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Abstract: Our aim is to introduce a generalization of dense set in topological space, namely SD-dense set, when we used the notion

of somewhere dense closure operator. We provide the characterization of this class of sets, and their implications with dense sets and

with somewhere dense sets, and study their union and intersection properties, moreover we discuss their behavior as subspaces in some

special cases, additionally, we investigate their properties in some particular spaces, and then we prove that SD-dense sets, dense sets,

somewhere dense sets and open sets are equivalent in strongly hyperconnected space, after that we illustrate the image of SD-dense sets

by particular maps; as SD-irresolute map and SD-continuous map. Finally, we define a new axiom of separability, namely SD-separable

space using the notion of SD-dense sets, then we state that SD-separable space is stronger than separable space, and in submaximal

space these notions become equivalent, moreover we study the subspaces and the images of SD-separable spaces.
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1 Introduction

Researchers have mentioned various forms of generalized open sets; for instance α-open set, preopen set, semi open set,
b-open set, β -open set and somewhere dense set. The notion of somewhere dense set was due to Pugh [19], then in 2017
[1] Al-shami provided the topological properties of this class of sets, and he studied some operators as; somewhere dense
interior, somewhere dense closure and somewhere dense boundary and he used these notions to defined the axiom of
ST 1space, and with Noiri [2,3] they investigated some particular maps as; SD-irresolute maps and SD-continuous maps,
then they introduced the concepts of Lindelofness and compactness using somewhere dense sets, and recently, Arwini et
al. [4] stated that somewhere dense sets and open sets are coinciding if and only if a space is strongly hyperconnected,
moreover, Sarbout et al. [20] defined somewhere dense connected space, and they showed that this space is stronger than
hyperconnected space but weaker than strongly hyperconneted space.
In 1906 [15] Frechet defined separable space, which is a space that contains a countable dense subset, since then different
types of separability were defined, as d-separable space, D-separable space, weakly separable space, b-separable space,
dense-separable space, r-separable space, pre-separable space etc. Kurepa [17] in 1936 introduced a generalized form of
separable and metrizable spaces, namely d-separable space, and then in 1981 Arhangelskii [5] studied some properties
of d-separable spaces and proved that any product of d-separable spaces is d-separable. D-Separable spaces were due to
Bella et al. [8], and in 2012 Aurihi et al. [7] investigated the properties of D-separable space and showed their implication
with d-separable spaces. Weakly separable spaces were defined by Beshimov in 1994 [9] when he proved that any weakly
separable Hausdorff compact space is separable, moreover he studied its separable compactifications, see more in [10,11].
In 2013 Selvarani [21] defined b-dense sets and b-separable spaces using b-open sets, then in 2021 Arwini et al. [6,16]
introduced two different types of separability, the first type is called dense separable space, and they showed that dense
separable space, dense second countable space and separable space are equivalent, while in the second type they used
the notion of regular open sets to defined r-separable space, then they illustrated that r-separable space is weaker than
separable space, but they became equivalent in regular space. Recently, Elbhilil et al. [14] introduced pre-separable spaces
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using pre-dense set notion, and they showed that pre-separable space is placed between b-separable space and separable
space, and in submaximal spaces, the axioms of separability and pre-separability became equivalent.
In this work we use the notion of somewhere dense set to introduce SD-dense set, which is a generalization of dense
set, we provide its behavior with some operations as union and intersection, then we discuss the characterization of this
class of sets in some particular spaces and study their images by some particular maps. After that, we define the axiom of
SD-separable space using the notion of SD-dense sets, then we illustrate the implication between this space and separable
space, and study their subspaces and images.
We divided this article into five sections; as follows: section two concludes the basic concepts concerning somewhere
dense sets, section three presents the definition of SD-dense set, including some of its union and intersection properties
and its behavior as a subspace, then we present its characterization in some spaces, after that we examine their images by
some particular maps, and section four includes the basic studies of SD-separable space, and finally section five gives an
overview of our results in the conclusion.
Throughout this paper, a topological space (Z,τ) denotes by Z and D(τ) denotes the collection of all dense sets in Z,
and if E and F are subsets of a space Z; E , E◦, P(E), Ec and E/F denote the closure of E , the interior of E , the power
set of E , the complement of E and the difference of E and F ; respectively. Additionally, R, Z, Q, K, R+, R− are the
sets of real numbers, integer numbers, rational numbers, irrational numbers, positive real numbers, negative real numbers;
respectively.

