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range of unitary transformations, from the classical Fourier transform to the more recent special affine Fourier transform. However, its
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intricate interplay between octonion algebra and the quadratic-phase Fourier transform.
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1 Introduction

Towards the culmination of twentieth century, Saitoh [1] while working on the solution of the heat equation

U (x,t)  9U(x,1)
ox2  dr

with the initial condition U(x,0) = f(x) € L*(R) derived a typical result for a novel integral transform arising in the
framework of the model (1) by using the theory of reproducing kernels. Invoking the classical Fourier transform, it was
demonstrated that a solution U (x,7) of (1) has the following representation:

1 (x— w)?
Us(x,t) = \/T_m/Rf(a))exp{—T}d(o. (2)

Therefore, for any ¢ > 0, it was examined that the resulting integral transform U — Uy, f € L? (R), can be extended
analytically to C. Inspired by the work of Saitoh, Castro et al. [2] studied certain possibilities for the quadratic Fourier
transform by employing a general quadratic function in the exponent of the transform. Keeping in view the contemporary
trends of using different chirps in the analysis of finite energy signals, Castro et al. [3] introduced the notion of
quadratic-phase Fourier transform (QPFT) which embodies et variety of integral transforms including the Fourier
transform, fractional Fourier transform (FrFT) [4,5], linear canonical transform (LCT) [6,7] and the special affine
Fourier transform (SAFT) [8]. Moreover, for real parameters Q = (A,B,C,D,E) with B # 0, the QPFT of any function
f € L*(R) is given by

xeR,teRt (1

20[f)(0) = \/%/Rf(t)efi(Ar2+Brw+Cw2+Dz+Ew)dt' 3)
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Thus, we observe that when A = C = D = E = 0 and B = 1, the QPFT reduces to the Fourier transform. Moreover, when
D = E =0, (3) simplifies to the LCT as well as to the FrFT, up to the choice of certain constant factors that do not
affect the properties of the corresponding integral operators. Given the above definitions, it is also evident that the QPFT
encompasses the SAFT as a particular case when Q = (A/2B,—1/B,D/2B,p/B,—(Dp — Bq)/B).

In addition to the mathematical objective of constructing a new transform that generalizes several existing
mathematical concepts, significant attention was devoted to designing the definition with elements that facilitate the
verification of essential and intriguing properties. These properties enhance the utility of this mathematical tool in
various applications. The QPFT has shown significant advantages as an integral operator, demonstrating remarkable
potential due to the flexibility provided by its five free parameters. This versatility is evident in several recent
publications, including [9,10,11,12,13,14,15].

In recent times, hyper-complex Fourier transforms have ignited a surge of interest, presenting a compelling
approach for treating multi-channel signals as unified algebraic entities without sacrificing a crucial spectral information.
The landscape of hyper-complex Fourier transforms is adorned with various formulations, each offering unique
perspectives. Among these, the quaternion Fourier transform (QFT) stand as fundamental and paramount [16,17]. The
non-commutativity of quaternion algebra has led to the development of distinct variants of the quaternion Fourier
transform, including the quaternion Fourier transform (QFT), quaternion FrFT (QFrFT), quaternion LCT (QLCT),
quaternion SAFT (QSAFT), quaternion QPFT (QQPFT) and many more [18,19,20,21,22]. These quaternion-based
transforms consider the non-commutative properties of quaternion algebra, providing unique insights into signals
characterized by both magnitude and phase components. Moreover, these quaternion-valued Fourier transforms extends
traditional Fourier analysis to quaternion-valued signals, offering a unified framework for time-frequency analysis.

Quaternions, also known as the Cayley-Dickson algebra of order 4, have found substantial applications in various
fields, particularly in multidimensional and multichannel signal analysis, where traditional Fourier transforms prove
inadequate [23,24,25]. Yet, beyond the realm of quaternions lies a domain deserving of equal attention in hyper-complex
signal processing: the octonions. Octonions, also known as Cayley-Dickson algebra of order 8, have been captivating
modern signal and image processing. In contemporary signal processing, the octonion Fourier transform (OFT) has
emerged as a rapidly growing area of interest for researchers. It generalizes the QFT by utilizing an octonion kernel to
transform octonion-valued signals into the frequency domain. Its ability to address the limitations of the QFT by
extending the analysis to an §-dimensional framework makes it an essential tool in modern signal processing.

In 2011, Hahn and Snopek [26] introduced the octonion Fourier transform and investigated its fundamental
properties. Since then, numerous applications of the octonion Fourier transform in signal processing have been explored
[27,28,29]. In 2021, Gao and Li [30] introduced the octonion linear canonical transform (OLCT) as a generalization of
the OFT by replacing the Fourier kernel with the LCT kernel. Additionally, Bhat and Dar [31] proposed the octonion
short-time linear canonical transform (OSTLCT), whereas Sheikh et al. [32] extended the octonion Fourier transform to
the SAFT domain, investigating its fundamental properties and associated uncertainty principles.

Motivated and inspired by these advancements, we propose a novel octonion quadratic-phase Fourier transform
(OQPFT) for real-valued functions. Many established integral transforms are special cases of the newly proposed OQPFT,
including the Fourier transform, FrFT, LCT, QPFT, QFT, QFrFT, QLCT, QQPFT, OFT, OLCFT, and many others. This
study focuses on properties such as linearity, Parseval’s formula and the reconstruction formula of the proposed transform.
The core contribution of this paper lies in establishing well-known uncertainty inequalities.

