixture. The parameters that describe this data are as follows: N = 400,n = 100,Ȳ =
36.71438, X̄ = 6.56383,ρ =−0.4020,Cy = 0.9928,Cx = 0.9617
The percentage relative efficiency (PRE) of the estimators can be calculated using the formula

PRE(Θ,T) =
Var(T )

MSE(Θ)
× 100 (52)

Where, Θ = T or ȳ, TR,TP,TRE ,TG,TER,TEP,TK ,TB,TBR,TBP,TA and T ∗
PR. The results are presented in Table 1 and 2 at

α = 1,γ = ρ ,a = −1 and b = 1 for the proposed estimator. For a clearer and more immediate interpretation of Table 1
and 2, the results have been presented graphically in Figure 1 in terms of PREs.
Interpetation of the results:
It is observed from Table 1 and 2:

(i)The MSE and PRE values of the proposed estimator T ∗
PR and existing estimators have been evaluated across Data Sets

1 to 10 to examine comparative performance.
(ii)For Data Sets 1 and 2, T ∗

PR attains the lowest MSE values (0.30532 and 0.54111, respectively) and the highest PRE
values (876.552 and 1009.9), clearly outperforming all the existing estimators.

(iii)In Data Set 3, where the correlation between the variables is negative, the proposed estimator still demonstrates
remarkable efficiency, with an MSE of 1.91849 and a PRE of 908.791—significantly better than the classical product
estimator TP.

(iv)For Data Sets 4, 5, and 7, the estimator T ∗
PR consistently maintains superior performance. In Data Set 4, it achieves an

MSE of 13.1386 and PRE of 6344.25 compared to the baseline estimator ȳ with an MSE of 833.548.
(v)In Data Set 5, despite the presence of high variability in data, the proposed estimator shows excellent performance

with an MSE of 25981934 and a PRE of 248.639, outperforming other estimators with notably larger MSEs.
(vi)In Data Set 7, the estimator again demonstrates dominance with an MSE of 11.2414 and PRE of 762.054,

outperforming all estimators, including TRE ,TG,TK , and TA.
(vii)In Data Set 7, the correlation is again negative, yet the proposed estimator yields the lowest MSE (8.13122) and highest

PRE (122.547), surpassing both product-type and generalized estimators in performance.
(viii)Overall, across Data Sets 1 to 10, the proposed estimator T ∗

PR consistently achieves the lowest MSE and highest PRE,
establishing its efficiency and robustness in comparison to the existing methods.

Table 1: MSEs and PREs of proposed estimator and existing estimators for data sets 1 to 5

Estimator
Data 1 Data 2 Data 3 Data 4 Data 5

MSE PRE MSE PRE MSE PRE MSE PRE MSE PRE

ȳ 2.67633 100 5.4646 100 17.4351 100 833.548 100 64601200 100

TR 0.895178 298.972 1.427 382.94 112.687 15.4721 33.3419 2500 32052095 201.551

TP 5.64996 47.3689 18.103 30.186 19.4088 89.8308 3170.15 26.2936 159394301 40.5292

TRE 0.30649 873.218 1.423 384.02 6.24872 279.019 33.0085 2525.25 32035735 201.654

TG 0.305349 876.482 1.3282 411.44 6.11424 285.155 32.5903 2557.66 30270495 213.413

TER 1.63669 163.521 2.3707 230.5 52.9078 32.9537 241.395 345.304 40546148 159.328

TEP 4.01408 66.6734 10.709 51.03 6.26875 278.127 1809.8 46.0575 104217251 61.9871

TK 0.30649 873.218 1.423 384.02 6.24872 279.019 33.0085 2525.25 32035735 201.654

TB 0.30649 873.218 1.423 384.02 6.24872 279.019 33.0085 2525.25 32035735 201.654

TBR 1.63669 163.521 2.3707 230.5 52.9078 32.9537 241.395 345.304 40546148 159.328

TBP 4.014083 66.6734 10.70862 51.030 6.26875 278.1270 1809.79887 46.0575 104217251 61.9871

TA 0.794683 336.779 1.5789 346.09 117.022 14.89 33.2007 2510.63 32052041 201.551

T ∗
PR 0.30532 876.552 0.54111 1009.9 1.91849 908.791 13.1386 6344.25 25981934 248.639
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Table 2: MSEs and PREs of proposed estimator and existing estimators for data sets 6 to 10

