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1 Introduction

We consider the following coupled system of nonlinear multi-term fractional differential equations:







ρD
α1

0+
ϕ (t) = f1

(

t,ϕ (t) ,ψ (t) , ρD
β11

0+
ϕ (t) , ρD

β12

0+
ψ (t)

)

,

ρD
α2

0+
ψ (t) = f2

(

t,ϕ (t) ,ψ (t) , ρD
β21

0+
ϕ (t) , ρD

β22

0+
ψ (t)

)

,
t ∈ [0, ℓ] , (1)

with the integral conditions
(

ρ
I

1−α1

0+
ϕ
)

(

0+
)

=
(

ρ
I

1−α2

0+
ψ
)

(

0+
)

= 0, (2)

where ρ , ℓ > 0, 0 < βi j < αi < 1 and fi : [0, ℓ]×R
4 → R are continuous functions for every i, j ∈ {1,2}. The operator

ρDα
0+

and ρI
1−α

0+
represents the Katugampola fractional derivative and integral of order α > 0, respectively.

The initial value problems are a vast and significant area of research, as these problems have applications in various
scientific fields. Recently, so-called fractional initial value problems have appeared and become widespread, allowing the
modeling of many real-world phenomena, as well as giving an understanding of some mathematical problems such as the
Abel equation [22],

∫ t

a
y(s) (t − s)α−1

ds = f (t) , 0 < α < 1.

Recently, the resolvability of fractional differential equations with different kinds of initial or boundary conditions has
witnessed a remarkable trend, which has led to the publication of many works in this regard, for example, but not limited
to, see [2,4,5,6,7,8,9,10,11,12,13,14,16,21,23] and references cited therein.

The existence and uniqueness result of the coupled system of fractional differential equations (1) with integral
boundary condition has been investigated in [3], but the functions f1 dependent on time t, unknown functions ϕ and
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D
β12

0+
ψ while f2 dependent on time t, unknown functions ψ and D

β21

0+
ϕ . The authors in [20], studied the existence and

uniqueness of the solution for system (1) with integral conditions where the functions f1 and f2 dependent only on time t

and unknown functions ϕ and ψ . A similar result was found in [23], where the function f1 dependent only on time t and
unknown function ϕ and f2 dependent only on time t and unknown function ψ .

The main contribution of this paper can be summarized in obtaining the existence and uniqueness result of a coupled
system, with some conditions on the functions of second member f1 and f2.

The organization of this paper is as follows: In Section 2, we describe some preliminary concepts related to the
proposed study; in Section 3, we give some existence and uniqueness results for the problem (1)–(2). The results are
based on Schauder’s and contraction mapping principle fixed point theorems in a special Banach space. In Section 4, two
examples are presented to explain the application of our main results. Finally, we present some conclusions in Section 5.

2 Preliminaries

Here, as in [19], we will look at the Katugampola’s fractional integral, derivative and some of their properties. Let
r ∈R, p ∈ [1,∞] and

X p
r ([0, ℓ] ,R) =

{

ϕ : [0, ℓ]−→R Lebesgue measurable and ‖ϕ‖X
p
r
< ∞

}

,

with the norm

‖ϕ‖X
p
r
=











(

∫ ℓ
0

|trϕ(t)|p
t

dt
)1/p

, for 1 ≤ p < ∞,

ess sup
0≤t≤ℓ

{tr |ϕ (t)|} , for p = ∞.

Let C ([0, ℓ] ,R) be the collection of continuous functions from [0, ℓ] into R with the norm

‖ϕ‖∞ = sup
0≤t≤ℓ

|ϕ (t)| .

Then C ([0, ℓ] ,R) is Banach space.

Definition 1([17]). The Katugampola’s fractional integral of order α ∈R+ of a function g ∈ X
p
r ([0, ℓ] ,R) is defined as

ρ
I

α
0+g(t) =

ρ1−α

Γ (α)

∫ t

0
sρ−1 (tρ − sρ)α−1

g(s)ds, t ∈ [0, ℓ] , (3)

for ρ > 0. This is a left-sided integral.

Similarly, for the right-sided integrals definition. From Definition 1 we can infer

(

t1−ρ d

dt

)

ρ
I

α+1
0+

g(t) = ρ
I

α
0+g(t) . (4)

Definition 2([18]). The generalized fractional derivative of order α ∈R+, corresponding to the Katugampola’s fractional

integral (3) is defined for any t ∈ [0, ℓ] as

ρ
D

α
0+g(t) =

(

t1−ρ d

dt

)n
(

ρ
I

n−α
0+

g
)

(t)

ρα−n+1

Γ (n−α)

(

t1−ρ d

dt

)n ∫ t

0
sρ−1 (tρ − sρ)n−α−1

g(s)ds, (5)

if the integral exists. Here ρ > 0 and n = [α]+ 1, with [·] denotes the integer part.