The rest of the article is organized as follows: Section 2 deals with essential preliminaries that set the stage for our
study. In Section 3, we introduce the novel octonion quadratic-phase Fourier domain, exploring its profound implications.
Section 4 is devoted to the formulation of various uncertainty principles intricately linked with the octonion QPFT. Finally,
the conclusion is presented in Section 5.

2 Preliminaries

In this section, we revisit the foundational concepts of octonion algebra and introduce the fundamental definitions of the
octonion Fourier transform.

2.1 Octonion algebra

The present subsection mainly deals with some basic facts and notations on the octonion algebra, which shall be utilized
in the rest of the article. For convenience, we will denote (¢1,2,3) by t and (@, ®,, ;) by w throughout the paper.
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In accordance with the Cayley-Dickson construction, the octonion algebra @ is a non associative and
non-commutative algebra defined over R and is generated by the seven imaginary units ey, e, ...,e7 given as [33]:

ey — (1,0),61 = (i,()),ez = (j,O),e3 = (k,O),e4 = (O, 1),65 = (O,i),eé = (O,j),e7 = (O,k).

The multiplication rules for octonion algebra are presented in table 1.

* 1 el e e3 ey es eq e7
1 1 el e e3 ey es eg ey
e1 | e -1 e3 —en es —eq | —e7 eg
ey ey —e3 -1 el €6 e7 —ey —es
es3 es3 e —e] -1 e7 —eéq es —ey
€4 [} —é5 —eq —e7 -1 el [} es3
es es 4 —e7 €6 —e] -1 —e3 e
eq eq e7 €4 —es —e) es3 -1 —e]
e7 e7 —eq es €4 —e3 —e) el -1

Table 1: Multiplication rules in octonion algebra

An arbitrary octonion o € O can be represented as:
0 =00+ 01e] + 0262 + 033 + 04e4 + 0s5€5 + 066 + 07€7, “4)

where 0g,01,02,03,04,05,06,07 € R represent vectors in R8. Here, the real part of o is 0o, while the remaining components
constitute the imaginary part. This structure is analogous to a complex number but uniquely extends to seven degrees
of freedom, resembling a vector in R’. Within the framework of octonion algebra, characterized by non-associativity
and non-commutativity over the real numbers, eq,e3,...,e7 represent the seven imaginary standard units. Moreover, the
octonion conjugate is given by

0= 00— 01€1 — 0282 — 03€3 — 04€4 — 05€5 — 06 — 07€7. (5)
Besides, the norm of octonions is defined by |o| = v/0o = V@0 and |o|> = ¥._, 02. Furthermore, the norm of octonions

satisfy |0j02| = |o1]|oz2|, Vo1,0, € Q. It is important to mention that each o € O can be represented in the quaternionic
form as:

0= a+ Bey, 6)

where & = 09+ 011 + 02¢3 + 03e3 and B = 04 + 0s¢] + 0ges + 07¢3 are quaternions (H). Thus, an octonion is equal to
the direct sum H H, and the multiplication for any two pairs (a, 3), (y,8) € HEH is given by

(0, B)(¥,8) = (oy— 8B, 8+ BY). (7
The following Lemmas are very useful and are frequently used in the subsequent sections.

Lemma 1./33] For any o, € H, the following relations hold:

(i) eq40 = 564; (ii) 64(0664) =—q; (iii) (0664)64 = —Q;
(iv) a(Bes) = (Ba)es;  (v)(ates)B = (aB)ess  (vi)(0tes)(Bes) = —Box.

Remark.1t is obvious from Lemma 1 that the quaternionic form o + Bey; o, B € H of any octonion satisfies the following
properties:

(X+ﬁe‘4:a*ﬁ€4 ¢))
and

o+ Bes|* = |af* + |BI*. 9)
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Lemma 2./33] Let 01 and 0, be any two arbitrary octonions. Then, we have
€01 . %2 = 01102 if and only if 01-02=07-0]. (10)
An octonion-valued function f(t) can be considered as a mapping from R? to O and has the following explicit form:

F() = fo(t) + fi(t)er + -+ fr(t)er
= fo+ fie1+ (fa+ frer)ea+ (fa+ fser + (fo + frei)ex) es
= g(t) +h(t)es, (11)

where each f;(t),i=0,1,...7 is a real-valued funcion and g, s € H as in (6). For each octonion-valued function f defined
over R3 and 1 < p < oo, the L? norm of f is defined by

Irllo = [ £ at < (12)

Thus, L”(R?,0) is a Banach-space consisting of all measurable functions f(t) that have a finite LP-norm. For p = oo,
L=(R3,0) is the set of essentially bounded measurable functions with the norm ||f(t)|. = esssup,cgs |f(t)]. If

f(t) € L*(R3,0) is continuous, then || f(t)|l. = sup(ycps | f(t)]. For p =2, we can define the inner product

(f,8) := Jp3 f(t)g(t)dt, where g(t) = go(t) +g1(t)er + ga(t)ez + g3(t)e3 + ga(t)es + g5(t)es + go(t)es + g7(t)e7, which
turns L2(R3, Q) into a Hilbert space.