2 Preliminaries

In the present section, we provide the basic properties and characterizations of somewhere dense set, and their behavior
in subspaces and in strongly hyperconnected spaces.

Definition 1.[1] In a topological space (Z,τ), a subset A is called somewhere dense (namely s-dense) if A
◦ 6= φ . The

complement of s-dense set is called closed somewhere dense (namely cs-dense) set, and the collection of all s-dense sets

in Z is denoted by S(τ). Clearly any non-empty open (dense) set is s-dense.

Theorem 1.[1] If A is s-dense subset in a space Z and A ⊆ B, then B is s-dense.

Theorem 2.[1] Any subset of a space Z is s-dense or cs-dense.

Definition 2.[20] A subset B of a space Z is called SD-clopen if B is s-dense and cs-dense. Clearly any clopen set is

SD-clopen.

Definition 3.[20] In a space Z if any open set is closed, then Z is called partition space. Clearly any non-empty subset of

partition space is s-dense.

Definition 4.[14] A space (Z,τ) is called S-space if any subset of Z that contains a non-empty open set is also open.

Definition 5.[1,13,18] A space Z is called:

i. submaximal if any dense set is open.

ii. hyperconnected if any non-empty open set is dense.

iii. strongly hyperconnected if Z is submaximal and hyperconnected.

Theorem 3.[4] In a space Z, the following conditions are equivalent:

1. Z is strongly hyperconnected space.

2. dense sets are equivalent with non-empty open sets.

3 s-dense sets are equivalent with non-empty open sets; where Z is a non-discrete space.

Definition 6.[10] If Z is a space, then a subset B is called regular closed (namely r-closed) if B=B◦, while the complement

of regular closed set is called regular open (r-open). Clearly any r-closed set is closed.

Theorem 4.[20] Any proper non-empty r-closed set is SD-clopen.

Theorem 5.[4,12] Let Z be a space, W be a subspace of Z and B ⊆W then:

1) B
W
= B∩W, where B

W
is the closure of B with respect to the relative topology on W.

2) where W is r-closed in Z, then B is s-dense in W if and only if B is s-dense in Z.
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Definition 7.[1] Let Z be a space and B be a subset of Z, then:

i. the intersection of all cs-dense sets in Z containing B is denoted by B
S
. Clearly B

S
is cs-dense set.

ii. the union of all s-dense sets contained in B is denoted by B◦S. Clearly B◦S is s-dense set.

Theorem 6.[1] Let A and B be two subsets of a space Z, then:

1) A ⊆ A
S ⊆ A and A◦ ⊆ A◦S ⊆ A.

2) If A ⊆ B, then A
S ⊆ B

S
and A◦S ⊆ B◦S.

3) A is cs-dense if and only if A
S
= A, while A is s-dense if and only if A◦S = A.

Definition 8.[1] In a topological space (Z,τ), a subset A of Z is called:

i. α-open if A ⊆ A◦◦.

iii. pre-open if A ⊆ A
◦
.

iv. b-open if A ⊆ A◦∪A
◦
.

v. β -open if A ⊆ A
◦
.

Theorem 7.[1] The implications between the class of generalization open sets are given in the following diagram:

open set ⇒ α-open set ⇒ pre-open set ⇒ b-open set ⇒ β -open set ⇒ s-dense set

Definition 9.[2] A map f : (Z,τ) → (X ,σ) is called SD-irresolute if the inverse image of any s-dense in X is empty or

s-dense in Z, while f is called SD-continuous if the inverse image of any open set in X is empty or s-dense in Z.

Definition 10.[12] A space is called separable if it contains a countable dense set.

3 SD-Density

This section consists the definition of a new generalization of dense set using the concept of somewhere dense set,
namely SD-dense set. Union and intersection properties of SD-dense sets and their implication with dense sets are given,
additionally, the behavior of SD-dense sets as subspaces in particular conditions are shown, after that, we investigate the
characterization of SD-dense sets in some spaces. Finally, we study the images of SD-dense sets by some particular
maps; such as SD-continuous map and SD-irresolute map.

3.1 SD-Dense Sets

Here we provide some basic properties of the class of SD-dense sets.

