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Abstract: In this work, we introduce the Kumaraswamy Sine Inverted Rayleigh (KWSIR) distribution as an extension of the classical
Inverse Rayleigh distribution, offering greater flexibility in modeling real-world data. The KWSIR distribution combines the
Kumaraswamy and Sine Inverted Rayleigh distributions, resulting in a unimodal, right-skewed probability density function and an
increasing or J-shaped hazard rate function. We explore key statistical properties, including the probability density function,
cumulative distribution function, quantile function, moments, incomplete moments, entropy measures, and order statistics. Parameter
estimation is conducted using the maximum likelihood method. To illustrate its applicability, we analyze a real-world dataset on
bladder cancer, demonstrating the superior fitting performance of the KWSIR distribution.
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1 Introduction

Traditional probability distributions often fail to accurately capture the full range of variability observed in hazard rates
and survival functions across various domains, including reliability engineering, survival analysis, and lifetime data
modeling [4]. This limitation has led to a growing interest in developing more flexible and generalized distributions that
can better accommodate diverse data structures. One of the most effective approaches involves introducing additional
shape parameters into baseline models, allowing for greater adaptability in fitting complex datasets. Several generalized
families of probability distributions have been proposed in the literature to address these challenges. For example, the
exponentiated-G family gained popularity after [10] extended the exponentiated exponential distribution. The beta-G
family was introduced by [8], while the gamma-G family was developed by [16]. Additionally, the Marshall-Olkin-G
family, proposed by [11] and Kumaraswamy G family by [7], have been widely applied in various statistical analyses.

Despite the advancements in generalized probability distributions, there is still a need for flexible models that can
accurately describe real-world data, particularly in cases where traditional distributions fall short. The incorporation of
trigonometric functions into probability distributions has emerged as an effective strategy for enhancing their flexibility.
The recently introduced G-class of trigonometric distributions has demonstrated significant potential in improving data
modeling by integrating sine and cosine transformations with existing generators [4]. Several researchers have explored the
application of trigonometric-based generalizations in statistical modeling. For instance, [9] introduced the sine extended
odd Fréchet-G family, which showed promise in handling complete and censored data. Similarly, [6] developed the sine
Kumaraswamy-G family, while [1] investigated the sine Topp-Leone-G family. The alpha-sine-G family, proposed by
[4], extended the sine transformation by adding an extra parameter, further enhancing its adaptability. Other notable
contributions include the Sin-G class of distributions explored by [15], the weighted cosine-G family introduced by [14],
the cosine-sine transformation-based distributions developed by [5] and Transmuted Cosine Topp-Leone G-Family by
[13].
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Building upon these advancements, this study aims to introduce a novel extension of the Inverted Rayleigh distribution
by incorporating the sine-G and Kumaraswamy-G families. Specifically, we propose the Kumaraswamy Sine Inverted
Rayleigh (KWSIR) distribution, which is expected to provide improved flexibility and modeling capability, particularly
for lifetime data analysis. This research will investigate the fundamental statistical properties of the KWSIR distribution,
including its moments, entropy, hazard function, and survival function. Additionally, we will evaluate its performance
using real-world data to demonstrate its practical applicability and superiority over existing models.

1.1 Kumaraswamy-G Family, Sine-G Family and inverted Rayleigh distribution

The CDF of Kumaraswamy-G is given as;

F(x)=1-{1-G(x)*}*; xeR. (1)

The CDF of Sine-G family of Distribution is given as;
(T
F(x) :Sm{—G(x)} xeR. )

2

And the CDF of Inverted Rayleigh is given by;

F(x)=e x>0. (3)

2 Kumaraswamy Sine Inverted Rayleigh (KWSIR) distribution

The cumulative distribution function and Probability density function fo Kumaraswamy Sine Inverted Rayleigh (KWSIR)
distribution can be obtained by combining Eq.(1), Eq.(2) and Eq.(3) which gives,

aN 0
F(x) = {I{Singeﬂl} } . xeR. )