2.2 Octonion Fourier transform

Let e, ea,...,e7 be the imaginary units in Cayley-Dickson algebra of octonions, then for any f € L! (R,0), the one-
dimensional octonion Fourier transform is defined as [34]:

1
Z1|f](w) = —/ 1)e 4 dt 13
@)= == [ 10 13
and its inverse transform is given by
1

)= (F t :—/9’ )’ do. 14

Next, we shall define the 3D OFT of an octonion-valued function f(t) € L*>(R? Q) as [34]:

1 _ _ _

Fereren [ﬂ (w) = W/R3 F(t) e 1D gmean2®2 pmeats s gy (15)

Moreover, the inverse transform of (15) is given by
f(t) = ye?}eg,a (991792734 [f]) (t)
= /g g‘ehez“ [f] (W) eC1I101 p€2120 Leal3 3 oy (16)
R
Remark.For f € L* (R?,0), we have

Ferer,esl [I(W) = Fep g ea[fOl(W) + Fey o e [1](W)er + Fey ey e [ 2] (W)er + Fey ey e[ 13](W)es
+ Fererealfal(W)ea+ Fey o0 [[5/(W)es + Fey e e [ fo] (W)e + Fey e e[ /1] (W)er.

Therefore,
2 2 2
|Fe1 02,64 [f](w)|«2) = ‘yel,ez,ez; [fO](W)‘ + |yel,ez,e4[ l](W)‘ er+ |yel,ez,e4[ 2](“’)‘ €
2 2 2
| P eres 51 W)[ €3+ | Ty g s [fa] (W) “ea+ | Py 0.0 |51 (W) | e5
2 2
+ |‘g€17€2764 [f6](w)‘ e+ |y€1762764 [f7](w)‘ €7.
©2025 YU
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We define a new LP-norm as follows:

| Zeseresl i) < [y eresl (W >6dw>l/p- a7

0.,p

Itis important to note that the measures | Fe, ¢, ¢, [f](W)|g and | Fe, ¢ e, [f](W)|, as well as the norms || Ze, ¢, e, [/](W) lg,
and || Ze, ., e, [ f](W)]| ,, are distinct. The distinction arises because || Ze, ¢, e, [f](W)l|p , depends on the unique structure of

the octonion-valued function f(t), requiring each component function f;(t), where 0 < k <7, to be real-valued. However,
in certain cases, the L”-norm of .%,, ., ¢, [f](W) may exhibit behavior similar to that of the octonion-valued function f(t)
within the L”-space.

3 Octonion Quadratic-phase Fourier Transform

This section delves into the intricacies of the quadratic-phase Fourier transform. Our primary objective is to develop both
one-dimensional and three-dimensional formulations of the OQPFT. Along the way, we systematically explore the
fundamental properties that define and govern the three-dimensional OQPFT. From now on, we shall represent the
quadratic function A;t;; + Bit; 0; + C,wi2 + Dit; + E;w; by g;t;, where i = 1,2 and 3.

Definition 1.7he one-dimensional OQPFT of any f € L'(R,Q) with respect to the real parametric set
Q = (A,B,C,D,E), B #0 is denoted by Q(IO.JQ [f] (w) and is defined as:

204 [f] /f o (e, w)dt, (18)

where

1
HEM(t,0) = —— ex {e A+ Bto +Co* + Dt + Ew } 19

§(.0) = ——exp e ) (19)
Remark. The one-dimensional OQPFT shares an elegant bond with the traditional one-dimensional octonion Fourier
transform and is given by

—e4 (At +Bzw+Cw2+Dz+Ea))d

3(1039 [f](w) t

m/f

—e4 (AP +Dt+Bro+Cw’ +Ew) dt

m/f

—e4 (4 +Dz)) efe4Bzwdte—e4(Cw2+Ew)

I
— yl [f(t)e_e“(A’ +Dz)} (B(D) e—e4(C002+Ea))7 B 7& 0. (20)

The inversion formula corresponding to the OQPFT (18) is given in the following theorem.

Theorem 1.If Q(IO’)Q [ﬂ is the one-dimensional OQPFT of any function f € L'(R,Q). Then, the following inversion
formula holds:

22, [f] (@) A5 (1, 0) do @1)
1Bl /
where 5" (t, @) is given by (19).
Proof By virtue of the relation (20), we have
o@(ﬁ)ﬂ [f} (a)) ee4(Cw2+Ea)) — yl |:f(t)efe4(A[2+Dl) (Ba)) . (22)

Employing (14) in (22) yields

f(t) 6784 (A[ZJrDl 2 / o@ 64(Cw2+Ea)) ee4rBa)d (Ba)) . (23)

/4
©2025 YU
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Equation (23) can be recast as:

1
21 /]R e@(lojg [f](w) 4 (COPHE®) jesto yes(AP+Dr)

|B|V2n
1

BV
1 .
_ E/RQ?’Q [f] (@) #3 (1, 0) do. 24)

f) =

/ Q(IDQ [f] (w)ee4(Az2+Bzw+Cw2+Dl+Ew) o
R )

This completes the proof of Theorem 1.

We are now in a position to give the formal definition of three-dimensional OQPFT by replacing the kernel in the
conventional QPFT (3) with the quadratic-phase octonion kernel.

Definition 2.The three-dimensional OQPFT of an octonion-valued function f € L? (R3 ,@) with respect to a real
parametric set Q = (A,B,C,D,E), B # 0 is defined as:

O — — —
Loy o005 Lf1(W) = /R3 FO) A, (11, 1) H P (12, an) Hg (13, an) dw, (25)
where
C}g/el (t] wl) _ 1 eelqlfl _ 1 ee] (A|[12+B|l](IJ]+C|(012+D][|+E]CO|) Bl 7&0
i 2n V21 ’
j{éj (f, ;) = —127[ e2q22 = 127r e (A2f22+3212(02+02w22+02f2+E2w2)7 Ba#£0Y. (26)
1 1
Jé/_é;‘ (13,03) = T £0AI313 — = &% (/‘A3f32+1-’3313f03Jrcswngrl)3f3+E3ws)7 By £0
Remark.(i). The octonion quadratic-phase Fourier transform (25) can be represented in the inner product form as:

321,92,93 [f](w) = <f(t)7'%/§§: (13, 03) 2 5 (12, 000) Ay (11, 601)> , (27)
where Ji/él‘ (11, a)l),jé/_é; (t2, @) and jé/_é;‘ (t3, @3) are given by (26).

