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1 Introduction

Fractional differential equations have received significant attention nowadays in several fields of science and
engineering due to its applications such as : electrical engineering[1],economic[2],Modelling of Viscoelastic
Systems[3],diffusion processes[4],medicine[5]. It is difficult to find an exact analytical solution of all fractional
differential equations therefore several methods and techniques have been invented to solve fractional differential
equation for instance: fractional finite difference method[6], Adomain decomposition method[7],spectral
method[8],Bessel collocation method[9].

Spline technique has been investigated by many researchers for solving fractional differential equations due to its
accurate and efficiency for example: W. K. ZAHRA and et al proposed cubic spline solution of fractional Bagley-Torvik
equation[10], semiorthogonal B-spline collection is applied for solving the fractional differential equations[11],
NonPolynomial Spline discussed by Faraidun K. Hamasalh and et al to solve FDE[12], Faraidun K. Hamasalh and
Karzan A. Hamza, used Quintic B-spline polynomial for Solving Bagely-Torvik Fractional Differential Problems[13],
fourth order homogeneous parabolic partial differential equations solved using non-polynomial cubic spline
technique[14].

Conjugate gradient method is an appropriate and efficient method for solving a system of equations. The linear
conjugate gradient method was proposed in the 1950s by Hestenes and Stiefel to solve a linear system of equations with
positive definite matrices as an alternative to Gauss elimination[15], Fletcher and Reeves were discussed the nonlinear
conjugate gradient method in 1964[16]. Presently, conjugate gradient (CG) techniques are considered as a popular and
efficient approach to solve engineering optimization problems. As recent examples, shape optimization with nonlinear
conjugate gradient method proposed in[17], application in signal processing of decent hybrid nonlinear conjugate
gradient method discussed by Zohre Aminifard and etal[18] Abubakar and et al investigated a modified a three-term
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conjugate gradient projection with application in signal recovery[19].
The rest of this paper is organized as follows: in section 2, we briefly review the main definitions of fractional

calculus, some definitions and properties of the matrix. Mathematical formulation of the nonpolynomial spline function
discussed in section 3. In section 4 numerical results are illustrated to present applicability of the method. Finally, the
conclusion is presented in section 5.

2 Some basic definitions

Definition 1.[20] The Riemann-Liouville fractional derivative of order λ > 0 is defined by

Dλ f (t) = 1
Γ (m−λ )

dm

dτm

∫ t
a (t − τ)m−λ−1 f (τ)dτ, m− 1 < λ < m ∈ N

Definition 2.[21] The Caputo fractional derivative of order λ > 0 is defined by

Dλ f (t) = 1
Γ (m−λ )

∫ t
a (t − τ)m−λ−1 dm

dτm f (τ)dτ, m− 1 < λ < m ∈ N

Definition 3.[20] The Riemann-Liouville fractional integral of order λ > 0 is defined by

Iλ f (t) = 1
Γ λ

∫ t
a (t − τ)λ−1 f (τ)dτ, m− 1 < λ < m ∈ N

Definition 4.[20] The Caputo derivative of order λ of a polynomial function xd is defined by Dλ xd = Γ (d+1)
Γ (d−λ+1)x

d−λ

Definition 5.[22] The Spectral radius µ(M) where M is an n× n matrix is given by µ(M) = max(|λ |) where λ is an

eigenvalue of M.

Definition 6.[23] A square matrix M is called diagonally dominate if |mi j|< Σi6= j|mi j|

Definition 7.[22] An n× n matrix M is converges if µ(M)< 1.