The corresponding PDF of Kumaraswamy Sine Inverted Rayliegh distribution is

2 2 ) %! 29 8!
Ffx) = ToAOx e {Cosgex_z} {Singex_z} {1 — {Singex_z} } ;. x€eR. 5)
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Fig. 1: The PDF plot of KWSIR
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Fig. 2: The CDF plot of KWSIR

3 Statistical Properties of KWSIR

This section examines and identifies the fundamental properties of the Kumaraswamy Sine Inverted Rayleigh (KWSIR)
distribution, which play a crucial role in understanding its behavior and applicability in real-world scenarios. By analyzing
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these properties, we gain deeper insights into the distribution’s flexibility, suitability for various datasets, and potential for
modeling diverse real-life phenomena. The key properties explored in this section include:

3.1 Survival function and hazard rate function of KWSIR

In this part, we derive the survival function and hazard rate function of KWSIR distribution.

H(x) =

~1
A A )¢
Tal0x e {Cos%e)c2 }{Sin%w2 }

{-fmse} )

0=052=10,8=16
a=185, 1=1.1,08=2"1_

a=4/5,.=1.0,68=56 °
a=3.5,1=4.0,6=16

0.2 0.4 0.6 0.8 1.0

Fig. 3: The hazard function plot for KWSIR

(6)
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Fig. 4: The Survival function plot for KWSIR

Fig.1, Fig.2, Fig.3 and Fig.4 show plots of the PDF, CDF, hazard rate and survival functions for the KWSIR
distribution. Fig.1 displays unimodal curves that are right-skewed. Therefore, the hazard rate shape of the KWSIR
distribution could be increasing and reversed bathtub, depending on the parameter values, as illustrated in Fig.3.

3.2 Quantile function of KWSIR

Random samples from the KWSIR distribution can be generated using the quantile function (QF), which is the inverse of
the cumulative distribution function (CDF). Mathematically, the quantile function is expressed as

Q(u) = F ' (u). ()
Thus, the QF of the KWSIR distribution can be derived as follows:

D=

-2
Qu= : ©))

T
log{%Arcsine (1 —(1- u)é) a}

However, other important properties of the KWSIR distribution include entropy, moments, moment generating
function, and order statistics, which are derived below.

3.3 Moments and Moment Generating Function of KWSIR

This section presents the moments and the Moment Generating Function (MGF) of the KWSIR distribution. Moments are
essential for understanding the key characteristics of a distribution, such as central tendency, dispersion, skewness, and
kurtosis.

Let X be a random variable with probability density function (PDF) f(x). The rth moment of X is given by:

= E(X") = / o;xrf(x)dx. (10)
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Substituting the PDF of the KWSIR distribution into the above equation, we obtain:

-2 2\ ¢! 2\ %) 8!
ur—nale/ 3¢ {cos (gexz)}{sin (geﬂ)} {1 — (singexz) } dx.

Expanding using a power series representation:

14 . et L\ @y 01
lJer/ M ’_S_Zi{cos (gex21>}{sin <gex%)} {1 (smg 21> } dx.

Since:

it follows that:

i=0
where:
A a a—1 N\ 0-1
y—/ r=3 2’{005(—ex )}{sin(feﬂ)} {1—(sm ex ) } dx,
0 2
and
~ moA'tie(—1)!

i!
Moment Generating Function of KWSIR
The moment generating function (MGF) of the KWSIR distribution is given by:

Myx(t) = E(e™) = /_.Zetx (x)dx.