(ii). It is worthwhile to mention that the kernels Ji/él‘ (t1, o), jéfé; (t2, @) and jé/_é;‘ (t3, @3) with complex units ey, e, and
ey, respectively, are octonion-valued and do not reduce to the quaternion cases. As such the present integral transform is
more interesting and complicated.

Next, our endeavor is to explore certain mathematical properties of the OQPFT, such as linearity, parity, modulation, and
shifting properties. To achieve the goal, we first expand the kernel (26) of the OQPFT (25) in the closed form as:

%/QT] (11, @ )%Q;ez (12, @)%97364 (13, @3)
1
(275)3/2 [

e c141h e*@zqzlze*mqﬂs]

1 .
= Ok {cos(qltl )cos(qaty) cos(gats) — sin(g111) cos(gaty) cos(gsts)e;

—cos(q1t1) sin(gaty) cos(gsts)er + sin(g1 11 ) sin(gat2) cos(g3ts )es
—cos(q1t1) cos(qatz) sin(gsts )es + sin(g1 11 ) cos(gaty) sin(g3t3 )es

+ COS(qlll) Sin(qztz) Sin(Q3t3)66 — Sil‘l(qlll) Sin(thz) Sil‘l(CI3t3)e7} . (28)

By virtue of the full octonion form (28) of the kernel, the three-dimensional OQPFT f(t) can be considered as the map

from R3 to O and is given by
2 00,110 = (25, 0,0, 11) 0= (25 0,0,[01)  Wer— (2], 0,0,1/]), (We2
+ (e@gl,gz,m [ﬂ )ooe (W)es — (’@gl,gz@ [ﬂ )ew (W)ea+ (ggl 2.0 [f]) (W)es

+(28,.0.0.111)

eee oee

(Weo— (20, 0,.0,[1])  (Wer, (29)

eoo 000

©2025 YU
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where

(g@ghgb% [ﬂ) (w) = W/ﬂ@ feee(t) cos(qit1) cos(gata) cos(gst3 )dt;

(321792793 [f]) (w) = W/ﬂ@ foee(t) sin(q11) cos(qata) cos(gats)dt;
1 .

G2 o ere 01 cos(grn)sin(garz) cos( gt

1 . .

(w) = W /R3 Jooe(t) sin(g121) sin(gat2) cos(gats )dt;

(381792793 [f]) (w) = W/ﬂ@ feeo(t) cOs(q1t1) cos(gaty) sin(gats)dt;
1 . .

W/Rs Joeo(t) sin(g111) cos(gaty) sin(g3t3)dt;
1

(381792793 [f]) (W)ZW R3feao(t)cos(%tl)Sin(ﬁmz)Sin(qm)dt;

(25, 00.0,177)

Here, the subscripts e and o denotes whether a function is even (e) or odd (o) with respect to an appropriate variable, for
instance, f,ee(f1,12,13) is odd with respect to #; and even with respect to the variables #, and #3.

000

(w)= W /R3 Jooo(t) sin(qi11) sin(gaty ) sin(gst3)dt.

Next, we present a theorem that outlines key features of the octonion quadratic-phase Fourier transform (25).

Theorem 2.For a pair of functions f,g € L*(R3,Q) and the arbitrary octonion scalars ¥, 8, the OQPFT has the following
properties:

(). Linearity: QQI 2,03 [yf+8g](w) = Ql D, 93[ ] 8321 2,03 8] (w);
(ii). Anti-linearity: 391792793 [f](w) = 7991 .0, 1) [f](w _QI,QZ Q; [&] (w);

(ii). Scaling: 20, g, 0, [71](W) = 25y o1 o/ [/] (“’—;,% a%) where S f(t) = f(ut1, 012, 0313), 0 € R* and
Q! = (Ai/a},Bi,a?C;, D/ o, GE;) for i =1,2,3;

(iv). Reflection: 991792793 (2f](w) = Qg* Q3.0 [f](—=w), where 2 f(t) = f(—t) and

QF = (A,-,B,',Ci,—Di,—E,-), Vi=1,2,3;

(v). Conjugation: Qg1792793 [F](w) = 39917_927_93 [f](w).

Proof.For the sake of brevity, we omit the proofs of (i) and (ii).

(ii). To study the effect of scaling on OQPFT, we proceed as:

1
@@
01,82, [yf] (W) = 2 —)3/2 /g f(OCltl , 0ty OC3I3)€ €1911 p—€2921 o= €431 g,

©2025 YU
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Substituting z; = Q1t1,z2 = Opty,z3 = 0313 in the above equation, we obtain

1

(0)
2o, .00.0, (W) = W/R3f(z1,zz,zz)

—e1 (A1 (e1/e1)?+Bi (z1/ 1)@y +Cr 02 +D) (21 /04 ) +E 0y )

x el
% e*@z(Az(22/062)2+32(22/<12)wz+C2w22+Dz(Zz/O!2)+E2wz)
(

A3(13/a3)2+33(13/0‘3)w3+c3w32+D3(Z3/a3)+E3w3)dzlddezg

W @ 3
= Q@/ I O/ DRV R
Q1,005 [f] ( o 0 O3 )

where Q] = (A,-/Otl-z,B,-,OcizCi,Di/Oci,(xiEi) foreachi=1,2,3.
(iv). Plugging (ay,0p,03) = (—1,—1,—1) into the property stated in (iii), we arrive at the desired result.