Definition 11.A subset F of a space (Z,τ) is called SD-dense if F
S
= Z. The collection of all SD-dense sets in Z is denoted

by SD(τ).

Example 1.In a space (Z,τ) where Z = {1,2,3} and τ = {Z,φ ,{1,2}}, we have S(τ) = {Z,{1},{2},{1,2},{1,3},{2,3}}.
Therefore Z and {1,2} are the only SD-dense sets in Z.

Corollary 1.Any SD-dense set is dense.

Proof.Obvious, since E
S ⊆ E for any subset E of a space (Z,τ), i.e., SD(τ) ⊆ D(τ); where D(τ) is the collection of all

dense sets in Z.

SD-dense ⇒ dense ⇒ pre-open set ⇒ b-open set ⇒ β -open set ⇒ s-dense

Remark.No general relations between SD-dense set and open set, for instance:

1. In the usual topology, (0,1) is open (s-dense) set but not SD-dense nor dense, since (0,1)c is s-dense but disjoint from
(0,1). Moreover, the set Q is dense but not SD-dense, since the set K is also s-dense but disjoint from Q.

2. In the space (R,τ), where τ = P(K)∪R we have S(τ) = P(K)∪{A ⊆R : A∩Q,A∩K 6= φ}. Then the set K∪B where
B ⊆Q is SD-dense, so if B 6= φ the set K∪B is SD-dense but not open.
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Theorem 8.If E is a subset of a space Z, then these statements are equivalent:

1) E is SD-dense.

2) E intersects all s-dense sets in Z.

3) (Ec)oS = φ .

4) Ec is not s-dense.

5) Eo is dense.

6) E contains an open dense subset F in Z.

Proof.1)⇒ 2) Let F be a SD-dense in Z, and suppose that A is a s-dense set which is disjoint from F , then Ac is cs-dense

that contained F , hence F
S 6= Z, which is a contradiction.

2)⇒ 3) Suppose that (Ec)oS
is a non-empty set, then there exists a s-dense set A containing in Ec, hence a s-dense set A

does not intersect E , which is a contradiction.
3)⇒ 4) Suppose that (Ec)oS = φ , then from theorem (6) the set Ec is not s-dense.

4)⇒ 5) Suppose Ec is not s-dense, then Ec◦ = φ , i.e., Ec does not contains any non-empty open set, therefore (Ec)c = Eo

is dense.
5)⇒ 6) Direct since Eo is open dense set.

6)⇒ 1) Let F be an open dense subset in Z and F ⊆ E , and suppose that E
S 6= Z, then there exists a s-dense set A which

does not intersect E , and since Fc is closed set, then A ⊆ A ⊆ Ec ⊆ Fc, but A is a s-dense, then A contains a non-empty

open set which is disjoint from the dense set F , which is a contradiction, therefore E
S
= Z, thus E is SD-dense.

Corollary 2.In a space (Z,τ) we have τ ∩D(τ)⊆ SD(τ), moreover SD(τ) = {A ⊆ Z : B ⊆ A for some open dense set B }.

Proof.According to the previous theorem number (5) we obtain τ ∩D(τ) ⊆ SD(τ) , and by using number (6) clearly any
subset that contains an open dense set is SD-dense.

Remark.Let (Z,τ) be a space, then Z is the only SD-dense set if and only if Z is the only open dense set in Z.

Example 2.In the usual topology, the set Z of integer numbers is not s-dense set, hence R/Z is SD-dense. Note that R/Z
is open dense set.

3.2 Operation on SD-Dense Sets

Union and intersection operations of the class of SD-dense sets are investigated.

Corollary 3.1) Any set contains SD-dense set is SD-dense.

2) Union of SD-dense sets is SD-dense.

Proof.Obvious using theorem (8).

Theorem 9.Any two SD-dense sets have non-empty intersection.

Proof.Suppose E and F are two SD-dense sets in a space Z, then from corollary (1) we get E is s-dense and F is SD-dense,
and according to theorem (8) we obtain E ∩F 6= φ .

Remark.The infinite intersection of SD-dense sets can be empty set; for example in the usual topology, {{x}c}x∈R is a
collection of SD-dense sets in R, but ∩x∈R{x}c = φ .

Lemma 1.If A and B are not s-dense sets in a space Z, then A∪B is also not s-dense.

