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Abstract: This study investigates the classification of conformal Ricci-Yamabe solitons within the framework of paracontact geometry.

In particular, we analyze the structural properties of para-Kenmotsu manifolds that satisfy the conditions for conformal Ricci-Yamabe

solitons, with special attention to three-dimensional cases exhibiting conformal gradient Ricci-Yamabe solitons. In addition, we provide

a comprehensive classification of para-Sasakian and para-cosymplectic manifolds that admit conformal Ricci-Yamabe solitons and its

gradient form conformal gradient Ricci-Yamabe solitons. To substantiate the theoretical findings, an explicit example is constructed

and discussed in detail.
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1 Introduction

The study of geometric structures in Riemannian geometry often involves the analysis of geometric flows, which serve
as a central tool in understanding the evolution of metrics. Among these, the Ricci flow, introduced by Hamilton [17],
is particularly prominent. Hamilton utilized the Ricci flow to establish significant results concerning three-dimensional
spheres [16]. This concept has also played a vital role in the proof of Thurston’s geometrization conjecture, notably
contributing to the resolution of the Poincaré conjecture. A Ricci soliton (denoted RS ) on a Riemannian manifold (M,g)
represents a self-similar solution to the Ricci flow and is characterized by the equation:

£Zg+ 2Ricg = 2λ g, (1)

where £Zg denotes the Lie derivative of the metric g with respect to the vector field Z, Ricg is the Ricci curvature tensor,
and λ is a real constant. When Z = ∇ f for some smooth function f , the soliton is called a gradient Ricci soliton. Petersen
and Wylie [22] defined a gradient RS as rigid, if it corresponds to a warped product of a flat space with an Einstein
manifold. They also provided a classification for such rigid solitons. The concept of an almost Ricci soliton where λ is
allowed to vary smoothly was introduced by Pigola et al. [23], and further rigidity results were established in [2,3,31],
showing that such solitons are isometric to either Euclidean space Rn or a standard sphere.

To address the Yamabe problem for manifolds with positive conformal Yamabe invariant, Hamilton proposed the
Yamabe flow. A self-similar solution under this flow is known as a Yamabe soliton (Y S ), defined by:

£Zg = 2(τ −λ )g, (2)
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where τ is the scalar curvature of the manifold. While Ricci and Yamabe solitons exhibit analogous behavior in two
dimensions, they differ in higher dimensions. Specifically, Y S preserves the conformal class of the metric, unlike RS .
If λ is a smooth function, the soliton is termed an almost Yamabe soliton. Various authors have investigated such solitons,
including Alkhaldi et al. [1] and Barbosa and Ribeiro [4]. In the paracontact setting, De and De studied characterizations
of almost quasi-Yamabe solitons and their gradient versions [8].

In subsequent work, Güler and Crasmareanu [15] introduced a new geometric flow known as the Ricci-Yamabe flow,
defined as a linear combination of the Ricci and Yamabe flows. Referred to as the (α,β )-type Ricci-Yamabe flow, it is
governed by the equation:

£Zg+(2λ −β τ)g+ 2αRicg = 0, (3)

where α,β ∈R, and Ricg, τ , and λ are as previously defined. If Z = ∇ f for a smooth function f , the resulting solution is
known as a gradient Ricci-Yamabe soliton, and equation (3) reduces to:

2Hess f +(2λ −β τ)g+ 2αRicg = 0, (4)

where Hess( f ) is the Hessian of f . As a generalization of Ricci solitons and conformal Ricci solitons, Zhang et al. [33]
introduced the concept of conformal Ricci-Yamabe solitons (abbreviated C -RY S ), defined as follows:

Definition 1.A Riemannian manifold (Mn,g), n > 2, admits a conformal Ricci-Yamabe soliton if it satisfies

£Zg+ 2αRicg+

[

2λ −β τ −

(

π +
2

n

)]

g = 0. (5)