Estimator
Data 6 Data 7 Data 8 Data 9 Data 10

MSE PRE MSE PRE MSE PRE MSE PRE MSE PRE

ȳ 116.0310 100.0000 85.6654 100 9.96454 100 0.588426 100 0.00590638 100

TR 74.1901 156.3967 487.091 17.5871 27.0751 36.8033 0.210335 279.756 0.0280158 21.0823

TP 449.4337 25.8171 892.261 9.60093 11.554 86.2429 2.95985 19.8803 0.00181148 326.052

TRE 55.6631 208.4522 68.6786 124.734 8.35423 119.275 0.114356 514.554 0.00114171 517.327

TG 52.2123 222.2292 65.8706 130.051 8.28737 120.238 0.114293 514.84 0.00114114 517.585

TER 58.6653 197.7846 135.375 63.2798 16.1823 61.5767 0.150214 391.725 0.0147093 40.1542

TEP 246.2871 47.1121 337.961 25.3477 8.42178 118.319 1.52497 38.586 0.00160712 367.513

TK 55.6631 208.4522 68.6786 124.734 8.35423 119.275 0.114356 514.554 0.00114171 517.327

TB 55.6631 208.4522 68.6786 124.734 8.35423 119.275 0.114356 514.554 0.00114171 517.327

TBR 58.6653 197.7846 135.375 63.2798 16.1823 61.5767 0.150214 391.725 0.0147093 40.1542

TBP 246.2871 47.1121 337.9606 25.34774 8.42178 118.3186 1.524970 38.5860 0.00160712 367.5133

TA 498.913 17.1704 498.913 17.1704 27.8027 35.8401 0.232054 253.573 0.0393767 14.9997

T ∗
PR 27.7616 417.9549 11.2414 762.054 8.13122 122.547 0.112126 524.789 0.00114112 517.597
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Figure 1. The PRE values of proposed estimator T ∗
PR and existing esitmators
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6 Simulation study

To evaluate the effectiveness of the estimators, we conducted a simulation involving two synthetic populations generated
using the R programming language to imitate real-world data characteristics provided below. The majority of social and
economic surveys often show that the variable under consideration, denoted as y, follows a normal distribution. As a
result, we have evaluated the performance of the suggested class of estimators T ∗

PR.
Data set-9: [Artificial data]: The pair (y,x) is generated with a Population size of N = 5000 using a bivariate normal
distribution (Y,X) ∼ N (30,10,0.9,352,152). The sample size of (n = 1500) is specifically considered.
N = 5000,n = 1500,Ȳ = 30.0105, X̄ = 10.0315,ρ = 0.897584,Cy = 1.18323,Cx = 1.53992
Data set-10: [Artificial data]: A data set of size (N = 5000) with two variables (y,x) is generated using a bivariate
normal distribution (Y,X) ∼ N (3,1,−0.9,3.52,1.52). A sample size of n = 1500 has been selected.
N = 5000,n = 1500,Ȳ = 3.00293, X̄ = 1.00157,ρ =−0.898164,Cy = 1.18471,Cx = 1.46301
The absolute bias (ABS) of proposed estimator can be obtained using equation (30), we have calculated the ABS and
PRE of the suggested class of estimators with respect to T for various values of [(α,γ),(a,b)]. The results are displayed
in Table 3 and 4.

Table 3: The ABS for the proposed class of estimator T ∗
PR with respect to ȳ

ABS(·) for γ = ρ
Data Sets

(α, [a,b]) 1 2 3 4 5 6 7 8 9 10

(1, [−1,1]) 0.0271062 0.086522 0.173106 0.0658776 0.627382 0.710597 0.329378 0.225248 0.00376007 0.00129651

(−1, [−1,1]) 0.0265519 0.1049 0.0572386 0.164165 0.372445 0.27854 1.05167 0.219526 0.00363761 0.00129652

(−1, [0,1]) 0.0268057 0.11117 0.126612 0.192263 0.423219 0.399943 1.3274 0.221472 0.00359564 0.000380001

(1, [−1,0]) 0.0271092 0.086523 0.173214 0.0658987 0.629001 0.710308 0.324613 0.225334 0.0037591 0.000380185