Proof.If at least one of the sets A and B are empty, then the prove is obvious. Now let A and B be non-empty not s-dense
sets, and suppose that A∪B is s-dense, so there exists a non-empty open set V such that V ⊆ A∪B = A∪B, since A is

not dense we have A
c

is a non-empty open set, and V ∩A
c ⊆ (A∪B)∩A

c ⊆ B, therefore V ∩A
c

is a non-empty open set

contained in B, so B
◦

is a non-empty set, hence B is s-dense, which contradicts the assumption. Therefore A∪B is not
s-dense.

Remark.Infinite union of non s-dense sets can be s-dense; for example in the usual topology any singleton is not s-dense
set, but ∪x∈R{x}= R is s-dense.

Theorem 10.The intersection of SD-dense sets is SD-dense.
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Proof.Suppose E and F are two SD-dense sets in a space Z, then from theorem (9) we have E ∩F 6= φ , and by theorem (8)
the sets Ec and Fc are not s-dense, and by the previous lemma we obtain Ec ∪Fc = (E ∩F)c is not s-dense, hence E ∩F

is SD-dense.

Corollary 4.Any finite intersection of SD-dense sets is SD-dense.

Proof.Direct from the mathematical induction.

3.3 SD-Dense Sets as Subspaces

Here we study the characterizations of SD-dense sets as subspaces, and states some conditions that make subspaces SD-
dense.

Theorem 11.In a space Z, if W is a subspace of Z and E ⊆W where E is SD-dense in Z, then E is SD-dense in W.

Proof.Since E is SD-dense Z, then E contains an open dense set F , then F is open dense set in W , therefore E is SD-dense
in W .

Example 3.Let (Z,τ) is a space, where Z = R and τ = {φ}∪{U ⊆ Z : 0 ∈U}, then S(Z) = τ/{φ}. If W = {0}c, then W

is SD-dense in W , but W is not SD-dense in Z.

Lemma 2.In a space Z, if W is an open (dense) subspace of Z and D ⊆ Z where D is an open dense in Z, then D∩W is

an open dense in W.

Theorem 12.In a space Z, if W is an open (dense) subspace of Z and E is SD-dense in Z, then E ∩W is SD-dense in W.

Proof.Suppose E is SD-dense in Z, then E contains an open dense subset F , and by the previous lemma we obtain F ∩W

is open dense subset in W , which contained in E ∩W , thus E ∩W is SD-dense in W .

Example 4.In the previous example if W = {0}c, then the singleton {0} is SD-dense in Z but does not intersect W ,
additionally, the set {0,1} is also SD-dense in Z, but {0,1}∩W = {1} is not SD-dense in W . Note that the subspace W is
closed but not open nor dense in Z.

Theorem 13.If Z is a space, W is an r-closed subspace of Z and E is SD-dense subset in Z, then E ∩W is SD-dense in W.

Proof.Suppose E is SD-dense in Z, then by theorem (4) the set W is s-dense in Z, hence we have E ∩W is non-empty set.
Now suppose A is s-dense subset in W , and by theorem (5) since W is r-closed we obtain A is s-dense in Z, so we have
A∩E 6= φ , therefore A∩ (E ∩W ) = A∩E 6= φ , thus E ∩W is SD-dense in W .

3.4 SD-Dense Sets in Some Special Spaces

In the present subsection, we study the characterizations of SD-dense sets in some spaces, as partition space, S-space,
submaximal space, hyperconnected space and strongly hyperconnected space

Theorem 14.A space (Z,τ) is partition if and only if the only SD-dense set is Z.

Proof.If a space Z is partition, then we have S(τ) = P(Z)/{φ}, therefore Z is the only SD-dense set. Conversely, suppose
Z is not partition space, then there is an open set V which is not closed, so V c is not open, hence V c◦ = φ or V c◦ 6= φ . In
the case where V c◦ = φ we obtain V is open dense set, hence it is SD-dense, while in the second case, we obtain V ∪V c◦

is open dense set, so it is SD-dense. Thus complete the prove.

Corollary 5.In S-space (Z,τ), we have SD(τ) = τ ∩D(τ).

Proof.Direct since any subset of Z that contains an open dense set is also open dense set, so it is SD-dense.

Example 5.A space (Z,τ) that satisfies SD(τ) = τ ∩D(τ) can be not S-space; for example the usual topological space
(R,τ) is not S-space but SD(τ) = τ ∩D(τ).

