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Abstract: Let 27 () represent the cone comprising all positive invertible operators on a complex separable Hilbert space . When
T and S belong to #1(.7), it holds true that for any ¥ > 0, § > 0, and 0 < g < 1, the following two inequalities are equivalent:

qY.

(S37783)7% > 55 and T4 > (TESOTH) TS

In this article, we will explore the connections between these inequalities and provide some applications of this discovery to operator
class theory. Furthermore, we will provide a positive response to the question posed in [16].
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1 Introduction

Let #(5¢) denote the C*-algebra encompassing all bounded linear operators acting on a complex, separable Hilbert space
referred to as .7#°. Within this context, we use the symbol I to represent the identity operator. An operator, denoted as 7', is
characterized as positive, denoted as T > 0, if it satisfies the condition (Tx,x) > 0 for every vector x in the Hilbert space
€. Additionally, an operator 7 is regarded as strictly positive, symbolized as T > 0, if it fulfills two criteria: firstly, it must
be positive, and secondly, it must be invertible, meaning that (Tx,x) > 0 for all nonzero vectors x within 7. To clarify
further, when we express 7 > S > 0, it indicates that the operator T — S is positive, or in other words, ((T — S)x,x) >0
for all vectors x within the Hilbert space ¢ .
The following result, which is crucial to understanding non-normal operators, is the first in this section.

Theorem 1(Furuta’s inequality[10]). If T > S > 0, then for each t > 0,
=+
(i)(S5TPS3)e >S4 and
R ? pyl
(ii)T @ > (T28T2)4
hold for p >0 and g > 1 with (141)q > p +1.

It’s worth mentioning that if we substitute = 0 into either condition (i) or (ii) from the previously mentioned theorems,
we obtain the well-known Lowener-Heinz theorem, which asserts that ”7T > S > 0 guarantees 7% > S* for any o € [0,1].”
The subsequent results were established as applications of Theorem 1 in the references [7] and [11]. For positive invertible

operators T and S, the order relation log7T > log§ (referred to as chaotic order) holds if and only if (55 TrS? )PL“ > 8
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for all p > 0 and r > 0, and this equivalence also extends to 77 > (T%S’T%)P“ for all p > 0 and r > 0. It’s worth
noting that when p = r, this conclusion serves as an extension of the results presented in [2]. The following assertions are
well-established concerning these operator inequalities: Let 7 and S be strictly positive operators. Then, we have

(@T > S=logT >logS.
(BlogT > logS = (S3TPSH)FE > 5% and 78 > (145974 )% forall B > 0 and & > 0.
(c)Foreach B > 0 and & > 0, (S5 TPs3)P%% > 5% oo 78 > (Th 5oy e 11).
Regarding these findings, the requirement for invertibility in conditions (a) and (b) can be substituted with the condition

ker(T) = ker(S) = 0. This condition implies that (a) and (b) remain valid even for specific non-invertible operators 7" and
S, as established in [24]. The authors of [15] delved into the relationships between the following inequalities:

B
(SETPS$)Fe > 5% and TP > (ThsoT%)Fe
when it is not possible to invert operators 7 and S.

An operator T € AB() is referred to as hyponormal when it satisfies the inequality 7*T > TT*. The Aluthge

transformation, denoted as 7 = |T|%U |T|%, was introduced by Aluthge in [1]. It is a key component of the polar
decomposition of T € %(), which can be represented as T = U|T|. Furthermore, the formula 7, = |T|*U|T|’
describes the generalized Aluthge transformation 7, with 0 < s,z. It’s important to note that an operator T € #(5¢) is

defined as p-hyponormal if (7*7T)? > (TT*)P. Additionally, it falls into class wA(s,?) if (|T*|’|T|2S|T*|’)$ > |T*[* and
|T|% > (|T||T*|¥|T|*)5% ([14]). The class A(k), which encompasses p-hyponormal and log-hyponormal operators, was
introduced by Furuta et al. in their study [9], where A(1) corresponds to the class A operator. Furthermore, if

(T*|T|2kT)k$1 > |T|2, we assert that an operator T belongs to class A(k), where k > 0. In this paper, we aim to establish
the relationships between the following inequalities:

S
(s37753)75 > % and T > (T¥s5T)7s 1)

These relationships will be explored in cases where operators 7' and S are not invertible. We will also demonstrate the
normality of the class p-A(e, ) for & > 0,8 > 0, and 0 < p < 1. Furthermore, we will prove that if either 7 or T belongs

to class p-A(a, ) for some o > 0, > 0, with 0 < p < 1, and S is an operator such that 0 ¢ W(S) and ST = T*S, then T
is a self-adjoint operator.

qY

2 Relations between (S% T”Sg)ﬁ%s >85% and T > (T%S‘ST%) 1+8

In this section, we will present the following outcome:

Theorem 2.Let T,S € BT (). Then for each y >0, 8 > 0 and 0 < g < 1, the following assertions hold:
(DIF (S3TTS3)7"S > §9, then T > (TH 55775,

I TT > (TYS5TY) 75 andker(T) C ker(S), then (S3T7S3)

We would like to note that Theorem 2 serves as an extension of Theorem 1 in [15]. The following results are organized to
provide a proof and illustration of Theorem 2.

Lemma 1./13, Léwner-Heinz inequality] Let T,S € $ (). If T > S > 0, then T > SY for every y € [0,1].

a8
8 > 8§49,

Lemma 2./8] Let T,S € B(H). Assume that T is positive (T > 0), and that S is an invertible operator. Under these
conditions, the following holds for any real number A.:

(STS*)* = ST2(T28*ST2)*~'T25",
Proof.For the sake of convenience, we provide a proof of this self-evident result. Let’s start with the polar decomposition
of the invertible operator ST? as ST =U 0, where U is a unitary operator and Q = |ST% |. Then,
_ ST%Q"QMQ*'T%S* ST (QZ)AflT%S*
R Lia—1p3 =
= ST2(T28*ST2)*'T25".
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Proposition 1./21] Let T,S € %% (). Consequently, the following statements are true:

5  dor
(D)If (S% TYOSTO)VO“SO > $%P maintains for fixed ¥ > 0, & > 0and 0 < p < 1, then

=

4

(Sg TVOS%)Y(H]B > Sop1 )
holds for any 6 > &y and 0 < p; < p < 1. Moreover, for each fixed v > —,

(n+v)
Fror(8) = (T#s57%) 5

is a decreasing function for & > max{ &, y}. Hence the inequality

p1(0+8))

T2y > (18seT ) 0 3)
holds for any 8, and & such that & > & > &y and 0 < p; < p.
(ii)If TP > (T%‘)S%T%O)%%o holds for fixed 1, > 0, & > 0 and 0 < p < 1, then
T > (T%S‘SOT%)VYT% )
holds for any ¥ > v and 0 < py < p < 1. Furthermore, for each fixed & > — &,

5 K} (5+50)pl
ga,5(Y) = (STTIST) 7o

is an increasing function for y > max{yy, 0 }. Therefore the inequality

5 r1n+é&y) &
sTres?) e > (sTrns Ty (5)

holds for any y, and > such that » >y > W and 0 < p1 < p.

By applying the Furuta inequality, we derive Theorem 2. Our approach relies on the utilization of the subsequent
expression, which constitutes a pivotal element of the Furuta inequality presented in Theorem 1.

Lemma 3.Let T,S € B(H). If T > S >0, then

(i) (S2TYS¥2) ¥ > S and
(i) T+ > (T%/? S)'Tx/z)i%(
hold for x >0 andy > 1.

Proof{Proof of Theorem 2). (i) Suppose that the following relation

q6
($%/27 S&/z)ﬁ > 4% ©)

holds for fixed ¥ > 0 and & > 0 and 0 < ¢ < 1. Applying Lemma 3 to (6), we have

. 5 . ,
{Sqé% (SSU/ZTVOS'SO/Z)WP’O];]% qu%};lt’}l > §9%(1+1) 7
for any p; > 1 and r; > 0. Putting p; = % in (7), we have
do(1+gr1) So(1+gr)  _a%Utry)
(7 2z ThS 2 )t > gedlltn) ®)

for any r; > 0. Put 6 = 8y (1 +gry) > & in (8). Then we have

5-(1-9)8
(S%TYosg) 0+ 255—(1—4)50. 9)
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Hence we have ;
s 5. K
(S2T1082)0+8 > SH for0 < u < 8 —(1—¢q)dp.