(iii). Invoking the Definition 2, we have

23, ry [F] W) = [ T A (11,00) K, (1. 0) 5 13, 0)

= RJG)%}Q(tn,wn)ﬂzj(tz,m)lizﬁ(ts,m)dt

= 9991,792,793 /] (w).

This completes the proof of Theorem 2.

The shifting property for the OQPFT is studied in the following theorem.

Theorem 3.1]%@2;““]92&3 [f]. Qg;xzﬂz.!); [f] and Qg;xsﬂz.!); [f] denotes the OQPFT of the octonion-valued functions f (t; —
X1,t2,83), f(t1,t2 —x2,13) and f(t1,t2,t3 — x3), respectively. Then, we have

4A3C, 4A,C, 2A1
Qg]x,]oz,m [f} (W) = COS (A[X%‘FD]X[ +B|)C|(D| — Blz x% — Bl w1 x| — B—lxl
1
2A
X Vif (wl +B—'x1,wz,a>s)
1
4A3C 4A,C 2A
—sin <A|X%+DIX| +Bix1m — Bl% lx%f Bll la)lxl — B—ll)ﬂ)

24,
XAIf W)+ ——Xx1,02,03 |,

B
where
Vi = (2500 1),,~ (Zo0all]) o~ (26.0.01]),
(28 malh), o (25 aall) et (2 0.0l1) e
(2 mald)),, o (% 0alr), o
and
mf= (25 0,0,0), + (2 00l) - (2800l1) @
(28 e l]) o= (2 aall) e (25 aall) e
(28 aalfl), et (28 a0l), e

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.
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Proof.From (29), we have

Y 1
(e@g17192793 [f]) (W) = W - feee(tl —xl,tz,t3)COS(£]111)COS(Q2t2)COS(C[3t3)dt.

eee

Putting z; = t; — x1,22 = f,z3 = 13 in the above equation, we obtain

(25,001),,

1
= W/H@feee(z)cos (Al(Z1+x1)2+Bl(Z1+x1)0)1+C1(D|2+D1(Z1+x1)+51601)

x c0s(qaz2) cos(g3z3) dz

1
= W‘/Rsfeee(z)

X COS (<A|X%~I»D|)C| +Bixiw —

4A%C 2 MG 24,
5 X1 — W1x] — ——X]
B B B

2 2A4 2A4 2 24,
+ | Aizi + By (01+B—x1 21+Ch 601+B—x1 +D1z1 +Ey 601+B—x1
1 1 1

X cos(g222) cos(g323)dz

1 4A%C, 4A,C, 24,
= IR cos (Alx% +Dix; +Bix @) — Blz xX— B, w1x) — B / Jeee(Z
1

2 2A4 2A4 24,
x cos | A1z + B a)1+B—x1 21+ Cp 601+B—x1 +D1Z1+El 601+B—x1
| | 1

X cos(g222) cos(g323)dz

4A%C 2 4G 24,
Bz X1 — B, 11——)61 /feee

, 5 24, 24, \? 24,
x sin | Ajz7 + By a)1+B—x1 21+G a)1+B—x1 +Diz1+E1 | oy +B—x1
1 1 1

X c0s(g222) cos(g323)dz

1 .
— W sin (Alx% +Dix; +Bixjo; —

Moreover, we assume that

2A1
(Qghﬂz.,!)} [f})%ee ((Dl + B —X1,Wn, (D3> 271: 3/2/ feee

. ) 24, 2A, 24,
xsin | A1z7 + B a)|+B—x| 21 +C w1+B—x| +DIZI+E1 a)|+B—X1
1 1 1

x cos(q222) cos(q323)dz;

2A1 1
(Qg"92’93 [f} )coee ((D[ + B_1XI » @2, 003) W R3 foee(z)

5 24, 24; \? 24,
xcos|Ajzj+By| oy +——x1 |21 +C | 01+ ——x1 | +D1z1 +E1 | 01+ ——x3
B, B B

x c08(q222) cos(g323)dz;
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2A1
(o@gl,!)z,ﬂs [f])seoe <(DI + B —X1,Wn, (D3> 27[ 3/2/ feae

24 24 24
csin | A1 4By | o+ =2 )2 +C |0+ St +D|Z|+E| o+ =g
Bl Bl Bl

x sin(g2z2) cos(q323)dz;

24 1
(Qg] 2,23 [f])ceoe <a)| + B, ——X1, @, ws) n)3/2 /R3 Seoe(Z)

24 241 \* 24
X cos <A|z%+B| (wl +B—1x|>21 +C (wl +B—Ix1) +Dyz1 +E; <a)| +B—Ix1>>
1 1 1

x sin(gyzy) cos(q3z3)dz;

24 1
(Qg],92,93 [ﬂ)wo <a)| + B, —— X1, 0, (D3> )PP Jw foeo(2)

24 24 \* 24
X sin <A1Z%+Bl ((DI +B—1x|>zl +C (wl +B—Ix|) +Dyz1 +E; <a), +B_'xl>>

x cos(g2z2) sin(g3z3)dz;
2A 1
O 1 -
(QQ] 2,03 [f])cew <a)| + B—lxl’wz’w3> = W /R3 Seeo(Z)
24 241 \? 24
X cos <A|z%+B| (wl + B—lx|> 21+ G (wl + B—IXI) +Dyz1 +E; <a)| + B—IXI>>
1 1 1

x cos(g2z2) sin(g3z3)dz;

2A, 1
(le,92,93 [f])suoo <(DI + B —— X1, Wy, (D3> W R fooo(z)

. 24 241 \? 24
X sin A]Z%+B| w1+—lxl 21 +C (D|+—1X1 +Diz1 +E; w1+—1x|
Bl Bl Bl

x sin(gzz2) sin(g3z3)dz;

and

2A4 1
(Qg],92,93 [f])ceoo <a)| + 3,0 (D3> xR R*fwa(z)

24 241 \* 24
X COS <A1Z%+B| ((Dl +B—1x|>zl +C (wl +B—le) +Dyz1 +E; <a), +B_'xl>>
1 1 1

x sin(g2z2) sin(g3z3)dz.