When Z = ∇ f , the soliton is called a conformal gradient Ricci-Yamabe soliton (C -G RY S ), and equation (5) simplifies
to:

2Hess f + 2αRicg +

[

2λ −β τ −

(

π +
2

n

)]

g = 0. (6)

Depending on the sign of λ , C -RY S are classified as expanding (λ > 0), steady (λ = 0), or shrinking (λ < 0).
Recent investigations have explored various properties and classifications of both C -RY S and C -G RY S (see [19,
27,28,33,34]). Although Ricci and Yamabe solitons have been widely studied within the framework of various classes of
Riemannian geometry (see [6,8],[12]-[14],[18,20,21],[24]-[26],[29,30] and the references therein), their conformal
counterparts-particularly the conformal Ricci-Yamabe soliton (C -RY S ) and its gradient form (C -GRY S )-remain
relatively underexplored. This gap is especially evident in the setting of paracontact geometry. Motivated by this
observation, the present work aims to investigate the interaction of these generalized solitons with specific paracontact
structures, including para-Kenmotsu, para-Sasakian, and para-cosymplectic manifolds.
The structure of the paper is as follows: Sections 2, 4, and 6 provides the foundational concepts related to
para-Kenmotsu, para-Sasakian, and para-cosymplectic manifolds, respectively. In Section 3, we examine the existence of
C -RY S and C -GRY S on para-Kenmotsu manifolds. Section 5 is dedicated to the classification of para-Sasakian
manifolds admitting such solitons. In Section 7, we investigate their existence on para-cosymplectic manifolds. Finally,
an illustrative example is presented to demonstrate the applicability of the theoretical results.

2 Para-Kenmotsu Manifolds

A differentiable manifold M2p+1 of dimension 2p+ 1 is termed an almost paracontact manifold if there exist φ ,ξ ,η on
M2p+1. Here, φ is a (1,1) tensor field, ξ is a characteristic vector field, and η is a global 1-form satisfying the conditions:

φ2E1 = E1 −η(E1)ξ , η(ξ ) = 1. (7)

This definition implies that φξ = 0, η ◦ φ = 0, and the rank of φ is 2p. If the Nijenhuis tensor uniformly vanishes, the
manifold is termed normal. Additionally, M2p+1 is designated as an almost paracontact metric manifold if there exists a
semi-Riemannian metric g such that:

g(φE1,φE2) =−g(E1,E2)+η(E1)η(E2), (8)

for all E1,E2 ∈ χ(M2p+1), where χ(M2p+1) denotes the vector fields on M2p+1. Furthermore, an almost paracontact
metric manifold M2p+1 with a structure (φ ,ξ ,η ,g) is termed a paracontact metric manifold if dη(E1,E2) = g(E1,φE2) =
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Φ(E1,E2), where Φ is the fundamental 2-form of M2p+1.
A para-Kenmotsu manifold satisfies [10]

(∇E1
φ)(E2) = g(φE1,E2)ξ −η(E2)φE1, (9)

∇E1
ξ = E1 −η(E1)ξ , (10)

R(E1,E2)ξ = η(E1)E2 −η(E2)E1, (11)

R(ξ ,E1)E2 = −g(E1,E2)ξ +η(E2)E1, (12)

R(E1,ξ )E2 = g(E1,E2)ξ −η(E2)E1, (13)

η(R(E1,E2)E3) = −g(E2,E3)η(E1)+ g(E1,E3)η(E2), (14)

Ricg(E1,ξ ) = −2pη(E1). (15)

First, we recall the following result, which we use in the proof of our main results.

Lemma 1.[10] In a three-dimensional para-Kenmotsu manifold M3,

ξ τ =−2(τ + 6). (16)

In M3, we also have

QE1 =
(τ

2
+ 1

)

E1 −
(τ

2
+ 3

)

η(E1)ξ , (17)

which gives

Ricg(E1,E2) =
(τ

2
+ 1

)

g(E1,E2)−
(τ

2
+ 3

)

η(E1)η(E2), (18)

where Q denotes the Ricci operator defined by Ricg(E1,E2) = g(QE1,E2).