Lemma 1([7]). Let α,ρ > 0 and g ∈C ([0, ℓ] ,R) . Then:

1. The equation ρDα
0+

g(t) = 0 has a unique solution

g(t) =
n

∑
i=1

cit
ρ(α−n), n = [α]+ 1, ci ∈ R+.
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2. If ρDα
0+

g(t) ∈C ([0, ℓ] ,R) and 0 < α ≤ 1, then

ρ
I

α
0+

ρ
D

α
0+g(t) = g(t)+ ctρ(α−1), (6)

for some constant c ∈ R+.
3. Let 0 < β < α ≤ 1 be such that ρDα

0+
g(t) ∈C ([0, ℓ] ,R) then

ρ
I

α−β
0+

ρ
D

α
0+g(t) = ρ

D
β
0+

g(t) −
ρ1−α+β

(

ρI
1−α

0+
g
)

(0+)

Γ (α −β )
tρ(α−β−1). (7)

Moreover, if
(

ρI
1−α

0+
g
)

(0+) = 0, we have

∣

∣

∣

ρ
D

β
0+

g(t)
∣

∣

∣
≤ λ

ρ
α−β

∥

∥

ρ
D

α
0+g(t)

∥

∥

∞
, (8)

where λ
ρ
α−β

= ℓρ(α−β)

ρα−β Γ (1+α−β )
.

3 Main results

Below, we prepare some important lemmas to illustrate our main results.

Lemma 2. Let (ϕ ,ψ) ,
(

ρD
α1

0+
ϕ , ρD

α2

0+
ψ
)

∈ C ([0, ℓ] ,R)×C ([0, ℓ] ,R) . Then the problem (1)–(2) is equivalent to the

fractional integral equations:







ϕ (t) =
∫ t

0 Gα1
(t,s) f1

(

s,ϕ (s) ,ψ (s) , ρD
β11

0+
ϕ (s) , ρD

β12

0+
ψ (s)

)

ds,

ψ (t) =
∫ t

0 Gα2
(t,s) f2

(

s,ϕ (s) ,ψ (s) , ρD
β21

0+
ϕ (s) , ρD

β22

0+
ψ (s)

)

ds,
(9)

where Gαi
(t,s) = ρ1−αi sρ−1

Γ (αi)
(tρ − sρ)αi−1 .

Proof. Applying ρI
α1

0+
and ρI

α2

0+
to the first and second equations in (1), respectively, we get







ρI
α1

0+
ρD

α1

0+
ϕ (t) = ρI

α1

0+
f1

(

t,ϕ (t) ,ψ (t) , ρD
β11

0+
ϕ (t) , ρD

β12

0+
ψ (t)

)

,

ρI
α2

0+
ρD

α2

0+
ψ (t) = ρI

α2

0+
f2

(

t,ϕ (t) ,ψ (t) , ρD
β21

0+
ϕ (t) , ρD

β22

0+
ψ (t)

)

.
(10)

By using the relation (6), we obtain







ϕ (t) = ρI
α1

0+
f1

(

t,ϕ (t) ,ψ (t) , ρD
β11

0+
ϕ (t) , ρD

β12

0+
ψ (t)

)

− c1tρ(α1−1),

ψ (t) = ρI
α2

0+
f2

(

t,ϕ (t) ,ψ (t) , ρD
β21

0+
ϕ (t) , ρD

β22

0+
ψ (t)

)

− c2tρ(α2−1),
(11)

for some c1,c2 ∈R. Taking into account the condition (2) and the fact that

ρ
I

α
0+tρ(α−1) = ρα−1Γ (α) ,

we find

0 =
(

ρ
I

1−α1

0+
ϕ
)

(

0+
)

=−c1ρα1−1Γ (α1) =⇒ c1 = 0 (12)

and

0 =
(

ρ
I

1−α2

0+
ψ
)

(

0+
)

=−c2ρα2−1Γ (α2) =⇒ c2 = 0. (13)

Combining the results (11), (12) and (13), we obtain (9).
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Let us define the following Banach spaces [7],

E =
{

ϕ ∈C ([0, ℓ] ,R)/
(

ρ
I

1−α1

0+
ϕ
)

(

0+
)

= 0
}

,

with the norm
‖ϕ‖E = sup

0≤t≤ℓ
|ϕ (t)|

and

F =
{

ψ ∈C ([0, ℓ] ,R)/
(

ρ
I

1−α2

0+
ψ
)

(

0+
)

= 0
}

,

with the norm
‖ψ‖F = sup

0≤t≤ℓ
|ψ (t)| .