(0, [−1,1]) 0.0271062 0.086522 0.173106 0.0658776 0.627382 0.710597 0.319868 0.225248 0.00376007 0.00129651

(1, [0,1]) 0.0271902 0.077632 0.186044 0.0484058 0.537021 0.593894 0.131261 0.226248 0.00373623 0.000378533

ABS(·) for γ =Cx

Data Sets

(α, [a,b]) 1 2 3 4 5 6 7 8 9 10

(1, [−1,1]) 0.0271606 0.11675 0.168678 0.057407 0.816994 0.986772 0.678977 0.227539 0.00378459 0.00610211

(−1, [−1,1]) 0.026696 0.072704 0.164148 0.178236 0.038749 0.0434 0.373301 0.225941 0.00368625 0.00610171

(−1, [0,1]) 0.0268057 0.11117 0.126612 0.192263 0.423219 0.399943 1.3274 0.221472 0.00359564 0.000380001

(1, [−1,0]) 0.0271616 0.11675 0.168885 0.0574614 0.823178 0.975526 0.732428 0.227539 0.00378152 0.000364492

(0, [−1,1]) 0.0271606 0.11675 0.168678 0.057407 0.816994 0.986772 0.678977 0.227539 0.00378459 0.00610211

(1, [0,1]) 0.0271902 0.11675 0.186044 0.0484058 0.537021 0.593894 0.131261 0.226248 0.00373623 0.000378533

ABS(·) for γ =Cy

Data Sets

(α, [a,b]) 1 2 3 4 5 6 7 8 9 10

(1, [−1,1]) 0.0271232 0.12811 0.179337 0.0582533 0.742007 0.923349 0.480564 0.227528 0.00377077 0.00131865

(−1, [−1,0]) 0.0265946 0.059853 0.179406 0.17675 0.036751 0.0412442 0.832121 0.225635 0.00365418 0.000368766

(−1, [−1,1]) 0.0265882 0.059851 0.150233 0.176848 0.029653 0.0339548 0.81822 0.226056 0.00365788 0.00131865

(−1, [0,1]) 0.0268057 0.11117 0.126612 0.192263 0.423219 0.399943 1.3274 0.221472 0.00359564 0.000380001

(1, [−1,0]) 0.0265946 0.12811 0.179406 0.0583051 0.733452 0.91498 0.470643 0.227546 0.00376886 0.000368766

(0, [−1,1]) 0.0271257 0.12811 0.179337 0.0582533 0.742007 0.923349 0.480564 0.227528 0.00377077 0.00131865

(0, [0,1]) 0.0271902 0.077632 0.186044 0.0484058 0.537021 0.593894 0.131261 0.226248 0.00373623 0.000378533

ABS(·) for γ = 0

Data Sets

α 1 2 3 4 5 6 7 8 9 10

-1 0.0268057 0.11117 0.126612 0.192263 0.423219 0.399943 1.3274 0.221472 0.00359564 0.000380001

0 or 1 0.0271902 0.077632 0.186044 0.0484058 0.537021 0.593894 0.131261 0.226248 0.00373623 0.000378533

Main Findings:
Table 4 presents the PREs for the proposed class of estimator T ∗

PR with respect to the unbiased estimator ȳ under various
combinations of α , γ ∈ {ρ ,Cx,Cy,0}, and (a,b). It is observed that T ∗

PR demonstrates notably higher efficiency than the
generalized estimator TG in many cases, particularly when α = 0 or 1, and γ is closer to 1.

(i)[(α,γ),(a,b)] = [(0,ρ),(−1,1)] in Data Set 1 shows maximum efficiency (PRE = 876.552).
(ii)[(α,γ),(a,b)] = [(0,ρ),(−1,0)], [(1,ρ),(−1,0)], [(0,ρ),(−1,1)], [(0,ρ),(0,1)],

[(1,ρ),(0,1)], [(0,Cx),(0,1)], [(1,Cx),(0,1)], [(0,Cy),(0,1)], [(1,Cy),(0,1)],
[(0,0),(0,0)], [(1,0),(0,0)] in Data Set 2 consistently yield high PREs (≥ 1009.9).
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Table 4: The PREs for the proposed class of estimator T ∗
PR with respect to ȳ