3 C −RY S on Para-Kenmotsu manifolds

Throughout this section, we denote a (2p+ 1)-dimensional para-Kenmotsu manifold by M
2p+1
PK . Let us consider a M

2p+1
PK

admits C −RY S . Then from (5), we have

£Zg(E1,E2)+ 2αRicg(E1,E2)+

[

2λ −β τ −

(

π +
2

2p+ 1

)]

g(E1,E2) = 0, (19)

which yields

g(∇E1
ξ ,E2)+g(E1,∇E2

ξ )+2αRicg(E1,E2)+

[

2λ −βτ −

(

π +
2

2p+1

)]

g(E1,E2) = 0. (20)

Utilizing the expression (10) in the preceding equation yields

αRicg(E1,E2) = η(E1)η(E2)−
1

2

[

2λ −β τ −

(

π +
2

2p+ 1
+ 2

)]

g(E1,E2). (21)

By setting E1 = E2 = ξ in the preceding equation, one can determine
β
2

τ = −2pα + λ −

(

π+ 2
2p+1+2

)

2
. Consequently,

equation (21) assumes the following expression

αRicg(E1,E2) = η(E1)η(E2)− 2pαg(E1,E2).

Thus, we can state the following:

Theorem 1.If M
2p+1
PK admits a C −RY S , then it is an η-Einstein manifold.

Consider, {ei}1≤i≤2p+1 be an orthonormal frame. By taking E1 = ei, E2 = ei in (19) and summing over i, one can obtain

divZ =−τ

(

α −
(2p+ 1)β

2

)

− (2p+ 1)λ +
(2p+ 1)π

2
+ 1. (22)

Assume, for a smooth function ψ , if Z is of gradient type i.e. Z = grad(ψ), then the equation (22) becomes

∆(ψ) =−τ

(

α −
(2p+ 1)β

2

)

− (2p+ 1)λ +
(2p+ 1)π

2
+ 1, (23)

where ∆(ψ) is the Laplacian equation satisfied by ψ . Hence, we can state the following:
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Theorem 2.If (g,Z,λ ,α,β ) is a C −RY S on a (2p+1)-dimensional paracontact manifold M2p+1 where Z = grad(ψ),
then the Laplacian equation satisfied by ψ is given by (23).

Next, we prove the following Lemma:

Lemma 2.If (g,Z,λ ,α,β ) is a C −GRY S on a M
2p+1
PK , then the Riemannian curvature tensor R satisfies

R(E1,E2)D f = −α[(∇E1
Q)E2 − (∇E2

Q)E1]−E1(λ )E2 +E2(λ )E1 +
β

2
[E1(τ)E2 −E2(τ)E1]. (24)

Proof.Let us consider, M
2p+1
PK admit a C −GRY S . Then, equation (6) infers

∇E1
D f =−αQE1 −

(

λ −
β

2
τ −

1

2

(

π +
2

2p+ 1

))

E1. (25)

Taking covariant differentiation of (25) we obtain

∇E2
∇E1

D f = −α[(∇E2
Q)E1 +Q(∇E2

E1)]−E2(λ )E1 −λ (∇E2
E1)

+
β

2
τ∇E2

E1 +
β

2
E2(τ)E1 +

1

2

(

π +
2

2p+ 1

)

∇E2
E1. (26)

Swapping E1 and E2 in (25) implies

∇E1
∇E2

D f = −α[(∇E1
Q)E2 +Q(∇E1

E2)]−E1(λ )E2 −λ (∇E1
E2)

+
β

2
τ∇E1

E2 +
β

2
E1(τ)E2 +

1

2

(

π +
2

2p+ 1

)

∇E1
E2. (27)

Substituting equations (19), (26) and (27) in the definition of Riemannian curvature, we obtain (24).