Again the product space (Ω ,‖·‖Ω ) is a Banach space with norm ‖(ϕ ,ψ)‖Ω = ‖ϕ‖E +‖ψ‖F for any (ϕ ,ψ) ∈ Ω = E ×F.
Now, we define an operator T : Ω →C ([0, ℓ] ,R)×C ([0, ℓ] ,R) by

T (ϕ ,ψ) (t) =
(

Tϕ (ϕ ,ψ) (t) ,Tψ (ϕ ,ψ)(t)
)

, (14)

where

Tϕ (ϕ ,ψ) (t) =

∫ t

0
Gα1

(t,s) f1

(

s,ϕ (s) ,ψ (s) , ρ
D

β11

0+
ϕ (s) , ρ

D
β12

0+
ψ (s)

)

ds,

Tψ (ϕ ,ψ) (t) =

∫ t

0
Gα2

(t,s) f2

(

s,ϕ (s) ,ψ (s) , ρ
D

β21

0+
ϕ (s) , ρ

D
β22

0+
ψ (s)

)

ds,

and Gαi
(t,s) = ρ1−αi sρ−1

Γ (αi)
(tρ − sρ)αi−1 .

Lemma 3. Let the integral operator T : Ω →C ([0, ℓ] ,R)×C ([0, ℓ] ,R) given in (14), equipped with the norm

‖T (ϕ ,ψ)‖∞ = sup
0≤t≤ℓ

∣

∣Tϕ (ϕ ,ψ)
∣

∣+ sup
0≤t≤ℓ

∣

∣Tψ (ϕ ,ψ)
∣

∣ .

Then T (Ω)⊂ Ω .

Proof. Let (ϕ ,ψ) ∈ Ω . From (14), we have

(

ρ
I

1−α1

0+
Tϕ (ϕ ,ψ)

)

(t) = ρ
I

1−α1

0+
ρ
I

α1

0+
f1

(

t,ϕ (t) ,ψ (t) , ρ
D

β11

0+
ϕ (t) , ρ

D
β12

0+
ψ (t)

)

= ρ
I

1
0+ f1

(

t,ϕ (t) ,ψ (t) , ρ
D

β11

0+
ϕ (t) , ρ

D
β12

0+
ψ (t)

)

and
(

ρ
I

1−α2

0+
Tψ (ϕ ,ψ)

)

(t) =ρ
I

1−α2

0+
ρ
I

α2

0+
f2

(

t,ϕ (t) ,ψ (t) , ρ
D

β21

0+
ϕ (t) , ρ

D
β22

0+
ψ (t)

)

=ρ
I

1
0+ f2

(

t,ϕ (t) ,ψ (t) , ρ
D

β21

0+
ϕ (t) , ρ

D
β22

0+
ψ (t)

)

.

Using Definition 2 and relation (4), we get

(

ρ
I

1−α1

0+
Tϕ (ϕ ,ψ)

)

(t) = ρ
I

1
0+

ρ
D

α1

0+
ϕ (t) = ρ

I
1

0+

(

t1−ρ d

dt

)

ρ
I

1−α1

0+
ϕ (t) = ρ

I
1−α1

0+
ϕ (t)

and
(

ρ
I

1−α2

0+
Tψ (ϕ ,ψ)

)

(t) = ρ
I

1
0+

ρ
D

α2

0+
ψ (t) = ρ

I
1

0+

(

t1−ρ d

dt

)

ρ
I

1−α2

0+
ψ (t) = ρ

I
1−α2

0+
ψ (t) .

Thus
(

ρ
I

1−α1

0+
Tϕ (ϕ ,ψ)

)

(

0+
)

=
(

ρ
I

1−α2

0+
Tψ (ϕ ,ψ)

)

(

0+
)

= 0.

As a result T (Ω)⊂ Ω .
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Getting ready to present our results, we propose the following hypotheses:

Hyp.1. Let f1, f2 : [0, ℓ]×R
4 → R are continuous functions and there are two strictly positive constants k1 and k2 such

that

| fi (t,ϕ1,ϕ2,ϕ3,ϕ4)− fi (t,ψ1,ψ2,ψ3,ψ4)| ≤ ki

4

∑
j=1

∣

∣ϕ j −ψ j

∣

∣ , i = 1,2,

for all t ∈ [0, ℓ] and ϕi,ψi ∈ R, i = 1,2,3,4.
Hyp.2. There exist a positive functions ai,bi ∈C ([0, ℓ] ,R) , i = 1,2, . . . ,5 such that

| f1 (t,ϕ1,ϕ2,ϕ3,ϕ4)| ≤ a1 (t)+
5

∑
i=2

ai (t) |ϕi|

and

| f2 (t,ϕ1,ϕ2,ϕ3,ϕ4)| ≤ b1 (t)+
5

∑
i=2

bi (t) |ϕi| ,

for any ϕi ∈ R, i = 1,2,3,4 and t ∈ [0, ℓ].

