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1 Introduction

The study of geometric structures in Riemannian geometry often involves the analysis of geometric flows, which serve
as a central tool in understanding the evolution of metrics. Among these, the Ricci flow, introduced by Hamilton [17],
is particularly prominent. Hamilton utilized the Ricci flow to establish significant results concerning three-dimensional
spheres [16]. This concept has also played a vital role in the proof of Thurston’s geometrization conjecture, notably
contributing to the resolution of the Poincaré conjecture. A Ricci soliton (denoted %.7) on a Riemannian manifold (M, g)
represents a self-similar solution to the Ricci flow and is characterized by the equation:

£78+2Ricy = 2Ag, (1

where £7g denotes the Lie derivative of the metric g with respect to the vector field Z, Ric, is the Ricci curvature tensor,
and A is a real constant. When Z = V f for some smooth function f, the soliton is called a gradient Ricci soliton. Petersen
and Wylie [22] defined a gradient Z.¥ as rigid, if it corresponds to a warped product of a flat space with an Einstein
manifold. They also provided a classification for such rigid solitons. The concept of an almost Ricci soliton where A is
allowed to vary smoothly was introduced by Pigola et al. [23], and further rigidity results were established in [2,3,31],
showing that such solitons are isometric to either Euclidean space R” or a standard sphere.

To address the Yamabe problem for manifolds with positive conformal Yamabe invariant, Hamilton proposed the
Yamabe flow. A self-similar solution under this flow is known as a Yamabe soliton (#.%), defined by:

£78=2(t1—A)g, @)
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where 7 is the scalar curvature of the manifold. While Ricci and Yamabe solitons exhibit analogous behavior in two
dimensions, they differ in higher dimensions. Specifically, %.% preserves the conformal class of the metric, unlike Z.7.
If A is a smooth function, the soliton is termed an almost Yamabe soliton. Various authors have investigated such solitons,
including Alkhaldi et al. [1] and Barbosa and Ribeiro [4]. In the paracontact setting, De and De studied characterizations
of almost quasi- Yamabe solitons and their gradient versions [8].

In subsequent work, Giiler and Crasmareanu [15] introduced a new geometric flow known as the Ricci- Yamabe flow,
defined as a linear combination of the Ricci and Yamabe flows. Referred to as the (o, 8)-type Ricci-Yamabe flow, it is
governed by the equation:

£2¢+ (24 — BT)g+20Ric, =0, 3)

where o, € R, and Ricg, T, and A are as previously defined. If Z = Vf for a smooth function f, the resulting solution is
known as a gradient Ricci-Yamabe soliton, and equation (3) reduces to:

2Hessf + (2A — BT)g + 20tRic, =0, @)

where Hess(f) is the Hessian of f. As a generalization of Ricci solitons and conformal Ricci solitons, Zhang et al. [33]
introduced the concept of conformal Ricci-Yamabe solitons (abbreviated ¢’-#Z% .), defined as follows:

Definition 1.A Riemannian manifold (M",g), n > 2, admits a conformal Ricci-Yamabe soliton if it satisfies
. 2
£78+2aRice+ |24 —Br—(n+- || g=0. 5)
n

When Z = V{, the soliton is called a conformal gradient Ricci-Yamabe soliton (¢-4 %% %), and equation (5) simplifies
to:

2Hess f + 20tRicg + {ZXBT <ﬂ+%>} g=0. (6)

Depending on the sign of A, €-#%% .7 are classified as expanding (A > 0), steady (A = 0), or shrinking (A < 0).