Now differentiating (17) covariantly with respect to E2, we have

(∇E2
Q)E1 =

E2(τ)

2
[E1 −η(E1)ξ ]−

(τ

2
+ 3

)

[g(E1,E2)− 2η(E1)η(E2)ξ +η(E1)E2]. (28)

Utilizing (28) in (27), we obtain

R(E1,E2)D f = −α

{

E1(τ)

2
[E2 −η(E2)ξ ]−

E2(τ)

2
[E1 −η(E1)ξ ]−

(τ

2
+ 3

)

[η(E2)E1 −η(E1)E2]

}

−E1(λ )E2 +E2(λ )E1 +
β

2
[E1(τ)E2 −E2(τ)E1]. (29)

Contracting (29), we have

Ricg(E2,D f ) =
(α

2
−β

)

E2(τ)+ 2E2(λ )− (α + 1)(τ + 6)η(Y ). (30)

Substituting E1 by D f in (18) and comparing with (30), one can easily obtain

(τ

2
+ 3

)

ξ ( f )η(E2)−
(τ

2
+ 1

)

E2( f ) =
(α

2
−β

)

E2(τ)+ 2E2(λ )− (α + 1)(τ + 6)η(Y ). (31)

Taking ξ in place of E2 in the foregoing equation, we have

ξ ( f ) =

(

α −β +
1

2

)

(τ + 6)− ξ (λ ). (32)

Applying inner product to (29) with ξ yields

η(E2)E1( f )−η(E1)E2( f ) =−E1(λ )η(E2)+E2(λ )η(E1)+
β

2
[E1(τ)η(E2)−E2(τ)η(E1)]. (33)

Plugging E2 = ξ in (33) and utilizing (32), we obtain

E1( f ) =

(

α +
1

2

)

(τ + 6)η(E1)+
β

2
E1(τ)−E1(λ ). (34)

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JJMS 18, No. 4, 565-575 (2025) / 569

Suppose the scalar curvature τ is constant. Then, using (16), we find τ =−6. Consequently, the preceding equation implies

E1( f ) =−E1(λ ), (35)

this means
D f =−Dλ . (36)

Utilizing (36) in (25) gives

−∇E1
Dλ =−αQE1 −

(

λ −
β

2
τ −

1

2

(

π +
2

2p+ 1

))

E1. (37)

This shows that M3
PK is a C −GRY S , whose soliton function is −λ . Thus, we have

Theorem 3.A M3
PK with constant scalar curvature admits C −GRY S whose soliton function is −λ .

4 Para-Sasakian Manifolds

A para-Sasakian manifold is defined as a normal paracontact metric manifold. It’s important to emphasize that a
para-Sasakian manifold is a subset of general paracontact metric manifolds. Additionally, it should be noted that in three
dimensions, a para-Sasakian manifold is equivalent to a k-paracontact manifold and vice versa [5]. In a
(2p+ 1)-dimensional para-Sasakian manifold, the following conditions are satisfied [32]:

(∇E1
φ)(E2) = −g(φE1,E2)ξ +η(E2)φE1, (38)

∇E1
ξ = −φE1, (39)

R(E1,E2)ξ = η(E1)E2 −η(E2)E1, (40)

R(ξ ,E1)E2 = −g(E1,E2)ξ +η(E2)E1, (41)

η(R(E1,E2)E3) = −(g(E2,E3)η(E1)− g(E1,E3)η(E2)), (42)

Ricg(E1,ξ ) = −2pη(E1). (43)

First, we recall the following result, which we use in the proof of our main results.