PRE (T ∗
PR, ȳ) for γ = ρ

Data Sets

[α,(a,b)] 1 2 3 4 5 6 7 8 9 10

[−1,(−1,0)] ∗∗∗∗∗ ∗∗∗∗∗ 904.532 ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ 123.546 ∗∗∗∗∗ 520.895

[−1,(−1,1)] ∗∗∗∗∗ ∗∗∗∗∗ 908.791 ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ 123.622 ∗∗∗∗∗ 455.557

[−1,(0,1)] ∗∗∗∗∗ ∗∗∗∗∗ 410.845 ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ 122.547 ∗∗∗∗∗ 517.597

[z ,(−1,0)] 876.454 1009.9 ∗∗∗∗∗ 6342.22 248.635 418.1247 308.146 ∗∗∗∗∗ 521.597 ∗∗∗∗∗
[0,(−1,1)] 876.552 1009.9 ∗∗∗∗∗ 6344.25 248.639 417.9549 303.689 ∗∗∗∗∗ 521.462 ∗∗∗∗∗
[z ,(0,1)] 873.844 1125.5 ∗∗∗∗∗ 8634.17 250.196 500.0847 762.054 ∗∗∗∗∗ 524.789 ∗∗∗∗∗

PRE (T ∗
PR, ȳ) for γ =Cx

Data Sets

[α,(a,b)] 1 2 3 4 5 6 7 8 9 10

[−1,(−1,0)] ∗∗∗∗∗ ∗∗∗∗∗ 317.261 ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ 120.344 ∗∗∗∗∗ 524.111

[−1,(−1,1)] ∗∗∗∗∗ ∗∗∗∗∗ 316.896 ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ 120.123 ∗∗∗∗∗ 96.7988

[−1,(0,1)] ∗∗∗∗∗ ∗∗∗∗∗ 410.845 ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ 122.547 ∗∗∗∗∗ 517.597

[z ,(−1,0)] 874.765 748.41 ∗∗∗∗∗ 7273.48 237.865 304.4486 136.571 ∗∗∗∗∗ 518.503 ∗∗∗∗∗
[0,(−1,1)] 874.797 748.4 ∗∗∗∗∗ 7280.36 237.857 300.9788 147.322 ∗∗∗∗∗ 518.084 ∗∗∗∗∗
[z ,(0,1)] 873.844 1125.5 ∗∗∗∗∗ 8634.17 250.196 500.0847 762.054 ∗∗∗∗∗ 524.789 ∗∗∗∗∗

PRE (T ∗
PR, ȳ) for γ =Cy

Data Sets

[α,(a,b)] 1 2 3 4 5 6 7 8 9 10

[−1,(−1,0)] ∗∗∗∗∗ ∗∗∗∗∗ 346.541 ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ 120.286 ∗∗∗∗∗ 521.005

[−1,(−1,1)] ∗∗∗∗∗ ∗∗∗∗∗ 346.248 ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ 120.062 ∗∗∗∗∗ 447.947

[−1,(0,1)] ∗∗∗∗∗ ∗∗∗∗∗ 410.854 ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ 122.547 ∗∗∗∗∗ 517.597

[z ,(−1,0)] 875.924 682.05 ∗∗∗∗∗ 7168.23 225.459 324.5945 212.535 ∗∗∗∗∗ 520.245 ∗∗∗∗∗
[0,(−1,1)] 876.001 682.03 ∗∗∗∗∗ 7174.61 225.435 321.6523 208.147 ∗∗∗∗∗ 519.981 ∗∗∗∗∗
[z ,(0,1)] 873.844 1125.5 ∗∗∗∗∗ 8634.17 250.196 500.0847 762.054 ∗∗∗∗∗ 524.789 ∗∗∗∗∗

PRE (T ∗
PR, ȳ) for γ = 0

Data Sets

α 1 2 3 4 5 6 7 8 9 10

−1 ∗∗∗∗∗ ∗∗∗∗∗ 410.845 ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗ 122.547 ∗∗∗∗∗ 517.597

z 873.844 1125.5 ∗∗∗∗∗ 8634.17 250.196 500.0847 762.054 ∗∗∗∗∗ 524.789 ∗∗∗∗∗

(iii)[(α,γ),(a,b)], for all α = −1, γ ∈ {ρ ,Cx,Cy}, a ∈ {−1,0}, and b = 1, give strong performance in Data Set 3 with
PREs such as 904.532, 908.791, 410.845, 317.261, 346.541, and 410.854.