To simplify the computation, we adopt the notation:

λ
ρ
i j = λ

ρ
αi−β ji

=
ℓρ(αi−β ji)

ρα−β Γ (1+αi−β ji)
, i, j = 1,2,

āi = max
0≤t≤ℓ

|ai (t)| , b̄i = max
0≤t≤ℓ

|bi (t)| , i = 1,2, . . . ,5,

Ḡα =
ρ−αℓρα

Γ (α + 1)
, Ḡ = max

{

Ḡα1
, Ḡα2

}

,

d1 =
ā1 + b̄1

min
{

1− ā4λ
ρ
11 − b̄4λ

ρ
12,1− ā5λ

ρ
21 − b̄5λ

ρ
22

} ,

d2 =
max

{

ā2 + b̄2, ā3 + b̄3

}

min
{

1− ā4λ
ρ
11 − b̄4λ

ρ
12,1− ā5λ

ρ
21 − b̄5λ

ρ
22

} ,

with

max
i∈{1,2}

{

ā3+iλ
ρ
i1 + b̄3+iλ

ρ
i2,k1λ

ρ
i1 + k2λ

ρ
i2,

Ḡα1
k1λ

ρ
i1 + Ḡα2

k2λ
ρ
i2

Ḡαi

}

< 1. (15)

Now, we present the principal theorems

Theorem 1. Assume (Hyp.1) holds. If

kG =

(

k1Ḡα1
+ k2Ḡα2

)

Ḡ

min
i∈{1,2}

{

Ḡαi
−
(

k1Ḡα1
λ

ρ
i1 + k2Ḡα2

λ
ρ
i2

)} < 1, (16)

then the problem (1)–(2) has a unique solution on [0, ℓ] .

Proof. First, we define the fixed point problem, which is equivalent to the one problem (1)–(2) by

T (ϕ ,ψ) (t) = (ϕ ,ψ) (t) . (17)

Let (ϕ ,ψ) ,(ϕ̄ , ψ̄) ∈ Ω , then we have
∣

∣Tϕ (ϕ ,ψ)(t)−Tϕ (ϕ̄ , ψ̄) (t)
∣

∣

=

∣

∣

∣

∣

∫ t

0
Gα1

(t,s)
[

f1

(

s,ϕ (s) ,ψ (s) , ρ
D

β11

0+
ϕ (s) , ρ

D
β12

0+
ψ (s)

)

− f1

(

s, ϕ̄ (s) , ψ̄ (s) , ρ
D

β11

0+
ϕ̄ (s) , ρ

D
β12

0+
ψ̄ (s)

)]

ds

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0
Gα1

(t,s)
[

ρ
D

α1

0+
ϕ (s)− ρ

D
α1

0+
ϕ̄ (s)

]

ds

∣

∣

∣

∣

≤
∫ t

0
Gα1

(t,s)
∣

∣

ρ
D

α1

0+
ϕ (s)− ρ

D
α1

0+
ϕ̄ (s)

∣

∣ds
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Using Hölder inequality and the fact that

sup
0≤t≤ℓ

∫ t

0
Gα1

(t,s)ds =
ρ−α1ℓρα1

Γ (α1 + 1)
,

we get

∥

∥Tϕ (ϕ ,ψ)(t)−Tϕ (ϕ̄ , ψ̄)(t)
∥

∥

∞
≤
∫ t

0
Gα1

(t,s)ds
∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞

≤ ρ−α1ℓρα1

Γ (α1 + 1)

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
. (18)

And in the same way, we obtain

∥

∥Tψ (ϕ ,ψ)(t)−Tψ (ϕ̄ , ψ̄) (t)
∥

∥

∞
≤ ρ−α2ℓρα2

Γ (α2 + 1)

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞
. (19)

Also, we have

‖T (ϕ ,ψ)(t)−T (ϕ̄ , ψ̄)(t)‖∞ ≤ Ḡα1

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
+ Ḡα2

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞

≤ Ḡ
(

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
+
∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞

)

. (20)

By taking into account the hypothesis (Hyp.1), we obtain

1

k1

∣

∣

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∣

∣≤ |ϕ (t)− ϕ̄ (t)|+ |ψ (t)− ψ̄ (t)|+
∣

∣

∣

ρ
D

β11

0+
ϕ (t)− ρ

D
β11

0+
ϕ̄ (t)

∣

∣

∣

+
∣

∣

∣

ρ
D

β12

0+
ψ (t)− ρ

D
β12

0+
ψ̄ (t)

∣

∣

∣
.