Lemma 3.[10] In a three-dimensional para-Sasakian manifold M3,

ξ τ = 0. (44)

In M3, we also have

QE1 =
(τ

2
+ 1

)

E1 −
(τ

2
+ 3

)

η(E1)ξ , (45)

which provides

Ricg(E1,E2) =
(τ

2
+ 1

)

g(E1,E2)−
(τ

2
+ 3

)

η(E1)η(E2). (46)

5 C −RY S on Para-Sasakian manifolds

Throughout this section, we denote a (2p+ 1)-dimensional para-Sasakian manifold by M
2p+1
PS . Let us consider a M

2p+1
PS

admits C −RY S . Then from (5), we have

£Zg(E1,E2)+ 2αRicg(E1,E2)+

[

2λ −β τ −

(

π +
2

2p+ 1

)]

g(E1,E2) = 0, (47)

which yields

g(∇E1
ξ ,E2)+g(E1,∇E2

ξ )+2αRicg(E1,E2)+

[

2λ −βτ −

(

π +
2

2p+1

)]

g(E1,E2) = 0. (48)

Making use of (39) in the foregoing equation, one can easily obtain

αRicg(E1,E2) =−
1

2

[

2λ −β τ −

(

π +
2

2p+ 1

)]

g(E1,E2). (49)
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Setting E1 = E2 = ξ in the above equation yields
β
2

τ = −(2p)α +λ −

(

π+ 2
2p+1

)

2
. Consequently, equation (49) assumes

the following expression
Ricg(E1,E2) =−2pg(E1,E2).

Thus, we can state the following:

Theorem 4.If M
2p+1
PS admits a proper C −RY S , then it is an Einstein manifold.

Next, we prove the following Lemma:

Lemma 4.If (g,Z,λ ,α,β ) is a C −GRY S on a M
2p+1
PS , then the Riemannian curvature tensor R satisfies

R(E1,E2)D f = −α[(∇E1
Q)E2 − (∇E2

Q)E1]−E1(λ )E2 +E2(λ )E1 +
β

2
[E1(τ)E2 −E2(τ)E1]. (50)

Proof.Let us consider, M
2p+1
PS admit a C −GRY S . Then, equation (6) infers

∇E1
D f =−αQE1 −

(

λ −
β

2
τ −

1

2

(

π +
2

2p+ 1

))

E1. (51)

Taking covariant differentiation of (51) we obtain

∇E2
∇E1

D f = −α[(∇E2
Q)E1 +Q(∇E2

E1)]−E2(λ )E1 −λ (∇E2
E1)

+
β

2
τ∇E2

E1 +
β

2
E2(τ)E1 +

1

2

(

π +
2

2p+ 1

)

∇E2
E1. (52)

Swapping E1 and E2 in (51) implies

∇E1
∇E2

D f = −α[(∇E1
Q)E2 +Q(∇E1

E2)]−E1(λ )E2 −λ (∇E1
E2)

+
β

2
τ∇E1

E2 +
β

2
E1(τ)E2 +

1

2

(

π +
2

2p+ 1

)

∇E1
E2. (53)

Substituting equations (47), (52) and (53) in the definition of Riemannian curvature, we obtain (50).

Now differentiating (45) covariantly with respect to E2, we have

(∇E2
Q)E1 =

E2(τ)

2
[E1 −η(E1)ξ ]+

(τ

2
+ 3

)

[g(E1,φE2)ξ +η(E1)φE2]. (54)

Utilizing (54) in (50), we obtain

R(E1,E2)D f = −α

{

E1(τ)

2
[E2 −η(E2)ξ ]−

E2(τ)

2
[E1 −η(E1)ξ ]+

(τ

2
+ 3

)

[−2g(E1,φE2)ξ )

+η(E2)φE1 −η(E1)φE2]

}

−E1(λ )E2 +E2(λ )E1 +
β

2
[E1(τ)E2 −E2(τ)E1]. (55)

Contracting (55), we have

Ricg(E2,D f ) =
(α

2
−β

)

E2(τ)+ 2E2(λ ). (56)