Substituting the PDF of KWSIR, we obtain:

0o _a _a o—1 a0\ @y -1
Mx(t):/ TaAOx™ 3etxe)c {cos <Eex_2)}{sin (Eex_z)} {1 <smE _2> } dx.
0 2 2 2

Using power series expansions:

=X @ (—1)iA
tX
= — ext = —.
t;) i ’ j;() _x2JJ'
Thus,
g DA
etexr = —_—
P S 1V

Substituting equation (18) into (20), we obtain:

_1 Jq Al i—2j=3 2 2 a—1 2 oy 6—1
ZZ/ 76/ i rx {cos (zexz)}{sin (Eexz)} {1—(smz 2) } dx.
20720 Jilj! 2 2 2

Thus, we can express the MGF as:

ﬂ:iiw-

i=0j=0

(1)

12)

13)

(14)

5)

(16)

A7)

(18)

19)

(20)

1)

(22)
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where:
o - 2 a-1 ) @y 01
V= / xim23 {cos (gexz> } {sin (gexz> } {1 - (singexz) } dx. (23)
0
and
)ity
_mO(—1)JA (24)

x2Ji !

3.4 Renyi’s Entropy of KWSIR

Entropy is a fundamental concept in statistical analysis that enables the calculation of uncertainty associated with different
outcomes. It has numerous applications in mathematical analysis. In this study, we focus on Renyi entropy as our chosen

entropy metric.

Let X be a random variable with a probability density function (PDF) f(x). The Renyi entropy is given by:

1 o
RE =1Ix = 15 log/ f(x)%dx.
Substituting the PDF of the KWSIR distribution:
RE = —1 / " (ab)®d
=——lo .
508 A a X
Expanding,

1 00
RE=—— 510ga+log/ bPdx| .
1-6 0

where:

a=mOla,

01
_A T _A T _A T _A
b=x3e 2 cos (Ee xz)sin"‘l (Ee xz) (l—sin“ (Ee xz)) )

3.5 Order Statistics of KWSIR

Consider a random sample x;,x»,...,x, from the KWSIR distribution, with order statistics x1., < x2., < - -+

probability density function (PDF) of the ith order statistic is given by:

L FWIF ) - F@

f(i,n) (X) = m

Using the power series expansion:

i) = =i & ()OI

~

Rewriting:

= (n_ i) nkaaAf(—1)/
(

j ) i—Dn—i—j)

(25)

(26)

27)

< Xy:n. The

(28)

(29)

(30)

€19
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where:

A T _A T _A  _a\\?! 7 _2a\\? il
K=x e ¥ cos (Ee_?) sin®~! (Ee_?) (1 — sin® (Ee_?)> [1 - (1 — sin® (Ee_?)> ]
4 Maximum Likelihood Estimation
In this section, we consider the maximum likelihood estimators (MLE) for the KWSIR distribution. Let x,x5,...,x, be

a random sample from the KWSIR family of distributions with the probability density function (PDF) given in equation
(5), where the parameter vector is defined as:

n=(aA,0)".

The log-likelihood function for the KWSIR distribution, based on a sample of size n, is given by:

i=1 i=1

n n iy
I(n) =nlogm+nlogo +nlogh +n10g9+2xi_3 +) <_2)
i

+iilog{cos (geﬁ>}
+(91)ilog{l<sin< exél)) } (32)
i=1

The first-order derivatives (score functions) for the MLEs are:
Derivative with respect to o

ﬂ—ﬁ—f—nlo sin e;'/1
da o = g

ToAe ™ cos <§e % )
n
+(0O-1))

STE
=

Ee)(?“))al
2
. (33)

Derivative with respect to 0

o
i n e
@5+;10g{1<sm<5e,>> } (34)

Derivative with respect to A
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a—1 2
T,
- . (35)

The MLE:s for o, A, and 6 are obtained by solving these nonlinear equations iteratively. Common methods to solve
such equations include: The Newton-Raphson method, which iteratively updates parameter estimates using:

=0 —[Hm")| sm®),

where S(1) is the score function (vector of first derivatives) and H(n) is the Hessian matrix (matrix of second
derivatives).

5 Simulation Study

In this section, we conduct a simulation study to evaluate the performance of the maximum likelihood estimation (MLE)
method for the KWSIR distribution. We consider three key performance metrics: the mean of the estimates, bias, and
Mean Squared Error (MSE). These metrics provide insights into the accuracy and consistency of the MLE under different
parameter settings.