Recent investigations have explored various properties and classifications of both ¢-%Z% . and ¢-9 %% ./ (see [19,
27,28,33,34]). Although Ricci and Yamabe solitons have been widely studied within the framework of various classes of
Riemannian geometry (see [6,8],[12]-[14],[18,20,21],[24]-[26],[29,30] and the references therein), their conformal
counterparts-particularly the conformal Ricci-Yamabe soliton (6¢-#Z% .) and its gradient form (¢-4 %% .*)-remain
relatively underexplored. This gap is especially evident in the setting of paracontact geometry. Motivated by this
observation, the present work aims to investigate the interaction of these generalized solitons with specific paracontact
structures, including para-Kenmotsu, para-Sasakian, and para-cosymplectic manifolds.
The structure of the paper is as follows: Sections 2, 4, and 6 provides the foundational concepts related to
para-Kenmotsu, para-Sasakian, and para-cosymplectic manifolds, respectively. In Section 3, we examine the existence of
C-#Y S and €-9%% ./ on para-Kenmotsu manifolds. Section 5 is dedicated to the classification of para-Sasakian
manifolds admitting such solitons. In Section 7, we investigate their existence on para-cosymplectic manifolds. Finally,
an illustrative example is presented to demonstrate the applicability of the theoretical results.

2 Para-Kenmotsu Manifolds

A differentiable manifold M?P*! of dimension 2p + 1 is termed an almost paracontact manifold if there exist ¢,&,n on
M?P+! Here, ¢ is a (1, 1) tensor field, & is a characteristic vector field, and 7 is a global 1-form satisfying the conditions:

¢’Ey =E1—n(E))E, n(&) = 1. (7)

This definition implies that & = 0, 1o ¢ = 0, and the rank of ¢ is 2p. If the Nijenhuis tensor uniformly vanishes, the
manifold is termed normal. Additionally, M?P*! is designated as an almost paracontact metric manifold if there exists a
semi-Riemannian metric g such that:

8(QE\,Er) = —g(E1,E2) + n(E1)N(Ey), (8)

for all Ey,E, € y(M?P*1), where y(M?*P*!) denotes the vector fields on M?P*!. Furthermore, an almost paracontact
metric manifold M?P*! with a structure (¢, &, 7, g) is termed a paracontact metric manifold if dn(Ey, E>) = g(E1, 9E>) =
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®(E),E), where @ is the fundamental 2-form of M?P*1,
A para-Kenmotsu manifold satisfies [10]

(VE 0)(E2) = g(9E1,E2)E — N (E2)QE), ©)
Ve & =Ei —n(E1)E, (10)
R(E\,E2) = n(E1)Ex—n(E2)E), (11
R(§,E1)Ex = —g(E1, E2)E +n(Ey)E, (12)
R(E1,8)Ex = g(E1,E2) —n(E2)E], (13)
N(R(E\,E2)E3) = —g(Ez, E3)N(E1) 4 g(E1, E3)n(E2), (14)
Ricg(E1,8) = —2pn(Ey). (15)

First, we recall the following result, which we use in the proof of our main results.

Lemma 1./10] In a three-dimensional para-Kenmotsu manifold M>,

Er=-2(t+6). (16)
In M3, we also have
QE1=(%+1)E1—(%+3)17(E1)§, (17)
which gives
Ricg(E1,Ez) = (% +1) g(E1, Ex) - (% +3) n(En)n(E), (18)

where Q denotes the Ricci operator defined by Ricg(E1, E2) = g(QE, E2).

3¢ — %% . on Para-Kenmotsu manifolds

Throughout this section, we denote a (2p + 1)-dimensional para-Kenmotsu manifold by M,Z,f(ﬂ. Let us consider a Mi’,’}“

admits € — Z% .. Then from (5), we have

2
£Zg(E1,E2) +2aRng(E1,E2) + |:2)~ —Br— (7'C+ m)} g(El,Ez) =0, (19)
which yields
2
(Vi £ +8(E1. V8 + 20Ricy (B E2) + |2~ o (w220 )| v, = 0
Utilizing the expression (10) in the preceding equation yields
. 1 2
aRice(Er, E2) = n(E1)n(E2) — 5 {M —Br— (7?+ i1 +2)] 8(E1, E). 21
2 19
B . e . . . B B (”+2p+1+>
y setting E| = E; = & in the preceding equation, one can determine 57 = —2pa + A — ~—5——=. Consequently,

equation (21) assumes the following expression
ORicy(E1, Ex) = n(E1)n(Ez) — 2pag(Ey, Ex).
Thus, we can state the following:

Theorem 1.IfM112)‘,'}-H admits a € — ZY 7, then it is an N-Einstein manifold.