Substituting E1 by D f in (46) and comparing with (56), one can easily obtain

(τ

2
+ 1

)

E2( f )−
(τ

2
+ 3

)

ξ ( f )η(E2) =
(α

2
−β

)

E2(τ)+ 2E2(λ ). (57)

Replacing E2 by ξ in (57) gives

ξ ( f ) =
1

2

(

β −
α

2

)

ξ (τ)+ ξ (λ ). (58)

Applying inner product to (55) with ξ yields

η(E2)E1( f )−η(E1)E2( f ) = 2α
(τ

2
+ 3

)

g(E1,φE2)−E1(λ )η(E2)+E2(λ )η(E1)

+
β

2
[E1(τ)η(E2)−E2(τ)η(E1)]. (59)
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By replacing E1 and E2 with φE1 and φE2 respectively, we find that 2α
(

τ
2
+ 3

)

g(φE1,E2) = 0. Given that α 6= 0 for
proper C −GRY S , the equation mentioned above indicates that τ = −6. Consequently, by utilizing equation (46), we
obtain

Ricg(E1,E2) =−2g(E1,E2). (60)

This implies that M3
PS is an Einstein manifold. Considering equation (60) in the definition of curvature tensor R (ref

equation (45) of [9]), we obtain
R(E1,E2)E3 = g(E1,E3)E2 − g(E2,E3)E1.

This signifies that it is a space characterized by a constant sectional curvature of -1. Thus, we can state the following:

Theorem 5.A M3
PS admitting C −GRY S is Einstein and it is locally isometric to hyperbolic space H3(−1).

6 Almost para-cosymplectic manifolds

An almost paracontact metric manifold M2p+1(φ ,ξ ,η ,g) is said to be an almost α-paracosymplectic manifold, if

dη = 0, dΦ = 2αη ∧Φ. (61)

Particularly, if α = 0, then we obtain an almost paracosymplectic manifold. For more details we refer to [7,11]. In a
(2p+ 1)-dimensional almost paracosymplectic manifold the following conditions hold:

(∇E1
φ)(E2) = 0, (62)

∇E1
ξ = 0, (63)

R(E1,E2)ξ = 0, (64)

η(R(E1,E2)E3) = −(g(E2,E3)η(E1)− g(E1,E3)η(E2)), (65)

Ricg(E1,ξ ) = 0. (66)

First, we recall the following result, which we use in the proof of our main results.

Lemma 5.[10] In a three-dimensional paracosymplectic manifold M3,

ξ τ = 0. (67)

In M3, we also have

QE1 =
τ

2
[E1 −η(E1)ξ ], (68)

which provides

Ricg(E1,E2) =
τ

2
[g(E1,E2)−η(E1)η(E2)]. (69)

7 C −RY S on almost paracosymplectic manifolds

Throughout this section, we denote a (2p+1)-dimensional almost paracosymplectic manifold by M
2p+1
APC . Let us consider

a M
2p+1
APC admits C −RY S . Then from (5), we have

£Zg(E1,E2)+ 2αRicg(E1,E2)+

[

2λ −β τ −

(

π +
2

2p+ 1

)]

g(E1,E2) = 0, (70)

which yields

g(∇E1
ξ ,E2)+ g(E1,∇E2

ξ )+ 2αRicg(E1,E2)+

[

2λ −β τ −

(

π +
2

2p+ 1

)]

g(E1,E2) = 0. (71)

Utilizing the expression (63) in the preceding equation yields

αRicg(E1,E2) =−
1

2

[

2λ −β τ −

(

π +
2

2p+ 1

)]

g(E1,E2).

Thus, we can state the following:

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



572 M.S. Siddesha: Geometry of paracontact manifolds admitting conformal Ricci-Yamabe solitons...

Theorem 6.If M
2p+1
APC admits a proper C −RY S , then it is an Einstein manifold.