(10)

a0
Next, we demonstrate f(8) = (T%/289T%/2)+3 is decreasing for § > &. By Lowner-Heinz theorem, (10) ensures the

following (11)
o
(S3T0S53)H8 > SHfor 0 < p < & — (1 — ).
Next, we have
f(8) = (TVo/255TYO/2)y%%
5

— {(TYO/ZS‘S TVO/Z) yoy;?l } yoz?w

- {T70/255/2(S5/2TY055/2)#55/2TY0/2}704%+L# (by Lemma 2)

> (TVO/QSSJFHTYO/Q))@;%%#

= [+ p).
Hence f(0) is decreasing for & > &. Consequently,

a0
TN > (T70/255T70/2)70+5 for 6 > &

holds since - -
TN > (TVO/ZSSUTVO/Q)M = f(&) > f(8) = (TYO/QS‘STVO/Z)W.
Again applying Theorem 1 to (12), we have

[ X0]

7 1+4r
Tan(+r) > (TT(Tqrz}’o/QSSTYo/Q)%lT“yO s

v ) patry

for any p, > 1 and r, > 0. Putting p, = % > 1 in (13), we have

1+qr L+qr an(1+rp)
n( 2q z)S5T70< 2q 2)

Ta0(14r) > (T ) T0+6+ar0

for any r, > 0. Put Y = (1 +gr2) > 1o in (14). Then we have

~1
TYr+0(g=1) > (T%S‘ST%)H?fy )

for all ¥y > 15 and & > &. Now, since 0 < WZ*U < 1, making use of Lowner-Heinz theorem to (15), we have

T > (155978

forally> 1,8 > dand 0 < ¢q; <gq.
(ii) Suppose that ker(T") C ker(S) and

T > (TVO/ZSSOTVO/Z)VO%%
holds for fixed % > 0 and & > 0 and 0 < g < 1. Applying Lemma 3 to (16), we have

7 P39% r 1+73
Taw(+r3) > (Tﬂzﬁl (TYO/QS'SOTYO/Q) 10+ T A0 ) 7

for any p3 > 1 and r3 > 0. Putting p3 = yoq;f" > 11in (17), we have

1+qr l+gry) 9% (+r3)
n( 2f1 3)S§0T70( 2(/ 3)

Tan(+r3) > (T ) 10+%0+4r3T0

for any r3 > 0. Put y = (1 +gr3) > 1 in (18). Then we have

r+%(9—1)
7706 > (T TH "0 fory> 1.

(1)

12)

13)

(14)

5)

(16)

A7)

(18)

19)
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_a%_
Next we show that g(y) = (§%/24Y§%/2)0+% is increasing for y > 7. Lowner-Heinz theorem , when applied to (19),
guarantees the following:

7" > (T3s9TH %% for0 <u<y+3(g—1). (20)

Then we have

&
8() = (SH2T7SVR) 7

Y+0p+u 9%

— {(550/27*7’550/2) 7+ }u+50+y
. 8
_ ST BT S T/ 2g%/2 gy
8
< (S5O/ZTY+L¢S50/2) u+q5(;)+7
= g(r+u).
Hence g(7) is increasing for y > . Therefore
9%
(550/27*7/550/2) 7y > 59% for 7> % 1)
holds since
4% _ady_
(SD2TYSH/2) 150 = g(y) > g(1) = (SP/2THSD/2) e > §1%.
Again applying Theorem 1 to (21), we have

T, 5 r. -
{S@ (S%/QTYS%/Q)%S%}XT& > Sq50(1+r4) 22)

for any p4 > 1 and r4 > 0. Putting p4 = % > 11in (22), we have

So(1+qry) Sy(l+qry) _9%0(1+ra)

(ST T TYST T ) rrootads > §e%(l+r) (23)

for any r4 > 0. Put 6 = 8y (1 + gr4) > & in (23). Then we have

5+8)(q—1)
(537753) 776 > 538D fory> 4 and 8 > &. (24)