Then, we have

4A3C, 4A,Cy 24,
= A2 4+ Dyxy + Bixj o) — —2 5% — O x] — —Lx
(w) cos( 1X] 1X1 1X1 0 B% X B, 1X1 B, 1

eee

2A
O 1
x (QQI 1£27,03 [f} )ceee <a)| + B_lxl , 2, w%)

4A3Cy 2 4A,C, 2A >

1
WX — —X]
B ' B B,

—sin <A|x%+D|x| +Bix1w —

2A
O 1
% (Q‘Ql £2,,03 [f} )seee (U)[ + B—lxl , D, 0}3) .
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On the similar lines, we can show that

<°@g;x’]ﬂz’g3 [f])oee (W) = cos <Alx% ot B o 41?3%;1 x - 41?3]1& x| — Z%IXI)
X (321’92,93 [f])suee ((Dl + %xl , 0, w;)
. (le,az,ag [f])cm <wn + %M,@,@) :

(’@gflﬂmg [/] )eee (W) = cos (Alx% 1 Dyx) +Bix o) — 4“;%;1 2o 41‘;11C1 o1 — 21%1)61)
x (381792793 [f])Ceee (601 + %xl,(oz, (03)
—sin (Apc% + Dy1x1 + Bixj 00 — 4’?;' e 41‘:?.11(;1 o — %xl)
X (3379293 [f])scee (601 + %xl,a)z,ah) )

<°@g;x’]ﬂz’g3 [f])oee (W) = cos <Alx% ot B o 41?? x - 41?3]1& x| — Z%IXI)
X (321’92,93 [f])coee <a)| + Zl;illx, , (0, a)3>
—sin (Alx% +Dyx; +Bix; 0 — 4135%6’1 E 412110 o — %Xl)
x ("@21’92,93 [f])we (wl + %xl , 0, ws) :

(’@gflﬂmg [/] )eae (W) = cos (Alx% +Dyx; +Bixjo) — 42%;1 2 4f;11C1 o — 2%1)61)
X (381792793 [f])cwe (601 + 2Billx1, ;, a)3)
—sin (Alx% +Dix; + Bix ;0 — 42%%6. 2o 4211& — 2%1 xl)
. (gglﬂz,ﬂ; [f])we (601 + %m,wz,an) :

(1)1 20,
x (Qg] 2,03 [f])%oe (wl + Zg;llxl , 0, a);)
—sin (AIX%+DIX| + Bx1 0 — 4135%6’1 2o 412110 o — %x1>

2A
0) 1
x (391 20,0 [f])we <a), + B—lxl,wz,ah> .
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and

4A%C 4A,C 2A
o 1 1¢1 1
e
2A
o 1
x (2 ) 01+ =X, 02,
(22 mal1]), (0420010000
4A%C 4A,C 2A
—sin <A|x%+D|x| + Bixjo — BI% 1)(%, Bll la)|x| - B—11x1>
2A
o 1
x (2 ) O1+ 5 =X1, 02, '
( Q1,993 [ﬂ seeo< 1t B, 1, @ (D3>
N 4A3C , 4AC 24
(B 1) om0
2A
0 1
x (2 ) 01+ =X, 02,
(28 00 111),, (00 2t om0 )
4A%C 4A,C 2A
—sin <A|x%+D|x| + Bixjm) — Bl% lx%f Bll 1 wx) — B—llxl)
2A
0 |
x (2 ) 1+ =1, @2, '
(28 ma11]),., (04 201,000
N 4A3C, , 4AC 241
("@.(21)5192793 [ﬂ)eao (W):COS (AIX%+DIXI+BIXICOI_ Bl% X%_ B wIXI_B_IXI
2A
o 1
X Q ) w I 9 bl
( Q1,903 [f] Ceoo( 1+ B, X1, 603)
4A%C 4A,C 2A
—sin <A1X%+D1xl +Bix1w — Bl% lx% — Bll 1 w1 x1 — B—IIXI)
2A
o 1
x (2 ) O+ =X, 02, '
(28 ma11]),, (01+ 21,0000
N 4A2C) ,  4AC 24
(QQI)?QL% m)wo (W) = cos (A1x%+D1x1+le1w1_ BI% x - B, O T

2A
O 1
% (391792793 [f]) (w1+B—1x17ah7a)3)

Cp00

1— 7 X1

4A%C, 4A,Cy 24,
—sin [ Ax? +Dyx; + Bixj 0] — —L 5% — w1 x
( 1X] +Dixp + By B% 1 B 1 B

2A
O 1
x (391792793 [f])s()oa (wl + B—lea(oZ) (1)3) .