Next, we prove the following Lemma:

Lemma 6.If (g,Z,λ ,α,β ) is a C −GRY S on a M
2p+1
APC , then the Riemannian curvature tensor R satisfies

R(E1,E2)D f = −α[(∇E1
Q)E2 − (∇E2

Q)E1]−E1(λ )E2 +E2(λ )E1 +
β

2
[E1(τ)E2 −E2(τ)E1]. (72)

Proof.Let us consider, M
2p+1
APC admit a C −GRY S . Then, equation (6) infers

∇E1
D f =−αQE1 −

(

λ −
β

2
τ −

1

2

(

π +
2

2p+ 1

))

E1. (73)

Taking covariant differentiation of (73) we obtain

∇E2
∇E1

D f = −α[(∇E2
Q)E1 +Q(∇E2

E1)]−E2(λ )E1 −λ (∇E2
E1)

+
β

2
τ∇E2

E1 +
β

2
E2(τ)E1 +

1

2

(

π +
2

2p+ 1

)

∇E2
E1. (74)

Swapping E1 and E2 in (73) implies

∇E1
∇E2

D f = −α[(∇E1
Q)E2 +Q(∇E1

E2)]−E1(λ )E2 −λ (∇E1
E2)

+
β

2
τ∇E1

E2 +
β

2
E1(τ)E2 +

1

2

(

π +
2

2p+ 1

)

∇E1
E2. (75)

Substituting equations (70), (74) and (75) in the definition of Riemannian curvature, we obtain (72).

Now differentiating (68) covariantly with respect to E2, we have

(∇E2
Q)E1 =

E2(τ)

2
[E1 −η(E1)ξ ]. (76)

Utilizing (76) in (72), we obtain

R(E1,E2)D f = −α

{

E1(τ)

2
[E2 −η(E2)ξ ]−

E2(τ)

2
[E1 −η(E1)ξ ]

}

−E1(λ )E2 +E2(λ )E1 +
β

2
[E1(τ)E2 −E2(τ)E1]. (77)

Contracting (77), we have

Ricg(E2,D f ) =
(α

2
−β

)

E2(τ)+ 2E2(λ ). (78)

Substituting E2 by D f in (69) and comparing with (78), one can easily obtain

τ

2
[E2( f )− ξ ( f )η(E2)] =

(α

2
−β

)

E2(τ)+ 2E2(λ ). (79)

Replacing E2 by ξ in (79) gives
ξ (λ ) = 0. (80)

Applying inner product to (77) with ξ yields

−E1(λ )η(E2)+E2(λ )η(E1)+
β

2
[E1(τ)η(E2)−E2(τ)η(E1)] = 0. (81)

Plugging E2 = ξ in (81) and utilizing (80), we obtain

E1(λ ) = 0. (82)

Which infers that λ is a constant. Thus, we can state the following:

Theorem 7.If M3
APC admits a C −A GRY S , then the soliton becomes a C −GRY S .
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8 Example

We consider M = {(x,y,z) ∈ R3}, where (x,y,z) are the standard coordinates of R3.
Let us consider three linearly independent vector fields

u1 = ex ∂

∂y
, u2 = ex

(

∂

∂y
−

∂

∂ z

)

, u3 =−
∂

∂x
.

Then

[u1,u2] = 0, [u2,u3] = u2, [u1,u3] = u1.

Let g be the Riemannian metric defined by g(ui,u j) =

{

1, if i=j;
0, otherwise.

Let ξ = u3 and η be the 1-form defined by η(E1) = g(E1,u3) for any E1 ∈ χ(M).
Let us define (1,1)-tensor field φ as

φu1 = u1, φu2 = u2, φu3 = 0.