3 Mathematical Formulation

In this study we consider the fractional differential equation of the form

y(
3
2 )+φ(x)y′′+ψ(x)y = τ(x), x ∈ [a,b] (1)

with the boundary conditions

y(a) = B1, y(b) = B2 (2)

Where φ(x),ψ(x)andτ(x) are functions of x, B1 and B2 are constants.Then the interval [a,b] can be uniformly divide into

j subintervals the length of uniform subintervals can be define as:∆x = h = b−a
j
, n = j− 1. In this existing literature

we can modify the model of nonpolynomial spline and the factional continuity by using Caputo type as follows:

S(x) = Si(x),x ∈ [xi,xi+1], i = 0,1,2, ...,n (3)

Here the nonpolynomial spline function with fractional order defined by

Si(x) = ai + bi(x− xi)+ ci(x− xi)
2 + di(x− xi)

3 + eisin(k(x− xi))+ ficos(k(x− xi)) (4)

where ai,bi,ci,di,ei, fi are constants for i = 0,1,2, ...,n and k is a free parameter .The function Si(x) interpolates y(x) at
the points xi by depending on k. To find the value of constants in equation (4) we supposed the following conditions:

Si(xi) = yi,Si(xi+1) = yi+1,S
′′
i (xi) = y′′i ,

S
′′
i+1(xi+1) = y′′i+1,S

( 3
2 )

i (xi) = pi,S
( 3

2 )
i+1(xi+1) = pi+1.

(5)
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Applying the conditions in equation (5) the value of all constants in equation (4) obtained as follows:

ai = (1− 2
3A1

√

h
π )y

′′
i +

4
3

√

h
π y′′i+1 − 1

A1
pi+1 +

A2
A1

pi,

bi =
yi+1−yi

h
− 1

h
( θ 2

2A1
+ h3β

A1
+ sinθ+cosθ−1

A1
)pi+1 − 1

h
((1−θ 2)A2

A1
+ h3

A5

+sinθ ( 1
k

√

2
k
− A2

A1
)− A2cosθ

A1
)Pi − 1

h
( 4

3

√

h
π − 2

3
θ 2

√

h
π + h3A4 − 4

3

√

h
π sinθ

−
4
3

√

h
π cosθ

A1
)y′′i+1 +

1
h
( h2

2
+ θ 2A3

2A1
− h3(β A3

A1
− 1

6h
)+ (sinθ+cosθ)A3

A1
)y′′i ,

ci =
k2

2A1
Pi+1 − k2A2

2A1
pi − 2

3
k2
√

h
π yi+1 +( 1

2
−

1
3 k2

√

h
π

A1
)y′′i

di = ( 1
6h
− 4β

3A1

√

h
π )y

′′
i+1 − ( 2β

3A1

√

h
π + 1

6h
)y′′i +

β
A1

pi+1+

(
√

2k2sinθ

6hk
3
2

− β A2

A1
)pi,

ei = (
√

2

k
3
2

− A2
A1
)pi +

1
A1

pi+1 − 4
3

√

h
π y′′i+1 +

4
3A1

√

h
π y′′i ,

fi =
1

A1
pi+1 − A2

A1
pi − 4

3

√

h
π y′′i+1 +

4
3A1

√

h
π y′′i .

(6)

where β = k2(sinθ+cosθ−1)
6h

,A1 = 2k2
√

h
π + 8β h

√

h
π + k

3
2 (cos(θ + 3π

4
)+ sin(θ + 3π

4
)),

A2 =
4
√

2θsinθ
3
√

π
−
√

2sin(θ + 3π
4
),A3 =

−2
3

√

h
π ,A4 = 1

6h
− 4

3

√

h
π ,A5 =

√
2ksinθ
6h

− β A2
A1

,θ = kh, i = 0,1, ...,n. Therefore we

obtain the nonpolynomial spline function, it can be easily verified that the spline scheme approximation S(x), is
successfully uniquely determined using the equation (6) recurrence formula for all h which in the interval, see[24].
Substitute these values in equation (4) we obtain