Using the equality (8), we get

1

k1

∣

∣

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∣

∣ ≤ |ϕ (t)− ϕ̄ (t)|+λ
ρ
11

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞

+ |ψ (t)− ψ̄ (t)|+λ
ρ
21

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞
,

Consequently

1

k1

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
≤ ‖ϕ (t)− ϕ̄ (t)‖∞ +λ

ρ
11

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞

+ ‖ψ (t)− ψ̄ (t)‖∞ +λ
ρ
21

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞
. (21)

In the same way, we can get

1

k2

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞
≤ ‖ϕ (t)− ϕ̄ (t)‖∞ +λ

ρ
12

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞

+ ‖ψ (t)− ψ̄ (t)‖∞ +λ
ρ
22

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞
. (22)

Multiplying (21) by k1Ḡα1
and (22) by k2Ḡα2

, then take the sum, we obtain

Ḡα1

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
+ Ḡα2

∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞

≤
(

k1Ḡα1
+ k2Ḡα2

)

{‖ϕ (t)− ϕ̄ (t)‖∞ + ‖ψ (t)− ψ̄ (t)‖∞}
+
(

k1Ḡα1
λ

ρ
11 + k2Ḡα2

λ
ρ
12

)∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞

+
(

k1Ḡα1
λ

ρ
21 + k2Ḡα2

λ
ρ
22

)∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞
, (23)
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thus

min
i∈{1,2}

{

Ḡαi
−
(

k1Ḡα1
λ

ρ
i1 + k2Ḡα2

λ
ρ
i2

)}

[

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
+
∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞

]

≤ Ḡα1
−
(

k1Ḡα1
λ

ρ
11 + k2Ḡα2

λ
ρ
12

)
∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞

+ Ḡα2
−
(

k1Ḡα1
λ

ρ
21 + k2Ḡα2

λ
ρ
22

)∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞

≤
(

k1Ḡα1
+ k2Ḡα2

)

‖(ϕ (t) ,ψ (t))− (ϕ̄ (t) , ψ̄ (t))‖Ω , (24)

relation (15) guarantees that min
i∈{1,2}

{

Ḡαi
−
(

k1Ḡα1
λ

ρ
i1 + k2Ḡα2

λ
ρ
i2

)}

> 0, then

∥

∥

ρ
D

α1

0+
ϕ (t)− ρ

D
α1

0+
ϕ̄ (t)

∥

∥

∞
+
∥

∥

ρ
D

α2

0+
ψ (t)− ρ

D
α2

0+
ψ̄ (t)

∥

∥

∞

≤ k1Ḡα1
+ k2Ḡα2

min
i∈{1,2}

{

Ḡαi
−
(

k1Ḡα1
λ

ρ
i1 + k2Ḡα2

λ
ρ
i2

)} ‖(ϕ (t) ,ψ (t))− (ϕ̄ (t) , ψ̄ (t))‖Ω . (25)

Combining (20) and (25), we get

‖T (ϕ ,ψ)(t)−T (ϕ̄ , ψ̄) (t)‖Ω ≤ kG ‖(ϕ (t) ,ψ (t))− (ϕ̄ (t) , ψ̄ (t))‖Ω ,

where

kG =

(

k1Ḡα1
+ k2Ḡα2

)

Ḡ

min
i∈{1,2}

{

Ḡαi
−
(

k1Ḡα1
λ

ρ
i1 + k2Ḡα2

λ
ρ
i2

)} .

Since kG < 1 according to (16), then T is a contraction operator and has unique fixed point following the Banach’s
contraction principle [15]. Which means that the problem (1)–(2) has a unique solution on [0, ℓ] .

Theorem 2. Assume that hypotheses (Hyp.1) and (Hyp.2) hold. If we put

Ḡd2 < 1, (26)

then the problem (1)–(2) has at least one solution on [0, ℓ] .