Theorem 15.If F is a subset of a submaximal space Z, then these statements are equivalents:
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1) F is dense in Z.

2) F is SD-dense in Z.

Proof.1) ⇒ 2) Let F be a dense set in Z, then F is open dense set, and by using theorem (8) the set F is SD-dense.
2) ⇒ 1) Obvious using corollary (1).

Remark.In submaximal space (Z,τ), we have SD(τ) = D(τ)⊆ τ .

SD-dense ≡ dense ⇒ open set ≡ pre-open set ⇒ b-open set ⇒ β -open set ⇒ s-dense

Example 6.A space (Z,τ) that satisfies SD(τ) =D(τ) may not be submaximal space; for example in (R,τ) given in remark
(3.1), we have SD(τ) = D(τ) = {K∪A ⊆ R : A∩Q 6= φ}∪{K}, but R is not submaximal, since K∪{0} is dense but not
open.

Theorem 16.A space (Z,τ) is hyperconnected if and only if τ/{φ} ⊆ SD(τ).

Proof.If V is a non-empty open set, then it is open dense, hence it is SD-dense. Conversely, suppose that V is a non-empty
open set, then V is SD-dense, i.e., V contains an open dense set, therefore it is dense, thus complete the prove.

Non-empty open set ⇒ SD-dense ⇒ dense open set ⇒ pre-open set ⇒ b-open set ⇒ α-open set ⇒ s-dense

Remark.In hyperconnected space (Z,τ), we have: SD(τ) = {A ⊆ Z : V ⊆ A for some non-empty open set V}.

Proof.Direct since any non-empty open set is dense, so it is SD-dense. Moreover, any set that contains a non-empty open
set is SD-dense.

Example 7.Hyperconnected space can contains a dense subset which is not SD-dense, for instance: If (Z,τ) is the trivial
space where Z has more than one element, then Z is hyperconnected space and S(τ) = P(Z)/{φ}, so any singleton {a} is
dense in Z but not SD-dense. Clearly, the only SD-dense in Z is Z.

Corollary 6.In hyperconnected S-space (Z,τ), non-empty open sets and SD-dense sets are equivalent, i.e., SD(τ) =
τ/{φ}.

Proof.Direct using the previous remark and definition (4).

Theorem 17.If F is a non-empty subset of a strongly hyperconnected space Z, then these statements are equivalents:

1) F is SD-dense in Z.

2) F is dense in Z.

3) F is s-dense set in Z.

4) F is open set in Z.

Proof.1) ⇒ 2) Obvious.
2) ⇒ 3) Obvious.
3) ⇒ 4) Obvious using theorem (3).
4) ⇒ 1) Obvious using the submaximality in theorem (15).

Remark.1. A space that satisfy any dense set is SD-dense may not by strongly hyperconnected space, for example, In a
space R with τ = {U ⊆R : 0 /∈U}∪{R}, we have S(τ) = P(R)/{φ ,{0}}, so SD(τ) = {R,{0}c}= D(τ). Therefore,
SD-dense set and dense set are coinciding, but the space (R,τ) is not strongly hyperconnected space since the singleton
{1} is open but not dense.

2. A space that satisfy any s-dense set is SD-dense may not by strongly hyperconnected space, for example, In a space
(Z,τ), where Z = {1,2,3}, with τ = {Z,φ ,{1},{1,2}} we have S(τ) = {Z,{1},{1,2},{1,3}}= SD(τ). Therefore,
SD-dense set and dense set are coinciding, but the space Z is not strongly hyperconnected space, since it is not
submaximal, since {1,3} is dense but not open.

3. A space that satisfy SD(τ) = τ/{φ} may not be strongly hyperconnected space, for example in the space (R,τ), where
τ = {φ}∪{U ⊆ R : {0}∪R+ ⊆U}, we obtain SD(τ) = τ/{φ}, but the singleton {0} is dense but not open, so R is
not submaximal, therefore is not strongly hyperconnected.

Corollary 7.In a strongly hyperconnected space Z if E ⊆ Z, these conditions are equivalents:

1) E is a non-empty open set.

2) E is a non-empty α-open set.
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3) E is a non-empty pre-open set.

5) E is a non-empty b-open set.

6) E is a non-empty β -open set.