S(x) = (1− 2
3A1

√

h
π )y

′′
i +

4
3

√

h
π y′′i+1 − 1

A1
pi+1 +

A2
A1

pi +(
yi+1−yi

h

− 1
h
( θ 2

2A1
+ h3β

A1
+ sinθ+cosθ−1

A1
)pi+1 − 1

h
((1−θ 2)A2

A1
+ h3

A5
+

sinθ ( 1
k

√

2
k
− A2

A1
)− A2cosθ

A1
)Pi − 1

h
( 4

3

√

h
π − 2

3
θ 2

√

h
π

+h3A4 − 4
3

√

h
π sinθ −

4
3

√

h
π cosθ

A1
)y′′i+1 +

1
h
( h2

2
+ θ 2A3

2A1
− h3(β A3

A1

− 1
6h
)+ (sinθ+cosθ)A3

A1
)y′′i )(x− xi)(

k2

2A1
Pi+1 − k2A2

2A1
pi − 2

3
k2
√

h
π yi+1+

( 1
2
−

1
3 k2

√

h
π

A1
)y′′i )(x− xi)

2 +(( 1
6h
− 4β

3A1

√

h
π )y

′′
i+1 − ( 2β

3A1

√

h
π + 1

6h
)y′′i +

β
A1

pi+1 +(
√

2k2sinθ

6hk
3
2

− β A2

A1
)pi)(x− xi)

3+

((
√

2

k
3
2

− A2
A1
)pi +

1
A1

pi+1 − 4
3

√

h
π y′′i+1 +

4
3A1

√

h
π y′′i )sin(k(x− xi))+

( 1
A1

pi+1 − A2
A1

pi − 4
3

√

h
π y′′i+1 +

4
3A1

√

h
π y′′i )cos(k(x− xi)).

(7)

Now apply the fractional continuity conditions of the spline function Si(x) where the splines Sm
i−1(x) = Sm

i (x),m = 1
2
,1

joined, we obtained the following equations:

S
( 1

2 )
i (xi) =

√
2k

A1
pi+1 +

√

k
2
(
√

2

k
3
2

− 2A2
A1

)pi − 4
√

θ
3
√

2π
(1+ 1

A1
)y′′i+1 − 4

√
θ

3
√

2πA1
y′′i (8)
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, And

S
( 1

2 )

i−1(xi) =
2√
hπ
(yi − yi−1)+ (

√
k(cos(θ+ π

4 )+sin(θ+ π
4 ))

A1
+ 42β h

5
2

15A1

√
π
+ 4k2h

3
2

3A1

√
π
−

2L1√
πh
)pi +(

√
ksin(θ + π

4
)(

√
2

k
3
2

− A2
A1
)−

√
kcos(θ+ π

4 )A2

A1

+ 42h
5
2

15
√

π
(
√

2ksinθ
6h

− A2β
A1

)− 4k2h
3
2

3
√

πA1
− 2L2√

hπ
)pi−1

+( 42β h
5
2

15A1

√
π
( 1

6h
− 4β

√
h

3A1

√
π
)− 4

√
θsin(θ+ π

4 )

3
√

π
− 4

√
θcos(θ+ π

4 )

3A1

√
π

− 16θ 2

9π −
2L3√

hπ
)y′′i +( 8h

3
2

3
√

π
( 1

2
− k2

√
h

3A1

√
π
)− 2L4√

πh
− 42h

5
2

15
√

π
( 2β

√
h

3A1

√
π
+ 1

6h
)−

2
√

θ(sin(θ+ π
4 )+cos(θ+ π

4 ))

3A1

√
π

)y′′i−1

(9)

Such that,

L1 =
θ 2

2A1
+ h3β+cosθ+sinθ−1

A1
,

L2 =
A2
A1
(1−θ 2− sinθ )+ h3A5 +(

√
2

k
3
2

− A2
A1
)

L3 = h3A4 +( 4
3
− 2θ 2

3
− 4sinθ

3
− 4cosθ

3A1
)
√

h
π ,

L4 =
h2

2
+ θ 2A3

2A1
+ h3(β A3

A1
− 1

6h
)+ A3

A1
(sinθ + cosθ )

Here by equating equation (8) and equation (9) we obtain
√

2
A1

pi+1 +C1 pi − 4
√

θ
3
√

2π
(1+ 1

A1
)y′′i+1 −C2y′′i − 2√

πh
(yi − yi−1)