Invoking (29), we obtain

200, .0, |f] (W) = cos (AIX% +Dy1x; + B1xj @) —

@,X]

X1 — /X1

4A3C 5,  4AIC 24,
0 X1 — (O]
B B B,

24
X Vif (wl + B—l'xl,wz,ab)

1
1X1 — X1
B ' B B,

—sin <A|X% + Dix1 + Bix0; —
1

4A3C, , 4A,C 2A )
X — o

2A
><Alf<a)l +B—11xlvab7a)3) )
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where
Vif= (e@gl,gz,m [f:l>ceee B (321,92,93 [f]>soeeel a (321792,93 m)ccoeez
+ (Qg] 2,03 /] )SOOg €3 — (Qg] 2,03 /] )ceeo et (Qg"gz’ﬂs [f])s"w "
+ (0@8] 0,0, |/] )cgoo e (le a0 lf] >sooo o
and

Af = (Qghﬂz,f):; [ﬂ)wj (Qg] .05 [ﬂ) er— (Qg.,gz,m [ﬂ) €

_ (321792793 /] )c,,oe e3— (321792793 [f])scw e4— (981,92,93 /] )Cow es
(28 e lf]) ot (28 aals]),  en

Similarly, the translation property with respect to the variables #, and 73 can be studied.

This completes the proof of Theorem 2.

Next, we present the inversion formula for the octonion quadratic-phase Fourier transform (25).

Theorem 4.If Qgp!)z.!)z [f] is the OQPFT of an octonion-valued function f € L*>(R?,Q). Then, f can be recontructed
via: o

1 e, e e
f(t) = BiBaBy| Je 0@8,,92@3 [F1(W) A g (63, 03) 5 (12, @0) K (11, 01) dW. (30)

ProofInvoking the definitions of the QQPFT, the 1-D OQPFT, and the 3-D OQPFT, we have

le-ﬂz,ﬂs [f] (w) = /Rgg] o)) [f] (o1, @)%764 (t3,03)dt3
- 9993 [le £ [f” (W)

Using the fact that f € L?>(R?,Q), we have le o, [f] € L>(R3,0) and

028, 0,11 W55 13,00) 52 (2, 2) 55 11 00w

-/, 22, [Qg] al f]] (W) A (13, @3) G (12, @) G (11, 01 ) dan d .

By virtue of (21) and the inversion of QQPFT, we have

1 e. e e
BiBaBy| Jee o@g,’gz,% [f1(W) A s (3, 003) 52 (12, 00) K (11, 1) dw

= /Rz 2P, {le,gz [f]} (W) A s (13, @3) A2 (12, a0) K G! (11, 01) doyd e
= f(t)

This concludes the proof.

We denote the even and odd parts of a function f(¢1,%2,13) by f.(t1,%2,3) and f,(t1,12,13), respectively. Here, f,(t1,52,13) =
[f(tl 1, t3) +f(t1 1, —t3)]/2, which is only even in the variable ¢3 and fo(tl 1, t3) = [f(t17t27t3) — f(tl,tz, —t3)]/2, which
is only odd in the variable 3.

The following lemma shows that the norm of OQPFT splits into four norms of the quaternion functions.
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Lemma 3.Let f = g+ hey be any octonion valued function. Then, we have

28,0001, = 55 (125, +H 5ol
+]| 28 oy lnel [ + | 25 0 le0] EH) . (31)
Proof.Since, the octonion valued function f can be represented in the quaternion form as:
f=g+hes gheH. (32)

Consequently, the OQPFT of f can be represented by

95 000 110 = [ 0057 (1,00 5, 0, 00) 75, (13,03) e

+ s h(t)%Q:el (t1, 0 )%_262 (fa, 0)2)6’4%9_364 (t3, @3) dt.

By virtue of the even and odd parts of a function, we have
Qghgz,gg [F( / ge(t1,12,13) 7 (ll , O )Jﬂf/g;ez (12, ;) cos(g3t3)dt
v / ho(t) A, (1, 01) A g (12, 62) sin(gst3)dt
(m / he(t) A, (1, 1) A g (12, 1) cos(q3t3)dt

—ep .
\/ﬁ R3g0 (tlawl)%z (tz,(l)z)Sll‘l(g3t3)dt) e4. (33)

From (33), it is clear that the OQPFT can be divided into four QQPFTs. Therefore, the norm of OQPFT splits into four
norms of quaternion functions as:

2
|28, a0 A0,
1 —e —e e e . 2
- < () (11, 01) H " (12, 02) cos(qata)at + /R o) (1, 00) K (zz,ab)sm(%g)dtuzﬂ

2
H/ Ko (1, 01) A (12, ) cos(gats )dt — /R3 8o(t) g, (11, 01) 7, (tz,wz)Sin(613t3)dtH27H)-

Since f,(t) and f,(t) are orthogonal under the L?—inner product, it follows that

2

HgghQLQS [f] (W)HZ,@ - ﬁ (Hggl,ﬂz [ge] zH

28, el 25, [+ 250l

2
’2,H '

This completes the proof of Lemma 3.

Theorem 5.Let Qg] 0,.05 [ f} (W) be the OQPFT of an octonion-valued function f € L>(R3,0). Then, we have

O 2 ?
HQQMQZaQ:; [f] Hz@ - ZTEHfHZ(OJ
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Proof. Employing Plancherel’s theorem for the QQPFT [35], we have

2
8075 (00 g2 (o) cos@sn)dt| e
2
[ o045 (11,0 5 1 @2)sin(gars) =lolis
. (34)
. he(t) 2! (11, 01) A (2, an) cos(gats) dt|| = ||h@H§,H
2
580080, (0,00 H0 (i, ) sin(gat)dt)| = Jgolly
Invoking (32), the norm of any octonion-valued function f can be written as:
17130 = lls +hesll5
2 2
= [l e+ I e
2 2 2 2
= ngHz,HJr Hhon,HJr HheHz,HJr Hg"Hz,H' (35
By combining (31), (34) and (35), we have
o 2 2
|26 201 =27 7] 36

This concludes the proof of Theorem 5.