Mean of the Estimates

The mean of the estimated parameters over S replications is calculated as follows:

S -

Ya, 6=
j=1

—_ S A
2= 6. (36)
=1

“l—
“l—

S ~
)Lj, o=
=1

| —

J

J

Bias
The bias measures the deviation of the average estimated parameter from its true value:

Bias(A) =1 — A, Bias(@)=a&—a, Bias(6)=6-86. (37)

Mean Squared Error (MSE)
The MSE quantifies the accuracy of the estimates by computing the average squared differences between the estimated
and true values:

_ 138, /4 2
MSE(A) = — Ai—A), (38)
43 ()
_ 1S, 2
MSE(a) = < ). (6 - 0)°, (39)
j=1
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MSE(8)

134 2
s (0,-0)"
j=

We evaluate the MLE performance under two different parameter settings:

—Firsttrial: A =18, 0 =1.5,0 =1.2.
—Second trial: A =14, =2.0,0 =2.7.

(40)

Random samples were generated using the quantile function of the KWSIR distribution. For each trial, we generated
samples of size n = 20,50,100,250,500, 1000, with 1000 replications. The means, biases, and mean squared errors

(MSE?5) of the estimates were computed. The results are summarized in Table 1.

Based on the Monte Carlo simulation results, we conclude that our model consistently produces accurate parameter
estimates, as the bias and RMSE values decrease with increasing sample size.

Table 1: Simulation results for different parameter values

Trial 1A =1.8,a=15,0=12

Trial 2: A = 1.4, =2.0,6 = 2.7

Sample Size | Metric A o 0 A o 0

Mean 1.7878 1.6938 1.5358 1.9591  2.5305 3.4886

n=20 Bias -0.0122  0.1938 0.3358 0.5591  0.5305 0.7886
MSE 0.7450 0.8828 0.7988 0.8733  1.1335 2.1961

Mean 1.6821 1.5868 1.3316 1.8805  2.3835 2.8984

n=>50 Bias -0.1179  0.0868 0.1316 0.4805 0.3835 0.1984
MSE 0.6092  0.6534 0.3661 0.6637  0.7952 0.8848

Mean 1.6030 1.5799 1.2699 1.8340  2.3338 2.7442

n =100 Bias -0.1970  0.0799 0.0629 0.4534 0.3338 0.0442
MSE 0.5294 0.5363 0.3661 0.5832  0.6345 0.5543

Mean 1.5938 1.5116 1.2311 1.8841  2.2288 2.6793

n =250 Bias -0.2062  0.0116 0.0311 0.4841 0.2288 -0.0207
MSE 0.4348  0.4099 0.1494 0.5719  0.4693 0.3556

Mean 1.5769 1.4860 1.2206 1.8717  2.2090 2.6448

n =500 Bias -0.2231  -0.0140 0.0206 0.4717  0.2090 -0.0552
MSE 0.3799 0.3237 0.1056 0.5293  0.3856 0.2522

Mean 1.5890 1.4509 1.2221 1.8477 2.1572 2.6518

n = 1000 Bias -0.2110  -0.0491 0.0221 0.4477  0.1572 -0.0482
MSE 0.3411 0.2649 0.0844 0.5194  0.3080 0.1929

6 Application to Bladder Cancer Data

In this study, we analyze real-world data on the remission times (in months) of a randomly selected sample of 128 bladder
cancer patients. The dataset, extracted from [2], is given as follows:

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06,
7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76,
26.31,0.81,2.62,3.82,5.32,7.32,10.06, 14.77,32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18,
5.34,7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23,5.41,7.62, 10.75, 16.62, 43.01, 1.19, 2.75,4.26,5.41,7.63, 17.12,
46.12,1.26, 2.83, 4.33,5.49,7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71,
7.93,1.46,18.10, 11.79, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 13.31, 4.51, 6.54,

8.53,12.03, 20.28, 2.02, 3.36, 12.07, 6.76, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.
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To evaluate the fit of different statistical models to the bladder cancer dataset, we employed several goodness-of-fit
measures and information criteria. These included:

- The log-likelihood function evaluated at the Maximum Likelihood Estimates (MLEs) - Akaike Information Criterion
(AIC) - Bayesian Information Criterion (BIC) - Corrected Akaike Information Criterion (CAIC) - Anderson-Darling
statistic (A*) - Cramer-von Mises statistic (W*) - Kolmogorov-Smirnov (K-S) statistic

Generally, lower values of these criteria indicate a better model fit.