+C3 pi−1 +C4y′′i−1 = 0
(10)

Where, C1 =
1
k
−

√
2kA2
A1

− 4k2h
3
2

3A1

√
π
− 42h

5
2 β

15
√

πA1
−

√
k(sin(θ+ π

4 )+cos(θ+ π
4 ))

A1

C2 =
4
√

θ
3
√

2πA1
− 2L3√

hπ
− 16θ 2

9π + 42h
5
2

15
√

π
( 1

6h
− 4β

√
h

3A1

√
π
)− 4

√
θsin(θ+ π

4 )

3
√

π
− 4

√
θcos(θ+ π

4 )

3
√

πA1
,

C3 =
2L2√

hπ
+ 4k2h

3
2

3A1

√
π
+ 42h

5
2

15
√

π
(
√

2ksinθ
6h

− A2β
A1

)−
√

ksin(θ + π
4
)(

√
2

k
3
2

− A2
A1
)+

√
kcos(θ + π

4
)A2

A1
,

C4 =
2L4√

hπ
− 8h

3
2

3
√

π
( 1

2
− k2

√
h

3A1

√
π
)+ 42h

5
2

15
√

π
( 1

6h
+ 2β

√
h

3A1

√
π
)+

√
2θ(cos(θ+ π

4 )+sin(θ+ π
4 ))

3A1

√
π

.

from equation (1), and using backward, central, and forward difference formula for y′′i+1,y
′′
i ,andy′′i−1 respectively we have

pi+1 =−φi+1(x)y
′′
i+1 −ψi+1(x)yi+1 + τi+1(x)

pi =−φi(x)y
′′
i −ψi(x)yi + τi(x),

pi−1 =−φi−1(x)y
′′
i−1 −ψi−1(x)yi−1 + τi−1(x)

y′′i+1 =
yi+1−2yi+yi−1

h2 ,y′′i =
yi+1−2yi+yi−1

h2 ,y′′i−1 =
yi+1−2yi+yi−1

h2

(11)

substitute equation (11) in equation (10) we obtain:

aiyi−1 + biyi + ciyi+1 = Fi (12)

Then, a system of linear equation is formulated using equation(12) as follows :

Ay = F (13)

such that

A=

















b1 c1

a2 b2 c2

a3 b3 c3

. . .
. . .

. . .

an−1 bn−1 cn−1

an bn
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y = [y1 y2 y3 · · · yn−1 yn]
T , and F = [F1 − a1y0 F2 · · · Fn−1 Fn − cnyn+1]

Such that,

ai =
−
√

2kφi+1

h2A1
− 4

√
θ

3
√

2πh2 (1+
1

A1
)− C1φi

h2 − 1
h2 (C4 −C2)+

2√
hπ

− C3φi−1

h2 −C3ψi−1,

bi =
2
√

2kφi+1

h2A1
− 8

√
θ

3
√

2πh2
(1+ 1

A1
)+ 2C1φi

h2 − 2C3φi−1

h2 − 2
h2 (C4 −C2)−C1ψi − 2√

hπ
,

ci =
−
√

2kφi+1

h2A1
−

√
2kψi+1

A1
− 4

√
θ

3
√

2πh2
(1+ 1

A1
)− C1φi

h2 − C3φi−1

h2 + 1
h2 (C4 −C2)

Fi =
√

2k
A1

τi+1 −C1τi −C3τi−1, i = 1,2, · · · ,n.

4 Numerical experiments

In this section the method applied to several numerical examples of boundary fractional differential equations, the result
compared with the exact analytical solution to show the methods efficiency. The computational programs were written in
MatLab. Here the algorithms of the conjugate gradient method is presented.