Consider, {e;}; <i<2p+1 be an orthonormal frame. By taking E| = e;, E» = ¢; in (19) and summing over i, one can obtain

2p+1 2p+1
dinT(Ot#)(Zerl)?Hrerl. 22)
Assume, for a smooth function v, if Z is of gradient type i.e. Z = grad(y), then the equation (22) becomes
2p+1 2p+1)m
st =-e(a- 27 - p i ay BEDT 3)

where A(y) is the Laplacian equation satisfied by y. Hence, we can state the following:
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Theorem 2.If (g,Z,A, o, B) is a € — %Y . on a (2p+ 1)-dimensional paracontact manifold M*P*+' where Z = grad(y),

then the Laplacian equation satisfied by y is given by (23).

Next, we prove the following Lemma:

Lemma 2.If (g,Z, A, a,B) isaC —4RY ¥ ona Mfz,f(-H, then the Riemannian curvature tensor R satisfies

R(El,Ez)Df = —a[(VEl Q)E2 — (VEzQ)El] —E; (),)Ez +E2(A,)E1 + g[El(T)EZ —EZ(T)El].

Proof.Let us consider, Mff,'fl admit a € — YZ% .7 . Then, equation (6) infers

VElDf:—aQEl—(l—Er—l(n-i— 2 ))El

2 2

Taking covariant differentiation of (25) we obtain
Ve, Vi, Df = —a|(VE,Q)E1 + Q(VE, E1)] — Ex(A)E1 — A(VE,E1)

B B 1 2
—1TVg E —F E — — | Vg, Ey.
+2‘L' Ey 1+2 2(7) 1+2 7H-2p+1 E L1

Swapping E| and E; in (25) implies
Ve Vi, Df = —[(VE, Q)E2 + Q(VE E2)] — E1(A)E2 — A(VE, E2)

B B 1 2
—1Vg Er+ ZE((T)Er + = ——— | Vg, Es.
+2’L' E; 2+2 1(7) 2+2 ﬂ+2p+1 E L2

Substituting equations (19), (26) and (27) in the definition of Riemannian curvature, we obtain (24).

Now differentiating (17) covariantly with respect to E;, we have

(V5,008 = P05, (8] (£ +3) (B B2) —2n(E M (EE +0(EE
Utilizing (28) in (27), we obtain
R(E\,E2)Df = —a { EIZ(T) [Ex —n(E2)8] — EZT(T)[El —n(E1)E] - (% + 3) [(N(E2)E; — U(El)Ez]}

—E; (),)Ez +E2(),)E1 + g[El (T)Ez - Ez(‘L')El].

Contracting (29), we have
Ric(E2,Df) = (% —B) Ex() +2E2(2) — (@+ 1) (s +6)n(Y),

Substituting E1 by Df in (18) and comparing with (30), one can easily obtain

2

Taking & in place of E; in the foregoing equation, we have

8= (a-p+3) (w0 £2)

Applying inner product to (29) with & yields

N(E2)E1(f) = n(ENE2(f) = —E1(A)N(E2) + E2(A)n(E1) + g[En (T)n(E2) — E2(T)n (E1)]-

Plugging E, = & in (33) and utilizing (32), we obtain

B = (ot 3) (e om(E) + 5B - Ei),

(3+3)emE) - (5 +1)E2(N) = (5~ B) E2(8) +2E2(2) — (@4 D)(z+ 6)n(Y).