Applying the Léwner-Heinz theorem to (24), we now obtain since 0 < ﬁgz—l) <1,

S
(s37753)7s > gn

forall y > 1, 8 > 8 and 0 < ¢; < ¢, consequently, the proof is conclusive.
Proposition 2.Let T, S € B1 () and let 1y > 0, 8 > 0 and 0 < q < 1. Suppose that

5
(S%OTVOS%)V(;Z%O > §9% (25)
and
0 % %
T > (T2SHT2)0+% (26)

Consequently, the following statements are true:
(i)For every Y > ¥, 0 > & and 0 < q; < g
(S3T78%) 75 > §09,

Moreover, for each fixed Y > —,
(0+1p1

X X
Foy(8)=(T2S0TF) W+
is a decreasing function for 8 > max{d, y}. Hence the inequality

(0+91)
(rhsorBym > (rhsor®) 27)

holds for any 8, and & such that &, > & > &y and 0 < p; < p.
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(ii)For each Yy > Y, 6 > Qo and 0 < q; < g
q

T4 > (T185T3) 75

=

52

Additionally, for every fixed & > — &,
& 5  (8+d)py
85.8(y) =(S2T782) 7%

is an increasing function for y > max{y, 8 }. Hence the inequality

5 5  PL+%) 5 5
(SJZlThSJZl) H+% Z(SJZIT%SJZI)’” (28)

holds for any 7y, and > such that y, >y > Y and 0 < p1 < p.
Proof:-We will provide the proof for part (ii), noting that the proof for part (i) follows a similar pattern. We begin by
observing that inequality (2) implies inequality (4), as established in Proposition 1. Therefore, we have:
_an_ 4% _
T > (TYTOS‘SOTYTO)70+5O > (TYTOS5T72—°)70+5
This inequality holds for all B > fy based on inequality (4) and the Lowner-Heinz inequality. Consequently, we can
conclude part (ii) by invoking Proposition 1 (ii).
In Proposition 2, when considering ¥ > 0, 6 > 0, and 0 < ¢ < 1, one might naturally anticipate that the inequality 79" >
ar. 45
(T%SST%) T s equivalent to Sg TYTg r+e > qu, even in cases where T and S are not invertible. However, this

assumption is disproven by the following example.

g 48
Example 1. There exists positive bounded linear operators T and S such that 797 > (T%S‘ST%) 0 and (S% TVT%) 1+e ¥

S48 LetT = G) 8) and S = <8 (1)> Then

qY
qy _ VoS l’)y+5_ 10 _ 00\ (10
T (TZS T —(00 00)=100) =20

and
48
(st s (59)- (00 - (5 0) 20
qY q0

for y> 0,6 >0, and 0 < g < 1. Therefore T7" > (T%S‘ST%)YTB and (SgTYTg)YTB 2 S8 for Y>0,0 >0, and
0<g<l1.
Corollary 1.Let T,S € B4 () and let Y > 0, & > 0. Then, the following claims are true:
()If 0 < q < 1, then
% 3 2% B 5 a8
(ST THS2)07% > §9% — (S2T7S§2) 73 > N9 (29)

arv
holds for any y > Y and & > &y, thus TV > (T%S‘ST%)#_‘s holds for any Yy > Y, 6 > & and 0 < q; < q.
(i)If 0 < g < 1 and ker(T) C ker(S), then

%N
T > (T2 507 %)% — 797 > (1597%) 7% (30)

a1

holds for any y > Y and 8 > &, thus (Sg T“VSg)?’*_“S > S§U% holds for any y> 1, 8 > 8 and 0 < q1 < q.

Proof.-We present the proof for part (i), and it’s worth noting that the proof for part (ii) follows a similar line of reasoning.
Based on the provided hypothesis, the Lowner-Heinz theorem, and Proposition 2, we can establish the following
inequality for all > &, ¥ > 1, and 0 < ¢ < 1:
5
(s3775%)75 > g0
This inequality, derived from the hypothesis and known theorems, validates Corollary 1 (i). The application of the Lowner-
Heinz theorem and Theorem 2 further supports this conclusion.