By utilizing the above relations, we obtain the following results:

φ2E1 = E1 −η(E1)u3,

g(φE1,φE2) = −g(E1,E2)+η(E1)η(E2),

for any E1,E2 ∈ χ(M).
Consequently, with u3 = ξ , the structure (φ ,ξ ,η ,g) forms an almost paracontact structure on the manifold M.
Let ∇ be the Levi-Civita connection of g. Then by using Koszul’s formula, we have

∇u1
u1 = −u3, ∇u1

u2 = 0, ∇u1
u3 = u1,

∇u2
u1 = 0, ∇u2

u2 =−u3, ∇u2
u3 = u2,

∇u3
u1 = 0, ∇u3

u2 = 0, ∇u3
u3 = 0. (83)

From the above relations, it becomes evident that the relation (38) is indeed fulfilled. Consequently the considered
manifold is para-Sasakian manifold. The components of the Riemannian curvature tensor are given by

R(u1,u2)u2 = −u1, R(u1,u3)u3 =−u1, R(u2,u1)u1 =−u2,

R(u2,u3)u3 = −u2, R(u3,u1)u1 =−u3, R(u3,u2)u2 =−u3,

R(u1,u2)u3 = 0, R(u3,u2)u3 = u2, R(u3,u1)u2 = 0,

and

Ricg(u1,u1) = −2, Ricg(u2,u2) =−2, Ricg(u3,u3) =−2.

By using the above results, we can easily deduce that the scalar curvature of the manifold is τ = −6. Therefore, we have
established the validity of Theorem 4 for three dimensions.
Now, let us consider a potential vector field Z on M, which can be expressed as Z = f1u1 + f2u2 + f3u3, where f1, f2, and
f3 are smooth functions. A C −RY S equation (5) is written as

g(∇E1
Z,E2)+ g(E1,∇E2

Z)+ 2αRicg(E1,E2)+

[

2λ −β τ −

(

π +
2

n

)]

g(E1,E2) = 0. (84)

Based on equations (83) and (84), we can deduce the existence of a C −RY S on M for the smooth functions f1, f2, and
f3 that satisfy the following:

u1( f1)+ f3 − u3( f3) = 0, u1( f2)+ u2( f1) = 0,

u1( f3)+ u3( f1)− f1 = 0, u2( f2)+ f3 − u3( f3) = 0,

u2( f3)+ u3( f2)− f2 = 0, u3( f3) = 2α −λ +
τβ +π

2
+

1

(2p+ 1)
.

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



574 M.S. Siddesha: Geometry of paracontact manifolds admitting conformal Ricci-Yamabe solitons...

9 Conclusion

In this work, we explored the existence and characterization of conformal Ricci-Yamabe solitons (C −RY S ) and their
gradient counterparts (C −GRY S ) in the setting of paracontact geometry. Specifically, we analyzed these solitons
on para-Kenmotsu, para-Sasakian, and almost paracosymplectic manifolds. Our investigation led to several significant
findings:

•For para-Kenmotsu manifolds, we established that the existence of a C −RY S implies that the manifold is η-
Einstein Theorem 1, and when the potential vector field is the gradient of a function, the associated function satisfies
a Laplace-type equation Theorem 2. Furthermore, in the 3-dimensional case with constant scalar curvature, the soliton
function is explicitly determined Theorem 3.
•For para-Sasakian manifolds, we demonstrated that any manifold admitting a proper C −RY S must be Einstein
Theorem 4, and in three dimensions, a C −GRY S -admitting manifold is necessarily Einstein and locally isometric
to the hyperbolic space H3(−1).
•For almost paracosymplectic manifolds, we proved that the existence of a proper C −RY S also enforces an Einstein
structure Theorem 6, and if such a manifold admits an almost gradient soliton C −A G RY S , then it reduces to a
C −GRY S Theorem 7.

These results contribute to the deeper understanding of geometric flows in pseudo-Riemannian settings, particularly
highlighting the strong structural constraints imposed by C −RY S and C −GRY S on various paracontact
manifolds. The study opens avenues for further investigation into soliton theory in more general non-Riemannian or
indefinite metric structures.
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