(24)

(25)

(26)

27)

(28)

(29)

(30)

€29

(32)

(33)

(34)
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Suppose the scalar curvature 7 is constant. Then, using (16), we find T = —6. Consequently, the preceding equation implies
Ei(f) =—E(4), 35)
this means
Df = —DA. (36)
Utilizing (36) in (25) gives
Vg, DA = —aQE A ﬁ‘c 1 T+ 2 E (37)
EEA ! 27 2 2p+1 b

This shows that M3 is a ¢’ — 9 %% ., whose soliton function is —A. Thus, we have

Theorem 3.A M3, with constant scalar curvature admits € — G R% ¥ whose soliton function is —A.

4 Para-Sasakian Manifolds

A para-Sasakian manifold is defined as a normal paracontact metric manifold. It’s important to emphasize that a
para-Sasakian manifold is a subset of general paracontact metric manifolds. Additionally, it should be noted that in three
dimensions, a para-Sasakian manifold is equivalent to a k-paracontact manifold and vice versa [5]. In a
(2p + 1)-dimensional para-Sasakian manifold, the following conditions are satisfied [32]:

(VE 0)(E2) = —g(9E1,E2)E + N (E2)9E), (38)
Ve & = —9E, (39)
R(E\,E2)§ = n(E1)Ex — n(E2)EN, (40)
R(E,E1)Ey = —g(E1,E2)E +n(Ey)E;, 41)
N(R(E1,E»)E3) = —(g(E2, E3)n(E1) — g(E1,E3)n(E2)), 42)
Ricy(E1,§) = —2pn(Ey). (43)

First, we recall the following result, which we use in the proof of our main results.

Lemma 3./10] In a three-dimensional para-Sasakian manifold M?,

gT=0. (44)
In M3, we also have c c
QE1:(§+1)E1—(5+3)T[(E1)€, 45)
which provides
T T
Ricy(E1,E2) = (5 +1) 8(EnE2) — (5 +3) n(Enn(E). (46)

5% — %% . on Para-Sasakian manifolds

Throughout this section, we denote a (2p + 1)-dimensional para-Sasakian manifold by Mfz,gﬂ. Let us consider a Mffs7+I

admits € — #% .. Then from (5), we have

2
£Zg(El ,Ez) +20€Ri6'g(E| ,Ez) + |:2)L — ﬁ’L’* <7T+ m>:| g(E| ,Ez) = 07 (47)
which yields
. 2

8(VE, &, Ex) +g(E1, VE,§) +2aRicg (E1, Ep) + {21 —pr— <7T+ ﬁ)} g(E1,E2) =0. (48)

Making use of (39) in the foregoing equation, one can easily obtain
ORic,(E\,Ey) = ! 2L —B7 T+ 2 (E\,Er) (49)

lcg 1,£2) = 2 2p+1 g 1,£2)-.
©2025YU
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Tt
Setting E; = E; = & in the above equation yields %’L’ =—2p)a+A— @ Consequently, equation (49) assumes

the following expression
Ricg(E1,E>) = —2pg(E1, Ex).

Thus, we can state the following:

Theorem 4.IfM12,IS7Jrl admits a proper € — Z% 7, then it is an Einstein manifold.

Next, we prove the following Lemma:

Lemma 4.If (g,Z, A, a,B) isa C —GRY & ona Mfz,gﬂ, then the Riemannian curvature tensor R satisfies
R(E1,E2)Df = —a[(Vg,Q)E2 — (VE,Q)E1] — E(A)Ex + Ex(A)E: + g[El (T)E2 — E2(7)E)]. (50)