©2024 YU
Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JIMS 17, No. 2, 211-220 (2024 ) / 217

Remark.We need to keep in mind the assumptions (i) and (ii) of Theorem 2. In the context of Theorem 2, we consider the
scenario where Y= 0 = 1 and 0 < ¢ < 1. The following conditions are relevant:

(a)($275%)% > 59,
()T > (T2ST%)% and ker(T) C ker(S).

. - . Ll ... ...

We have shown that in Theorem 2, condition (a) implies 79 > (TESTE)%, and condition (b) ensures condition (a).
Consequently, one might expect that conditions (a) and (b) are analogous. However, we have a counterexample to
demonstrate otherwise.

1 1

Example 2.(S2TS2)% > $7and T9 > (T2ST2)%, but ker(

(T)
ar= (28) 5= (49). Them_@(;) | (

and
2% 29%2
29.59=1 9gq+1. 59-1 q 5 5
T = TisT3) —
(Sq 1 2q+1 59— 1 2q+2 ( N ) 2 o
22 2
5 5

But (12) € ker(A) and ( ) ¢ ker(S), so that ker(T) ¢ ker(S)

Moreover, we have the following example.

Example 3. We have T4 > (T%ST%)%, but (S% 53

)2
10 00 10
Set T = (OO) and S = (01).Then T1 = OO)

ker(T) ¢ ker(S)

3 Applications

In this section, we will illustrate the application of Theorem 2 to various operator classes.

Definition 1.Consider the following operator classes defined in terms of & > 0, B > 0, 0 < p < 1, the polar decomposition
, and the generalized Aluthge transformation Ty, g = |T|“U|T|B:

pB
(i)T is classified as belonging to the p-A(a, B) class if it satisfies the inequality (|T*|B|T|?*|T*|B) =8 > |T*|?PB[16].
(ii)T is categorized as part of the p-wA(a, B) class if it meets the criteria:

B P
(T PIT P P)as > | TP and |T1% > (T|%|7* PP |7|) o5

o~ 2pB - 2pa

ToplPte > T PP and |T % > |(Top)*|**F as defined in [16].

(iii)T is classified as a member of the p-A class if |T*|P > |T|*?, which is equivalent to T being part of the p-A(1,1) class,
as stated in [16].

(iv)T is considered p-w-hyponormal if and only if it satisfies the inequalities: |T|17 > TP > |(T)*|§ This classification
corresponds to T belonging to the p-wA (% 5 2) class, where T = |T| 5 U|T|% is the Aluthge transformation, as outlined
in [3].

(v)T is termed (o, p)-w-hyponormal if and only if it satisfies the following inequalities: |Ta7a|% > |T 2P > |(Ta7a)*|%.
This characterization corresponds to T belonging to the p-wA(a, &) class, where Ty o = |T|*U|T|* is the generalized
Aluthge transformation, as discussed in [12] and [19].

or equivalently,

©2024 YU
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Operators classified as p-wA (@, B) exhibit several significant properties typical of hyponormal operators. These properties
encompass the Fuglede-Putnam type theorem, Weyl type theorem, subscalarity, and Putnam’s inequality, as documented
in [4], [5], [17], [18], and [23]. It’s important to note that the Aluthge transformation has garnered considerable attention
from various authors, including [1], [4], [6], and [25]. These classes are categorized as normaloid operators, denoted by
IT|| = r(T), where r(T') represents the spectral radius of T', as discussed in [17], [3], and [12]. For &, B, and 0 < p < 1,
it has been established that class p-A(¢, ) includes class p-A(a, B) based on the definition in 1 (i) and (ii). Furthermore,
as demonstrated in [16], both class p-wA(e, ) and class p-wA(c, 3) are invertible for any o > 0, 8 > 0,and 0 < p < 1.
Previous research has also provided more precise inclusion relations among class p-wA(c, 8).

Lemma 4./4] If T € B(C) is class p-wA(s,t) and 0 < s <y,0<t < 6,0 < p; < p <1, thenT is class p1-wA(Y, ).

In their study [16], the authors posed the following question:
Question: Does the class p-A(s,t) imply p-wA(s,t) for0 < p < 1?
The subsequent theorem provides an affirmative answer to this question.

Theorem 3.For each o > 0,8 > 0 and 0 < p < 1, the following assertions hold:

(i)class p-A(et, ) and class p-wA(a, B) are equivalent.