7) E is a s-dense set.

8) E is a dense set.

9) E is a SD-dense set.

Proof.According to theorems (3,17).

3.5 Images of SD-Dense Sets

Here we show that SD-irresolute map preserves SD-dense sets, while SD-continuous map dose not, moreover, the image
of SD-dense set by SD-continuous map is dense.

Theorem 18.If f : (Z,τ) → (X ,σ) is surjective SD-irresolute map, then the image of any SD-dense set in Z is SD-dense

in X.

Proof.Suppose A is SD-dense in Z, but f (A) is not SD-dense in X , then there is a s-dense set B in X such that f (A)∩B = φ .
Since f is surjective and SD-irresolute, then A∩ f−1(B) = φ , where f−1(B) is s-dense in Z, which contradict that A is
SD-dense.

Example 8.The image of SD-dense set in Z by SD-irresolute map need not be SD-dense set in X , for example: Let τ =
{U ⊆ R : 0 ∈ U}∪{φ} and σ = {U ⊆ R : 0 /∈ U}∪{R} be two topologies on R, then SD(τ) = τ/{φ} while SD(σ) =

{R,{0}c}= D(σ). Therefore the map f : (R,σ)→ (R,σ) which defined by: f (r) =

{

1, r ∈Q

0, r ∈K
is SD-irresolute map but

not surjective, while the singleton {0} is SD-dense in τ but f ({0}) = {1} is not SD-dense in σ .

Theorem 19.If f : (Z,τ)→ (X ,σ) is surjective SD-continuous map, then the image of any SD-dense set in Z is dense in

X.

Proof.Suppose A is SD-dense in Z but f (A) is not dense in X , so there exists an open set B in X such that f (A)∩B = φ .
Since f is surjective and SD-continuous, then A∩ f−1(B) = φ , where f−1(B) is s-dense in Z, which contradict that A is
SD-dense.

Example 9.The image of SD-dense in Z by SD-continuous (continuous) map need not be SD-dense in X , for instance: If
τ = {U ⊆ R : 0 ∈ U}∪{φ} while σ is the trivial topology on R, hence the identity map I : (R,τ) → (R,σ) is surjective
SD-continuous (also is continuous) from; while the singleton {0} is SD-dense in τ but I{0}= {0} is not SD-dense in σ ,
since the only SD-dense in σ is R.

4 SD-Separability

In this section, we define SD-separable space, which is stronger than separable space and then we study its properties; as
subspaces and images.

4.1 SD-Separable Spaces

Definition 12.A space that contains a countable SD-dense set is called SD-separable space.

Corollary 8.Every SD-separable space is separable space.

Proof.Obvious since any SD-dense is dense.

Example 10.

1) If (Z,τ) is the trivial topological space where Z is uncountable set, then Z is separable space but not SD-separable,
because the only SD-dense set is Z.
2) If (R,µ) is the usual space, then R is separable but not SD-separable, because if F is a non-empty countable subset of
R then Fc is also s-dense and F ∩Fc = φ , so F is not SD-dense, i.e., any SD-dense in R is uncountable.
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3) If (R,τ) is a space where τ = P(Q)∪{R}, then S(τ) = P(Q)∪{A ⊆ R : A∩Q 6= φ ,A∩K 6= φ}. Hence the set Q∪B

where B ⊆K is SD-dense, so Q∪{
√

2} is a countable SD-dense in R, therefore (R,τ) is SD-separable space.

Definition 13.A space (Z,τ) is called SD-countable if the collection S(τ) is countable.

Corollary 9.Any SD-countable space is countable.

Proof.Obvious since τ/{φ} ⊆ S(τ).

Example 11.Countable space need not be SD-countable, for instance if (Z,τ) is the trivial space on infinite set Z, then τ
is countable space but not SD-countable, since S(τ) = P(Z)/{φ}.

Corollary 10.Every SD-countable space is SD-separable space.

Proof.Since the collection S(τ) is countable, now we can choose a point from each s-dense set from S(τ), the set F of all
such point is clearly countable and SD-dense, therefore Z is SD-separable.

Example 12.SD-separable space need not be SD-countable, for instance the space τ = {φ}∪{U ⊆ R : 0 ∈ U} on R, we
obtain S(τ) = τ/{φ}, then R is SD-separable space, since {0} is a countable SD-dense in R, but S(τ) is uncountable,
therefore τ is not SD-countable.