Proof.Let us consider, Mf,g“ admit a € — Y #% .. Then, equation (6) infers

B 1 2
Vg, Df =—aQE;— (A —Z1—= — | | Er. 51
£, Df = —aQE, ( 2T27r+2p+1 I (51)
Taking covariant differentiation of (51) we obtain
Ve, Vi Df = —a|(VE,Q)E1 + Q(VE,E1)] — E2(A)Er — A(VE, E)
B B 1 2
—tVeg,E+ ZE(T)E; + = — | Vg, E]. 52
+2’L' E21+2 2(T)|+2 ﬂ+2p+1 e, E1 (52)
Swapping E| and E; in (51) implies
Ve, Vi, Df = —a|(VE, Q)Er + Q(VE E2)] — E1(A)Ey — A(VE, E2)
B B 1 2
—tVg Er+ ZE|(T)E; + = — | Vg, Es. 53
+2’L' E 2+2 1(7) 2+2 ﬂ+2p+1 £, E» (53)

Substituting equations (47), (52) and (53) in the definition of Riemannian curvature, we obtain (50).

Now differentiating (45) covariantly with respect to E,, we have

V08 = D5 e+ (543) (B 0B + (B 9E] (54)
Utilizing (54) in (50), we obtain
R(E, EDf = ~af B e iz - 0 e - nE0E] (5 +3) 126060808
0 (E2)OE) — n(E; )¢E2]} —E{(A)Es + E>(A)E; + g[El (T)Es — E(1)E)). (55)
Contracting (55), we have
Ricy(Ey,Df) = (%—B)Ez(f)JrZEz(l). (56)

Substituting E£| by Df in (46) and comparing with (56), one can easily obtain

(3+1) B0~ (3+3) ENm(E) = (5~ B) Ea(x) +2E2(2). 57

Replacing E; by & in (57) gives
1 (0]
E() =5 (B—3) @+, (58)
Applying inner product to (55) with & yields

N(E2)E1(f) —n(E1)Ex(f) =2 (% +3) g(E1,9E2) — E1(A)N(E2) + E2(A)n(E1)

e e - B@nE) (59)
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By replacing E| and E; with ¢E;| and ¢FE, respectively, we find that 2o (% + 3) g(0E,E») = 0. Given that o # 0 for
proper € —Y%% ., the equation mentioned above indicates that T = —6. Consequently, by utilizing equation (46), we
obtain

Ric‘g(E| ,Ez) = 72g(E| ,Ez). (60)

This implies that M13,S is an Einstein manifold. Considering equation (60) in the definition of curvature tensor R (ref
equation (45) of [9]), we obtain
R(E\,E2)E3 = g(E1, E3)Ey — g(Ea, E3)E].

This signifies that it is a space characterized by a constant sectional curvature of -1. Thus, we can state the following:

Theorem 5.4 M?,S admitting € —GRY .7 is Einstein and it is locally isometric to hyperbolic space H>(—1).

6 Almost para-cosymplectic manifolds
An almost paracontact metric manifold M?7*1(¢, &, 1, ) is said to be an almost «-paracosymplectic manifold, if
dn =0, dd=2anANo. (61)

Particularly, if a = 0, then we obtain an almost paracosymplectic manifold. For more details we refer to [7,11]. In a
(2p + 1)-dimensional almost paracosymplectic manifold the following conditions hold:

(Ve 9)(E2) =0, (62)
Ve & =0, (63)
R(E],Eg)é =0, (64)
N(R(E1,E2)E3) = —(g(Ea, E3)n(E1) — g(E1,E3)n(E2)), (65)
Ricy(E1,&) = 0. (66)

First, we recall the following result, which we use in the proof of our main results.