4 Uncertainty Principles Associated with Octonion Quadratic-phase Fourier Transform

The uncertainty principle is a fundamental concept in both harmonic analysis and signal processing [36]. Originally
derived from quantum mechanics, this principle asserts that the position and momentum of a particle cannot both be
precisely determined. Instead, they can only be described probabilistically, with a certain degree of uncertainty. In essence,
greater precision in determining a particle’s position leads to increased uncertainty in its momentum, and vice versa. In
harmonic analysis, uncertainty principles are interpreted as follows: a nontrivial function cannot be simultaneously well-
localized in both the time and frequency domains [37,38]. Given that the proposed transform represents a parameterized
continuum of transforms encompassing several widely used types, our objective is to derive a Heisenberg’s and logarithmic
uncertainty inequalities for the proposed OQPFT (25).

Theorem 6.Let ,@gl .05 [ﬂ be the OQPFT of any octonion-valued signal f € L* (R3,(O)), then the following inequality
holds:

. , 1/2
2| 40 2 2| 2 |B3| 2
/R3\w\ 20,000,111 dw/R}|t| FOF dt= g /R} FOfat) . (37)
Proof By virtue of (31), we have

2 2 |Bs| [ 2
[ 072, a1 = 52 ([ o7 25, 0]

' 2
+ [ w28, o, ]

2 SN 2
dw+/R3\w\ |28, q, o] | aw

2 - 2w 2
dw+/R3\w| |28, 0. [20] dw). (38)
Invoking (34) yields
2
RIRICIRT
R3

= [ Pleewaer [P aer [P e [0t (39)
R3 R3 R3 R3

©2025 YU
Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



608 Ravikumar : An interplay between ...

The Heisenberg’s uncertainty principle for the QQPFT is given by [35]
[Pt at [ w25, g e aw > [ JeoPar)
R? 8e R3 Q1,2 8e fetl 4|BIBZ|2 R3 8e
2 2 2 2
L P oot [ w25, g, [ho]|"adw
2 2 2 2
L e Pat [ w28, g, nd] v > 5o

2 2 2 2 > \'?
[l leotoae [ w25, o) aw> s ([l at)

Summarizing (38), (39) and (40), we obtain

2 |Bs|
[ 28,0, 11w [P ir0P ez g P (] o)

This completes the proof of Theorem 6.

(40)
dw

> 4|BIB2|2 (/. \mm\zdt)m
(L

/2

In continuation, we shall derive the logarithmic uncertainty inequality for the octonion quadratic-phase Fourier transform
(25). Prior to that, we have the following definition.

Definition 3.For any two indices (o, 00,03), (B1, B2, B3) € Z*\ {0}, the Schwartz space in L*(R?, Q) is defined by

Y(R3,@):{f€C"°(R3,@): sup

(t1,12.13)ER3

1912215 P oP2obs (1, ;t27t3)‘ < °°}

where C™ (R3, @) is the class of octonion-valued smooth functions and d denoted the differential operator in the octonion
domain.

Theorem 7.Let lelgz o [ f} be the OQPFT of any octonion-valued function f € L*(R3,Q0). Then, the following
logarithmic inequality holds:

21T 2
/ |t [£(0) dt+|B s Infw||20 6,0, 11| dw:4(N—ln|Ble|)/R3 )], 41)
where N = 1 (F,((;//j))) and B1,B,,B3 # 0.

Proof.For any f € ./ (R ,0) C L*(R), the logarithmic uncertainty principle for the quaternion QPFT reads [35]:

2
/R31n|t|\f(t)|2dt+/ﬂ§31n|w|‘g@gl’9m} GIREE (N—1n|Ble|)/IR3 70 at. 42)

Moreover, relation (31) yields

21

2
T Jor V[ 25, 0,0, 1]

H 2 H
= [ n|wl[ 28 alel]| aw+ [ ||| 25, o, [n]

+/R3ln‘w| ‘Qghgz [he]

2
dw

2 H 2
dw+/R3 In|w| |25, o, [g0]| aw. (43)

By employing (34), we have

/1n\t||f(t)|2dt=/ 1n|t\|ge(t)\2dt+/ 1n\t||h0(t)|2dt+/ In €] |7 (t) "t
R3 R3 R3 R3

+ [ nft]|e (o) at. (44)
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By virtue of (42), we have

i |
[ nltlsc®dt+ [ nfwl[ 25 o, 0 [ec]| dw> (V-mniBiBa]) [ Jec(t)
Lol Pat+ [ infw]| 23 o, 0 h]
[ nltneFde+ [ 1njw][25, o, 0, ]

L mlle.oat+ [ 0w 23 o, 0, e

Summarizing (45), (43) and (44), we obtain

3

2 2
dw > (Nfln|B|Bg|)/ |ho(t)|dt
N (45)

2
dw> (N—1In |B|Bz|)/ | (t) |t
R

3

2 g
dw > (N—In|BB,|) /Rg |g.(t)] dt

2n

2 2
B R»@ln\w”o@g]ﬁzﬁ} Kl dw24(Nfln|B|Bg|)/R3 |£(8)[at.

/ In[t] [£(t) 2dt+
R3

This completes the proof of Theorem 7.

5 Conclusion

In this article, we introduced a novel integral transform within the framework of octonions. We analyzed its fundamental
mathematical properties and investigated the effects of translation on the transform. Additionally, we derived uncertainty
principles specific to the OQPFT. These results provide valuable insights for the mathematical and signal processing
communities, offering both practical and theoretical contributions.
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