(ii)class p-A and class p-wA are equivalent.
(iii)class p-A(%, %) and the class of p-w-hyponormal operators are equivalent, i.e., class p-wA(%, %)
(iv)class p-A(a, @) and class (o, p)-w-hyponormal operators are equivalent, i.e., class p-wA(a, o).

Proof.-We choose not to provide a proof here, as we can easily establish Theorem 3 by applying Theorem 2 to the
definitions of these classes.

Notice that Theorem 3 in reference [15] corresponds to a specific case where ¢ = 1, and therefore, Theorem 3 can be seen
as an extension or generalization of it.

Remark.By (iv) of Theorem 3, we have
Tual? > TP < (IT**|TPT**)5 > |T*?* < T : class p—A(a, @)
& T :(a,p) —w—hyponormal & | Ty |2 > |T|?* > |(Tee)*|2.

Hence _ p _ »
Taal? > TP = TP > |(To.a)*|2,

that is, we may as will define (, p)-w-hyponormal by only | Ty o| % > |T|2P2.

Next, we shall show some properties of class p-A(s,?).

Theorem 4.If T € B(.57) is class p-A(s,t) and 0 < s < 7,0 <t < 5,0 < p; < p <1, thenT is class p;-A(Y, ).
Proof.-We skip the proof because it can be accomplished easily using (i) of Theorem 3 and Theorem 5.

We will show that certain non-normal operators can be proven to be normal. It is established that an operator 7 is normal
if both T and T* belong to the class A. However, the situation becomes less clear when T and T* belong to classes weaker
than class A. Thanks to the research efforts of various authors on this topic, the following results were previously unknown
until now.

Lemma 5./21] Let o, > 0 and 0 < p; < 1, where i = 1,2. If T is a class p1-wA(ouy, B1) operator and T* is a class
p2-wA(0, Br) operator, then T is normal.

Corollary 2.Let a;,3; > 0 and 0 < p; < 1, where i = 1,2. If T is a class pi-A(ay,B1) operator and T* is a class ps-
A(a, By) operator, then T is normal.

Proof Theorem 3 and Lemma 5 lead directly to the proof.

Lemma 6./21] Let p,r >0,0< ¢<1,s>pandt>r. If T is a class g-wA(p,r) operator and Tw is normal, then T is
normal.

Corollary 3.Let p,r >0,0< g <1,s>pandt >r. If T is a class q-A(p,r) operator and YN}J is normal, then T is normal.

Proof Theorem 3 and Lemma 6 are prerequisites for the proof.
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Remark.Please take note that Corollaries 2 and 3, along with Lemmas 5 and 6, offer generalizations of several findings
found in the existing literature. Notable examples include the extension of Theorem 6 in reference [15], as well as other
results in papers such as [19] and [3].

The numerical range of an operator M, represented as W (M), is defined as the set given by:
W(M) = {(Mx,x) - ||x]| = 1}.

In a general context, it’s important to note that neither the condition N~!MN = M* nor the statement 0 ¢ W (M) guarantees
that the operator M is normal. This is exemplified when considering the case of M = NB, where N is positive and invertible,
B is self-adjoint, and N and B do not commute. In this scenario, N “IMN = M* and 0 ¢ W(N), but the operator M is not
normal. This naturally leads to the following question:

Question: Under what conditions does an operator M become normal when both N~!MN = M* and 0 ¢ W (N) hold true?
In 1966, Sheth demonstrated in [22] that if M is a hyponormal operator and N~!MN = M* for certain operators N,

where 0 ¢ W (N), then M is self-adjoint. Rashid later extended Sheth’s result to encompass the class A(k) operators for
k > 0 in [20]. This work further expands upon Sheth’s result, demonstrating that it holds true for the class p-A(e, )
operators, as detailed below.

Corollary 4.Let M € B(). If M or M* belongs to class p-A(a., B) for every a > 0,8 >0and 0 < p < 1 and N is an

operator for which 0 ¢ W(N) and NM = M*N, then M is self-adjoint.

Proof.The conclusion drawn is a result of Theorem 3 and the findings presented in [21, Theorem 2.14].
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