Proof. As in the previous proof, we will prove that the operator (17) has a fixed point using Schauder’s theorem [15]. This
is done through three steps:

Step 1: A is a continuous operator. Let (ϕn,ψn)n∈N be real sequences such that (ϕn,ψn)→ (ϕ ,ψ) in Ω .
Using the same techniques used to prove theorem 1, then by replacing (ϕ̄ , ψ̄) by (ϕn,ψn), the relations (21) and (22)
became

1

k1

∥

∥

ρ
D

α1

0+
ϕn (t)− ρ

D
α1

0+
ϕ (t)

∥

∥

∞
≤ ‖ϕn (t)−ϕ (t)‖∞ +λ

ρ
11

∥

∥

ρ
D

α1

0+
ϕn (t)− ρ

D
α1

0+
ϕ (t)

∥

∥

∞

+ ‖ψn (t)−ψ (t)‖∞ +λ
ρ
21

∥

∥

ρ
D

α2

0+
ψn (t)− ρ

D
α2

0+
ψ (t)

∥

∥

∞
(27)

and

1

k2

∥

∥

ρ
D

α2

0+
ψn (t)− ρ

D
α2

0+
ψ (t)

∥

∥

∞
≤ ‖ϕn (t)−ϕ (t)‖∞ +λ

ρ
12

∥

∥

ρ
D

α1

0+
ϕn (t)− ρ

D
α1

0+
ϕ (t)

∥

∥

∞

+ ‖ψn (t)−ψ (t)‖∞ +λ
ρ
22

∥

∥

ρ
D

α2

0+
ψn (t)− ρ

D
α2

0+
ψ (t)

∥

∥

∞
. (28)

By combining (27) and (28), we obtain
∥

∥

ρ
D

α1

0+
ϕn (t)− ρ

D
α1

0+
ϕ (t)

∥

∥

∞
+
∥

∥

ρ
D

α2

0+
ψn (t)− ρ

D
α2

0+
ψ (t)

∥

∥

∞

≤ (k1 + k2)

min
i∈{1,2}

{

1− k1λ
ρ
i1 − k2λ

ρ
i2

} ‖(ϕn (t) ,ψn (t))− (ϕ (t) ,ψ (t))‖Ω ,

and from (15), we answer that min
i∈{1,2}

{

1− k1λ
ρ
i1 − k2λ

ρ
i2

}

> 0. As (ϕn,ψn) −→
n→∞

(ϕ ,ψ) in Ω , then

(

ρD
α1

0+
ϕn,

ρD
α2

0+
ψn

)

−→
n→∞

(

ρD
α1

0+
ϕ , ρD

α2

0+
ψ
)

, for all t ∈ [0, ℓ] .
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Now, let δ > 0 be such that for each t ∈ [0, ℓ] , we have

sup
{∣

∣

ρ
D

α1

0+
ϕn (t)

∣

∣ ,
∣

∣

ρ
D

α2

0+
ψn (t)

∣

∣ ,
∣

∣

ρ
D

α1

0+
ϕ (t)

∣

∣ ,
∣

∣

ρ
D

α2

0+
ψ (t)

∣

∣

}

≤ δ .

Then, we have
∣

∣

∣
Gα1

(t,s)
[

f1

(

s,ϕn (s) ,ψn (s) ,
ρ
D

β11

0+
ϕn (s) ,

ρ
D

β12

0+
ψn (s)

)

− f1

(

s,ϕ (s) ,ψ (s) , ρ
D

β11

0+
ϕ (s) , ρ

D
β12

0+
ψ (s)

)]∣

∣

∣

=
∣

∣Gα1
(t,s)

(

ρ
D

α1

0+
ϕn (s)− ρ

D
α1

0+
ϕ (s)

)∣

∣

≤ Gα1
(t,s)

∣

∣

ρ
D

α1

0+
ϕn (s)− ρ

D
α1

0+
ϕ (s)

∣

∣

≤ Gα1
(t,s)

(∣

∣

ρ
D

α1

0+
ϕn (s)

∣

∣+
∣

∣

ρ
D

α1

0+
ϕ (s)

∣

∣

)

≤ 2δGα1
(t,s)

and in the same way we find

Gα2
(t,s)

(∣

∣

ρ
D

α2

0+
ψn (s)− ρ

D
α2

0+
ψ (s)

∣

∣

)

≤ 2δGα2
(t,s)ds.

Which means that the functions s → δGαi
(t,s) , i = 1,2 are integrable for all t ∈ [0, ℓ] .

Then Lebesgue dominated convergence theorem is applicable to the following
∣

∣

∣

∣

∫ t

0
Gα1

(t,s)
[

f1

(

s,ϕn (s) ,ψn (s) ,
ρ
D

β11

0+
ϕn (s) ,

ρ
D

β12

0+
ψn (s)

)

− f1

(

s,ϕ (s) ,ψ (s) , ρ
D

β11

0+
ϕ (s) , ρ

D
β12

0+
ψ (s)

)]

ds

∣

∣

∣

=
∣

∣Tϕ (ϕn,ψn)(t)−Tϕ (ϕ ,ψ) (t)
∣

∣ −→
n→∞

0

and
∣

∣

∣

∣

∫ t

0
Gα2

(t,s)
[

f2

(

s,ϕn (s) ,ψn (s) ,
ρ
D

β11

0+
ϕn (s) ,

ρ
D

β12

0+
ψn (s)

)

− f2

(

s,ϕ (s) ,ψ (s) , ρ
D

β11

0+
ϕ (s) , ρ

D
β12

0+
ψ (s)

)]

ds

∣

∣

∣

=
∣

∣Tψ (ϕn,ψn)(t)−Tψ (ϕ ,ψ)(t)
∣

∣ −→
n→∞

0.