Lemma 5./10] In a three-dimensional paracosymplectic manifold M?,

Er=0. (67)
In M3, we also have .
QE| :E[El*n(El)é]a (68)
which provides
Ricg(Ey,Er) = %[g(EI,EZ) —n(ENn(E2)]. (69)

7 € — %% . on almost paracosymplectic manifolds

Throughout this section, we denote a (2p + 1)-dimensional almost paracosymplectic manifold by Mjﬁzl . Let us consider
a Mig}rl admits € — Z% .. Then from (5), we have

2
£Zg(E| ,Ez) +2aRng(E| ,Ez) —+ |:2)L — ﬁT* <7T+ m>:| g(EI ,Ez) = 07 (70)
which yields
2
(Ve E.B) + BV 20Riey BB + |2 e (w4 2 ) [eBnE =0,

Utilizing the expression (63) in the preceding equation yields

1 2
(xRng(El,EZ) = —5 |:2), —ﬁf— <7[+ m>:| g(El,Ez).

Thus, we can state the following:

©2025 YU
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Theorem 6.IfM§7;J£I admits a proper € — Z% 7, then it is an Einstein manifold.

Next, we prove the following Lemma:

Lemma 6.If (g,Z, A, a,B) isaC —GRY & ona Mig}rl, then the Riemannian curvature tensor R satisfies

R(El,Ez)Df = —a[(VEl Q)E2 — (VEzQ)El] —E; (),)Ez +E2(A,)E1 + g[El(T)EZ —EZ(T)El].

Proof.Let us consider, Mi’,’,’gl admit a € — Y #% .. Then, equation (6) infers

— —qoE —(2-B 1 2
VElDf— aQFE, (A, Z‘C ) 7'C+2p+1 E;.

Taking covariant differentiation of (73) we obtain
Ve, Vi Df = —a|(VE,Q)E1 + Q(VE, E1)] — E2(A)Ey — A(VE, E)
B

B 1 2
—1Vg E —F E — —— | Vg, Ey.
+2‘L' Ey 1+2 2(7) 1+2 7H-2p+1 E L1

Swapping E| and E; in (73) implies
Ve Vi, Df = —[(VE, Q)E2 + Q(VE E2)] — E1(A)E2 — A(VE, E2)

B B 1 2
—1tVg Er+ ZE((T)Er + = ——— | Vg, Es.
+2’L' E; 2+2 1(7) 2+2 ﬂ+2p+1 E L2

Substituting equations (70), (74) and (75) in the definition of Riemannian curvature, we obtain (72).

Now differentiating (68) covariantly with respect to E,, we have

Ve, 08 = 2 5, (g
Utilizing (76) in (72), we obtain
R(E,E0f = —of P () - 2D e - i}

—E; (),)Ez +E2(),)E1 + g[El (T)Ez - Ez(‘L')El].

Contracting (77), we have
a
Ricg(E>,Df) = (3 = B) E2(7) +2E2(A).

Substituting £, by Df in (69) and comparing with (78), one can easily obtain

SIE) ~ SN () = (5~ B) E2(1) +2E2().
Replacing E; by & in (79) gives
§(a)=0
Applying inner product to (77) with & yields
B

—E1(A)n(E2) + E2(A)n(E1) + E[EI(T)T](Ez) —Ex(T)n(E1)] = 0.

Plugging E, = & in (81) and utilizing (80), we obtain
Ei(A)=0.
Which infers that A is a constant. Thus, we can state the following:

Theorem 7.If M3 p admits a 6 — /GRY 7, then the soliton becomes a € — GRY .S .

(72)

(73)

(74)

(75)

(76)

7

(78)

(79)

(80)

(81)

(82)
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8 Example

We consider M = {(x,y,z) € R*}, where (x,y,z) are the standard coordinates of R>.
Let us consider three linearly independent vector fields

Ay A DA
uy=e ay, U =e€ ay az , Uz = ax.

Then

[ul,ug] = 0, [uz,u3] = U, [ul,u3] =Uuj.

1, if i=j;

0, otherwise.

Let & = u3 and 7 be the 1-form defined by n(E;) = g(E,,u3) for any E; € x(M).
Let us define (1, 1)-tensor field ¢ as

Let g be the Riemannian metric defined by g(u;,u;) =

Qui =uy, Qur=uy, Puz=0.