(iv)[(α,γ),(a,b)], for all α ∈ {0,1}, γ ∈ {ρ ,Cx,Cy}, a ∈ {−1,0}, and b = 1, demonstrate high efficiency in Data Sets 4,
5, 6, and 8, with PREs like 6342.22, 248.639, 417.9549, 500.0847, and 762.054.

(v)[(α,γ),(a,b)] = [(−1,ρ),(−1,0)], [(−1,ρ),(−1,1)], [(−1,ρ),(0,1)],
[(−1,Cx),(−1,0)], [(−1,Cx),(0,1)], [(−1,Cy),(0,1)] are efficient combinations in Data Set 7, with values such as
308.146, 303.689, 136.571, 147.322, and 212.535.

(vi)[(α,γ),(a,b)] = [(−1,ρ),(−1,0)], [(−1,ρ),(0,1)], [(−1,Cx),(−1,0)],
[(−1,Cy),(−1,0)], [(−1,Cy),(0,1)], [(−1,0),(0,0)] perform well in Data Set 9 with PREs like 521.597, 518.503,
524.789, and 521.005.

(vii)The pair [(α,γ),(a,b)] = [(1,ρ),(−1,0)] indicates that T ∗
PR is more efficient than TG in six positively correlated data

sets (1, 2, 4, 5, 6, 8). However, its superiority is less pronounced at [(α,γ),(a,b)] = [(1,Cx or Cy),(−1,0)]. Therefore,
for higher gains in efficiency, it is advisable to choose γ values closer to 1 when y and x are positively correlated.

(viii)The case [(α,γ),(a,b)] = [(−1,ρ),(0,1)] is significant in negatively correlated data sets (3, 7, 9), where T ∗
PR

consistently outperforms TG. It is recommended to select γ values near -1 for such cases.

The suggested class of estimators T ∗
PR perform better than the usual unbiased estimator ȳ in Table 4. The suggested

estimators T ∗
PR differ in their biases up to the first-order approximation. The biases and MSEs measured up to the first-

order approximation are sufficient for formulating a population mean estimator, with very few biases. These findings can
be broadly applied to various real populations. The extensive simulation study in Section 6 substantiates our theoretical
assertions favoring the proposed estimators.
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7 Sensitivity analysis

In numerical and simulation studies, the MSEs and PREs are computed using the known values of population parameters
Cy,Cx and ρX ,Y , whereas in this sensitivity analysis, these metrics are derived from sample estimates. In real-life survey
sampling, the parameters Cy,Cx and ρX ,Y are unknown for population. Therefore, we have used the estimates cy,cx and
ρx,y of these parameters based on the sample to calculate the MSEs and PREs of the estimators under this sensitivity
analysis.

7.1 For real data sets

We have taken two populations (data sets 1 and 2), which are already given in Section 5. We computed MSEs and PREs of
the estimators based on cy,cx and ρx,y estimated from the sample data, where Cy,Cx and ρX ,Y are unknown for population
parameters. The results are presented in Table 5.

Table 5: MSEs and PREs of estimators for population 1 and 2

Estimators
Population 1 Population 2

MSE PRE MSE PRE

ȳ 33946.74 100.00 65485.30 100.00

TR 9398.54 361.19 302865.80 21.62

TP 78582.30 43.20 173187.00 37.81

TRE 4161.87 815.66 59393.80 110.26

TG 4136.99 820.57 59153.60 110.70

TER 19161.72 177.16 141040.20 46.43

TEP 53753.60 63.15 76200.90 85.94

TK 4161.87 815.66 59393.80 110.26

TB 4161.87 815.66 59393.80 110.26

TBR 19161.72 177.16 141040.20 46.43

TBP 53753.60 63.15 76200.90 85.94

TA 9385.16 361.71 302944.30 21.62

T ∗
PR 4075.37 832.97 58407.30 112.12

7.2 For Artifically generated data sets

The procedure for sensitivity analysis as follows:

Generate a population N = 10000 using bivariate normal distribution (Y,X) ∼ N (30,10,ρX ,Y ,8,4). Draw a sample of
size n = 1500 using SRSWOR. Estimate cx,cy and ρx,y from sample data. We have computed MSEs and PREs for
proposed estimator and existing estimators with different amount of correlation ρx,y = −0.9,−0.5,0.5,0.9 to evaluate
there effectiveness in highly positive and negative correlated sample data. The results are displayed in Table 5.
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Table 6: MSEs and PREs of estimators for various correlation values ρ