Therefore
‖T (ϕ ,ψ)(t)−T (ϕ̄ , ψ̄) (t)‖Ω −→

n→∞
0.

Hence the continuity of the operator T .
Step 2: A(Bτ)⊂ Bτ . Let Bτ be bounded, closed and convex subset of Ω , define by

Bτ = {(ϕ ,ψ) ∈ Ω / ‖(ϕ ,ψ)‖Ω ≤ τ} ,

where τ ≥ d1

(1/Ḡ−d2)
.

Let T : Bτ → Ω be the operator defined in (14). Then by applying the inequality (8) and hypothses (Hyp.2) for all
t ∈ [0, ℓ] , we have

∣

∣

ρ
D

α1

0+
ϕ (t)

∣

∣=
∣

∣

∣
f1

(

t,ϕ (t) ,ψ (t) , ρ
D

β11

0+
ϕ (t) , ρ

D
β12

0+
ψ (t)

)∣

∣

∣
(29)

≤a1 (t)+ a2 (t) |ϕ (t)|+ a3 (t) |ψ (t)|+ a4 (t)
∣

∣

∣

ρ
D

β11

0+
ϕ (t)

∣

∣

∣
+ a5 (t)

∣

∣

∣

ρ
D

β12

0+
ψ (t)

∣

∣

∣

≤ā1 + ā2‖ϕ (t)‖∞ + ā3‖ψ (t)‖∞ + ā4λ
ρ
11

∥

∥

ρ
D

α1

0+
ϕ (t)

∥

∥

∞
+ ā5λ

ρ
21

∥

∥

ρ
D

α2

0+
ψ (t)

∥

∥

∞

and
∣

∣

ρ
D

α2

0+
ϕ (t)

∣

∣ =
∣

∣

∣
f2

(

t,ϕ (t) ,ψ (t) , ρ
D

β21

0+
ϕ (t) , ρ

D
β22

0+
ψ (t)

)∣

∣

∣
(30)

≤b1 (t)+ b2 (t) |ϕ (t)|+ b3 (t) |ψ (t)|+ b4 (t)
∣

∣

∣

ρ
D

β21

0+
ϕ (t)

∣

∣

∣
+ b5 (t)

∣

∣

∣

ρ
D

β22

0+
ψ (t)

∣

∣

∣

≤b̄1 + b̄2‖ϕ (t)‖∞ + b̄3‖ψ (t)‖∞ + b̄4λ
ρ
12

∥

∥

ρ
D

α1

0+
ϕ (t)

∥

∥

∞
+ b̄5λ

ρ
22

∥

∥

ρ
D

α2

0+
ψ (t)

∥

∥

∞
,
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Combining the results (29) and (30). Similarly to (20), for all (ϕ ,ψ) ∈ Bτ we get

‖T (ϕ ,ψ)(t)‖Ω ≤ Ḡd1 + Ḡd2τ

= Ḡ

[

(

1/Ḡ− d2

) d1
(

1/Ḡ− d2

) + d2τ

]

≤ τ.

Then, we conclude that T (Bτ)⊂ Bτ .
Step 3: A(Bτ) is relatively compact. Let t1, t2 ∈ [0, ℓ] , t1 < t2 and (ϕ ,ψ) ∈ Bτ . Then, we get

∣

∣Tϕ (ϕ ,ψ)(t2)−Tϕ (ϕ ,ψ)(t1)
∣

∣+
∣

∣Tψ (ϕ ,ψ) (t2)−Tψ (ϕ ,ψ) (t1)
∣

∣

≤(d1 + d2τ)

[

max
i∈{1,2}

∫ t1

0
|Gαi

(t2,s)−Gαi
(t1,s)|ds+ max

i∈{1,2}

∫ t2

t1

Gαi
(t2,s)ds

]

. (31)

On the other hand

∫ t1

0
|Gαi

(t2,s)−Gαi
(t1,s)|ds =

ρ1−αi

Γ (αi)

∫ t1

0
sρ−1

∣

∣

∣

(

t
ρ
2 − sρ

)αi−1 −
(

t
ρ
1 − sρ

)αi−1
∣

∣

∣
ds

≤ 1

αiραiΓ (αi)