Algorithm 1suppose that we have the linear system (13) where A is symmetric positive definite matrix The conjugate

gradient algorithm expressed as:

–chose y0 ∈ Rn, and put d0 = r0 = F −Ay0 for k = 0,1,2, · · ·
–If dk = 0, stop and yk is a solution of Ay = F.

otherwise compute

–αk =
rT
k rk

dT
k

Adk
,yk+1 = yk +αkdk,

–rk+1 = rk −αkAdk,βk =
rT
k+1rk+1

rT
k

rk

–dk+1 = rk+1 +βkdk.

Example 1.[20] Consider the fractional differential equation

D2y(x)+D( 3
2 )y(x)+ y(x) = 1+ x,x ∈ [0,1]. (14)

with the boundary conditions y(0) = 1,y(1) = 2
,The exact solution of (14) is given by y(x) = 1+ x.

The numerical results using conjugate gradient method with, h = 1
32

, and 31 iterations tabulated in Table1

x Exact solution proposed method Absolute error

0.125 1.125 1.125927 9.27×10−4

0.25 1.25 1.251416 1.41×10−3

0.375 1.375 1.376678 1.67×10−3

0.5 1.5 1.501712 1.71×10−3

0.625 1.625 1.626516 1.51×10−3

0.75 1.75 1.751092 1.09×10−3

0.875 1.875 1.875442 4.42×10−4

Table 1: Exact, approximation solution, absolute error of example 1
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Fig. 1: Exact and approximate solution of example 1 with h = 1
32

Example 2.[25] Consider the fractional differential equation

D( 3
2 )y(x) = cos(x+

π

4
),x ∈ [0,1]. (15)

with the boundary conditions y(0) = 1,y(1) = 1.84147
,The exact solution of (15) is given by y(x) = sin(x)+ 1.

The numerical results using conjugate gradient method with, h = 0.01, and 99 iterations tabulated in Table 2 with
comparison to reference [25].

x Exact solution proposed method Absolute error Absolute error [25]

0.1 1.09983 1.09051 9.32×10−3 2.29×10−3

0.2 1.19866 1.17982 1.884×10−2 9.97×10−2

0.3 1.29552 1.26783 2.768×10−2 1.03×10−1

0.4 1.38941 1.35445 3.496×10−2 8.901×10−2

0.5 1.47942 1.43959 3.982×10−2 1.995×10−2

0.6 1.56464 1.52320 4.144×10−2 9.144×10−2

0.7 1.64421 1.60521 3.900×10−2 8.577×10−2

0.8 1.71735 1.68560 3.174×10−2 9.177×10−2

0.9 1.7833 1.76435 1.896×10−2 7.467×10−2

Table 2: Exact, approximation solution, absolute error of example 2
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Fig. 2: Exact and approximate solution of example 2 with h = 0.01

Example 3.[26] Consider the fractional differential equation

D2y(x)+
√

πD( 3
2 )y(x)+ y(x) = 0,x ∈ [0,1]. (16)

with the boundary conditions y(0) = 1,y(1) = 0.775989.

The numerical results using conjugate gradient method with, h = 0.125, and 7 iterations tabulated in Table 3, with
comparison to reference [26]

x Exact solution proposed method Absolute error Absolute error[26]

0.125 0.99437 0.98819 6.17×10−3 1.24×10−3

0.25 0.979919 0.971592 8.32×10−3 5.11×10−3

0.375 0.958424 0.95024 8.17×10−3 1.387×10−2

0.5 0.930957 0.92424 6.71×10−3 2.614×10−2

0.625 0.898335 0.89367 4.65×10−3 4.039×10−2

0.75 0.861241 0.85868 2.56×10−3 5.579×10−2

0.875 0.820277 0.81939 8.8×10−4 7.148×10−2

Table 3: Exact, approximation solution, absolute error of example 3
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Fig. 3: Exact and approximate solution of example 3 with h = 0.125

5 Conclusion

This study constructs a non-polynomial spline function to approach the Bagley-Torvik Fractional Differential Problems
with the conjugate gradient method. The numerical examples demonstrate that the non-polynomial spline and conjugate
gradient techniques are more adaptable for approximating functions. The graphs of exact and approximate solutions for
numerical examples show the superiority of our approach.
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