Corollary 11.If Z is a SD-separable space where Z is uncountable, then there exists an uncountable set which is not

s-dense.

Proof.Since Z contains a countable SD-dense subset E , then Ec is uncountable and not s-dense.

Remark.The inverse of the previous corollary is not true in general, for example: in the space (R,τ) given in remark (3.4)
number (1), the set of negative real numbers R− is uncountable and it is not s-dense, while R it is not SD-separable space,
since all SD-dense sets are uncountable.

Corollary 12.A space Z is SD-separable if and only if there exists a set A which is not s-dense, where A, Ac are uncountable

and countable sets; respectively.

Corollary 13.Submaximal separable space is SD-separable space.

Proof.Obvious since dense sets and SD-dense sets are equivalent from theorem (15).

4.2 Subspaces and Images of SD-Separable Spaces

Example 13.Subspace of SD-separable space need not SD-separable space in general, for instance: where Z is uncountable
set with topology τ = {U ⊆ Z : a ∈ U}∪{φ}, where a is a fixed point in Z, so S(τ) = τ/{φ}. The singleton {a} is SD-
dense, hence Z is SD-separable space but the subspace {a}c is not SD-separable space, since it is the discrete space. Note
that the subspace {a}c is not open subspace nor r-closed.

Corollary 14.Any open (dense or r-closed) subspace of SD-separable space is SD-separable space.

Proof.Direct using theorem (12) (theorem (13)).

Corollary 15.If a map f : (Z,τ) → (X ,σ) is surjective and SD-irresolute from SD-separable space Z, then X is SD-

separable.

Proof.Direct using theorem (18).

Example 14.The image of SD-separable space by SD-continuous map need not be SD-separable, for instance if (R,τ) a
space given in example (3) while (R,σ) is the trivial topological space, hence the identity map I : (R,τ) ⇒ (R,σ) is
SD-continuous (also is continuous) from SD-separable space (R,τ); since {0} is countable SD-dense in (R,τ), while the
space (R,σ) is not SD-separable, since the only SD-dense in (R,σ) is R.

Corollary 16.If a map f : (Z,τ)→ (X ,σ) is surjective SD-continuous from SD-separable space Z, then X is separable.

Proof.Suppose E is a countable SD-dense subset in Z, according to theorem (19) we obtain f (E) is a countable dense in
X , therefore X is separable space.
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5 Conclusion

Using the concept of somewhere dense closure operator, we define a generalization of dense set; namely SD-dense set,
then we introduce a new type of separability; namely SD-separable space. Here we outline the results that summarized
the properties of SD-dense sets and SD-separable space:

A. SD-Dense Set ⇒ Dense Set.
B. A subset F of a space Z is SD-dense if and only if F intersect all s-dense sets; equivalently if (Fc)oS = ϕ ; equivalently

if Fc is not s-dense; equivalently if Fo is open dense set; equivalently if F contains an open dense set.
C. The union of two non s-dense sets is also non s-dense.
D. The intersection of two SD-dense sets is SD-dense.
E. If W is open (dense or regular closed) subspace of a space Z, and F is SD-dense subset in Z, then F ∩W is SD-dense

in W .
F. A space is partition if and only if it has no proper SD-dense set.

G. SD-Dense Set
S-Space
====⇒ Open Dense Set.

H. SD-Dense Set
Submaximal Space⇐=========⇒ Dense Set.

I. Non-empty Open Set
Hyperconnected Space
============⇒ SD-Dense Set.

J. SD-Dense Set
Hyperconnected S-Space⇐============⇒ Non-empty Open Set

K. In strongly hyperconnected space, all these statements are equivalent: SD-dense set, dense set, s-dense set, β -open set,
b-open set, preopen set and open set.

L. SD-Separable Space ⇒ Separable Space.

M. SD-Separable Space
Submaximal Space⇐=========⇒ Separable Space.

N. SD-separable space satisfy the open (dense or regular closed) hereditary property.
O. SD-irresolute map preserves SD-separable space (SD-dense set).
P. SD-continuous map does not preserve SD-separable space (SD-dense set), but the image of SD-separable space (SD-

dense set) is separable space (dense set).

Note that some properties of SD-dense sets are different from dense sets, as in A, B (the third part), C and D.
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