[

(

t
ρ
2 − t

ρ
1

)αi +
(

t
ραi

2 − t
ραi

1

)

]

(32)

and

∫ t2

t1

|Gαi
(t2,s)|ds =

ρ1−αi

Γ (αi)

∫ t2

t1

sρ−1
(

t
ρ
2 − sρ

)αi−1
ds

=
1

αiραiΓ (αi)

(

t
ρ
2 − t

ρ
1

)αi . (33)

Applying (32) and (33), then (31) becomes

∣

∣Tϕ (ϕ ,ψ)(t2)−Tϕ (ϕ ,ψ)(t1)
∣

∣+
∣

∣Tψ (ϕ ,ψ) (t2)−Tψ (ϕ ,ψ) (t1)
∣

∣

≤(d1 + d2τ)

[

max
i∈{1,2}

{

1

αiραiΓ (αi)

[

(

t
ρ
2 − t

ρ
1

)αi +
(

t
ραi

2 − t
ραi

1

)

]

}

+ max
i∈{1,2}

{

1

αiραiΓ (αi)

(

t
ρ
2 − t

ρ
1

)αi

}]

.

Hence, we conclude that for all (ϕ ,ψ) ∈ Bτ , ‖T (ϕ ,ψ)(t2)−T (ϕ ,ψ)(t1)‖Ω −→
t1→t2

0.

From step 1-3 and Ascoli-Arzelà Theorem [1], we show that T : Bτ →Bτ is continuous, compact and so by Schauder’s
fixed point, the operator T has at least one fixed point which corresponds to the solution of the problem (1)–(2) on [0, ℓ] .

4 Examples

Example 1. Consider the following problem











































ρD
1
2

0+
ϕ (t) = 1/2√

2cos( πt
4 )+|ϕ(t)|+|ψ(t)| +

1/11

cosht+

∣

∣

∣

∣

∣

ρ D

1
4

0+
ϕ(t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ρ D

1
8

0+
ψ(t)

∣

∣

∣

∣

∣

, t ∈ [0,1] ,

ρD
2
3

0+
ψ (t) = 1/4

1+t+|ϕ(t)|+|ψ(t)|+
∣

∣

∣

∣

∣

ρ D

1
2

0+
ϕ(t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ρ D

1
3

0+
ψ(t)

∣

∣

∣

∣

∣

, t ∈ [0,1] ,

(

ρI
1
2

0+
ϕ

)

(0+) =

(

ρI
1
3

0+
ψ

)

(0+) = 0.

(34)

Obviously, the condition (Hyp.1) is satisfied with k1 = 1/11 and k2 = 1/4. Then;
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ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

kG 10.76 3.917 2.050 1.458 1.148 0.963 0.838 0.745 0.674 0.628

Theorem 1 is not applicable in from Theorem 1, the problem (34)
this example. has a unique solution.

Example 2. Consider the following problem











































ρD
1
4

0+
ϕ (t) = 10−2 sin t

1+|ϕ(t)|+|ψ(t)|+
∣

∣

∣

∣

∣

ρD

1
9

0+
ϕ(t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ρ D

1
7

0+
ψ(t)

∣

∣

∣

∣

∣

, t ∈ [0,2] ,

ρD
4
5

0+
ψ (t) = 3et−2

5

|ϕ(t)|
1+|ϕ(t)| +

10−2 cost

1+t+|ψ(t)|+
∣

∣

∣

∣

∣

ρ D

1
5

0+
ϕ(t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ρ D

2
9

0+
ψ(t)

∣

∣

∣

∣

∣

, t ∈ [0,2] ,

(

ρI
3
4

0+
ϕ

)

(0+) =

(

ρI
1
5

0+
ψ

)

(0+) = 0.

(35)

Obviously, the hypotheses (Hyp.1) and (Hyp.2) are satisfied with k1 = 10−2, k2 = 3/5, ā1 = b̄1 = 1, ā2 = 0, b̄2 = 3/5 and
āi = b̄i = 0 for i = 2,3,4,5. Then, d1 = 2, d2 = 0.6; Thus

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ḡd2 4.065 2.334 1.688 1.341 1.122 0.969 0.857 0.770 0.701 0.662

Theorem 2 is not applicable in from Theorem 2, the problem (35)
this example. has at least a solution.

5 Conclusion

Using the Banach contraction principle and Schauder’s fixed point theorem, this paper explores the existence and main
properties of at least one solution and its uniqueness for a class of new coupled systems of nonlinear multi-term fractional
differential equations with integral conditions. Katugampola’s fractional derivative is used as the differential operator,
which is crucial to generalizing Hadamard and Riemann-Liouville’s fractional derivatives into a single form.
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