By utilizing the above relations, we obtain the following results:

¢?Ey = E; —n(E1)us,
8(QE\,0E») = —g(E1,E2) +n(E1)n(E»),

for any E|,E; € x(M).
Consequently, with u3 = &, the structure (¢,&,7,g) forms an almost paracontact structure on the manifold M.
Let V be the Levi-Civita connection of g. Then by using Koszul’s formula, we have

Vulul = —us, Vulu2 = O; Vulu3 = uy,
Vuzul =0, VMZMZ = —us, Vuzufi = uz,
Vu3ul = 0, Vu3u2 = 0, Vu3u3 =0. (83)

From the above relations, it becomes evident that the relation (38) is indeed fulfilled. Consequently the considered
manifold is para-Sasakian manifold. The components of the Riemannian curvature tensor are given by

R(ul,uz)uz = —Uui, R(ul,u3)u3 = —uj, R(uz,ul)ul = —up,

R(uz,u3)u3 = —Uup, R(u3,u1)u1 = —us, R(u3,u2)u2 = —us,

R(ul,uz)u3 = 0, R(u3,u2)u3 = Uz, R(u3,u1)u2 = 0,
and

Ricg(uy,u1) = =2, Ricg(uz,up) = —2, Ricg(uz,uz) =—2.

By using the above results, we can easily deduce that the scalar curvature of the manifold is T = —6. Therefore, we have
established the validity of Theorem 4 for three dimensions.

Now, let us consider a potential vector field Z on M, which can be expressed as Z = fiu; + fous + fzuz, where fi, f>, and
f3 are smooth functions. A ¢ — Z% . equation (5) is written as

2
g(VEIZ7E2) +g(E1,VE2Z) +2aRng(E1,E2) + |:2)~ —ﬁT— (7'C+ ;):| g(El,Ez) =0. (84)

Based on equations (83) and (84), we can deduce the existence of a ¢ — #% . on M for the smooth functions f}, f>, and
f3 that satisfy the following:

u(fi)+fs—us(f3) =0, wi(f2)+uz(fi)=0,
ui(f3)+us(fi)—fi=0, w(f2)+fz—us(fz) =0,
B+n 1

Mz(f3)+u3(f2)_f2:05 M3(f3):2a_)~+ 2 +(2p+1)
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9 Conclusion

In this work, we explored the existence and characterization of conformal Ricci-Yamabe solitons (4" — #Z% .%) and their
gradient counterparts (¢ — 9 %% ) in the setting of paracontact geometry. Specifically, we analyzed these solitons
on para-Kenmotsu, para-Sasakian, and almost paracosymplectic manifolds. Our investigation led to several significant
findings:

eFor para-Kenmotsu manifolds, we established that the existence of a € — #% . implies that the manifold is n-
Einstein Theorem 1, and when the potential vector field is the gradient of a function, the associated function satisfies
a Laplace-type equation Theorem 2. Furthermore, in the 3-dimensional case with constant scalar curvature, the soliton
function is explicitly determined Theorem 3.

eFor para-Sasakian manifolds, we demonstrated that any manifold admitting a proper € — Z% . must be Einstein
Theorem 4, and in three dimensions, a ¢ — Y %% . -admitting manifold is necessarily Einstein and locally isometric
to the hyperbolic space H3(—1).

eFor almost paracosymplectic manifolds, we proved that the existence of a proper 4 — Z% . also enforces an Einstein
structure Theorem 6, and if such a manifold admits an almost gradient soliton ¢ — /Y Z% .¥, then it reduces to a
€ —9%% ./ Theorem 7.

These results contribute to the deeper understanding of geometric flows in pseudo-Riemannian settings, particularly
highlighting the strong structural constraints imposed by ¢ — %% . and ¢ —9YZ%Z% . on various paracontact
manifolds. The study opens avenues for further investigation into soliton theory in more general non-Riemannian or
indefinite metric structures.
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