Estimators
ρ =−0.9 ρ =−0.5 ρ = 0.5 ρ = 0.9

MSE PRE MSE PRE MSE PRE MSE PRE

ȳ 0.0351 100.0000 0.0352 100.0000 0.0349 100.0000 0.0351 100.0000

TR 0.2114 16.6119 0.1774 19.8394 0.0672 51.9760 0.2114 16.6119

TP 0.0199 176.1793 0.0668 52.6932 0.1778 19.6427 0.0199 176.1793

TRE 0.0067 526.3158 0.0264 133.3333 0.0262 133.3333 0.0067 526.3158

TG 0.0067 526.3403 0.0264 133.3411 0.0262 133.3411 0.0067 526.3403

TER 0.1031 34.0545 0.0846 41.6155 0.0292 119.7437 0.1031 34.0545

TEP 0.0074 475.3341 0.0293 120.2489 0.0845 41.3460 0.0074 475.3341

TK 0.0067 526.3158 0.0264 133.3333 0.0262 133.3333 0.0067 526.3158

TB 0.0067 526.3158 0.0264 133.3333 0.0262 133.3333 0.0067 526.3158

TBR 0.1031 34.0545 0.0846 41.6155 0.0292 119.7437 0.1031 34.0545

TBP 0.0074 475.3341 0.0293 120.2489 0.0845 41.3460 0.0074 475.3341

TA 0.2201 15.9594 0.1851 19.0114 0.0713 48.9934 0.2201 15.9594

T ∗
PR 0.0067 526.3465 0.0264 133.3596 0.0262 133.3968 0.0067 526.3465

Interpetataion of the results:
The sensitivity analysis results, as detailed in Tables 5 and 6, reveals that the proposed estimator T ∗

PR significantly
outperforms existing estimators in terms of MSE and PRE across both real and simulated datasets.
For the real data sets (Populations 1 and 2) in Table 5, the proposed estimator T ∗

PR consistently outperforms the other
considered estimators in terms of minimum MSE and highest PRE. Notably, for Population 1, it achieves the lowest
MSE (4075.37) and the highest PRE (832.97), highlighting its efficiency. A similar pattern is observed for Population 2,
with T ∗

PR maintaining superior performance (MSE = 58407.30, PRE = 112.12).
In the artificially generated data sets (Table 6) across varying levels of correlation ρ , T ∗

PR consistently yield the lowest
MSEs and highest PREs, especially when correlation is strong (|ρ | = 0.9). The performance remains efficitive for both
highly negative and highly positive correlations, demonstrating the stability and adaptability of the proposed estimator
under different dependency structures.
Thus from the above findings, we can reassert that the effectiveness of the proposed estimator remains consistent and
exhibits no sensitivity for the considered parameters Cy, Cx, and ρX ,Y at their known values or estimated values.

8 Conclusions

This paper proposes a novel logarithmic-exponential cum ratio-type estimator that targets the estimation of population
mean. To verify the theoretical results, we have taken eight real and two artificially generated datasets in numerical and
simulation studies, respectively, based on the assumption that the population parameters Cy, Cx, and ρX ,Y are known. In
light of this, we also investigated situations where the population parameters are unknown through sensitivity analysis.
This analysis, conducted using two real and two artificially generated datasets, focused on cases with highly positive and
negative correlation between the study and auxiliary variables. For this, the parameters cy, cx, and ρx,y were estimated
from sample data. The proposed estimator demonstrates its practical applicability and is widely used across various
fields, including population studies (where the objective is to estimate demographic characteristics); agriculture (to
assess crop yields and labor statistics); economics and industry (for analyzing fixed capital, factory output, and income
indicators); and environmental and engineering studies (focusing on vehicle efficiency and horsepower). It is also useful
for social and demographic research for understanding regional and village-level characteristics. The findings suggest
promising directions for advancing estimator performance under different sampling schemes, notably ranked set
sampling and stratified random sampling. Based on these truthful findings, this may encourage survey researchers to
implement the proposed estimator in real-world scenarios for estimation of the population mean.
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