AIC = —2L+2k 41)
BIC = —2L+klog(n) (42)
2k
CAIC = 2L+ —=" (43)
n—k—1

Where L is log-likelihood, k is the number of parameters and r is the sample size.

Table 2: Information Criteria Measures for the Fitted Models

Distribution & A 0 9 LL AIC CAIC BIC
KWSIR  0.0191 0.1219 4.6339 - -476.254  960.508  960.833  971.916
SIR 1.000 1000 1172 - -1151.11  2303.3  2308.49  2316.865

KWIR 0.3493  0.1762  0.3496 -506.997 1017.993  1018.08  1024.697
MOTLW 0.4961 0.1762 0.4961 0.4961 -506.997 1021.993 1022.319 1033.402

Table 3: Goodness-of-Fit Measures for the Fitted Models

Distribution K-S A* w* P-value
KWSIR 0.2974 6.3912 1.0511 0.6517
SIR 0.8147 12.2999 2.2057 0.1276

KWIR 0.3532  11.9929 2.1269  0.4508
MOTLW 0.3532 119933 2.1270  0.5576

This section presents a numerical evaluation of the performance of the Kumaraswamy-Sine Inverse Rayleigh (KWSIR)
distribution alongside other competing models: the Sine Inverse Rayleigh (SIR), the Kumaraswamy Inverse Rayleigh
(KWIR), and the Marshall-Olkin Topp-Leone Weibull (MOTLW) distributions.

Table 2 summarizes the MLEs of the model parameters, log-likelihood (LL), AIC, CAIC, and BIC values. Table
3 presents the goodness-of-fit statistics, including the Anderson-Darling, Cramer-von Mises, and Kolmogorov-Smirnov
tests along with their respective p-values.

The results indicate that the KWSIR model outperforms the other distributions based on information criteria and
the Kolmogorov-Smirnov (K-S) statistic. Furthermore, the KWSIR model exhibits the highest p-value for the K-S test,
suggesting that it provides the best overall fit for the bladder cancer dataset. Fig. 5 visually illustrates the predicted PDF
for the fitted models, further emphasizing the superior performance of the KWSIR model over alternative distributions.
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Fig. 5: Fitted Pdf

Conclusion

In this paper, we introduced the Kumaraswamy Inverted Rayleigh (KWSIR) distribution and conducted a comprehensive
study of its statistical properties. Specifically, we derived its quantile function, entropy, hazard rate function, survival
function, moments, moment-generating function, and order statistics, demonstrating its flexibility and applicability in
modeling real-world data. To estimate the parameters of the KWSIR distribution, we employed the maximum likelihood
estimation (MLE) method, ensuring robust and efficient parameter estimation. To assess the effectiveness of the
proposed distribution, we conducted extensive numerical experiments, including both theoretical analysis and simulation
studies. The performance of the KWSIR distribution was compared against other well-established competing models,
using goodness-of-fit measures and various information criteria such as the Akaike Information Criterion (AIC), the
Corrected Akaike Information Criterion (CAIC), and the Bayesian Information Criterion (BIC). The results of these
comparisons consistently indicated that the KWSIR distribution provided a significantly better fit to the bladder cancer
remission dataset than the alternative models. Overall, the findings of this study highlight the KWSIR distribution as a
promising and effective tool for modeling lifetime and reliability data. Its strong theoretical foundation, combined with
its superior empirical performance, suggests its potential applicability in the field of medical research.
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