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1 Introduction

The theory of wavelets and continuous wavelet transforms has garnered increased interest due to the limitations of Fourier
transform in providing complete information about a signal. In particular, Fourier transform can not be a suitable tool for
non stationary signals, in which frequency changes with respect to time. Hence appears the importance of the wavelet and
the continuous wavelet transform CWT. For an overview of CWT, we refer the reader to [5,27]. Motivated by the works
of [31,14,1], we consider in this paper, time-frequency localization problems in the case of continuous Laguerre wavelet
transform CLWT. The interest of studing Laguerre transform comes from Heisenberg group which replace the euclidean
space in quantium mechanics. Roughly speaking, Fourier Laguerre transform is non other than the Fourier transform of
radial functions in this occurence. Studying the uncertainty principle for .7} was subject of several works by the authors
and many more, one can cite for instance [9,10,20,22,26]. However studying the uncertainty principle for CLWT still
less aborded. Note that the harmonic analysis associated to CLWT was initiated in [23], where the Plancherel and the
inversion formulas were established for CLWT. Recently Mejjaoli and Trimeche in [16, 15] considered such problems in
the case of two-wavelets in Laguerre occurence. In this paper, we improve the litterature by giving uncertainty inequalities
for CLWT.

The uncertainty principle is one of the most interesting result which gives us an overview on the positioning of a
function and its Fourier transform. This principle states, in quantum mechanics, that an observer cannot determine
simultaneously the values of position and momentum of a quantum particule with precision. A precise quantitative
formulation of the uncertainty principle, usually called Heisenberg inequality [11,30] is stated for f € L?(R), as follows:

[Rlrwpka . [ &|fe)] e = %(/RIJ”(x)Izd)C)z’ m

where fis the Fourier transform, given for suitable functions by

-~

_ L x) e S¥dx
&)= = [ e Sax
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Another version of the uncertainty principle concems with concentration of f and its Fourier transform. We reference
two results: the first one was studied by Faris [17] and Price [18,19] in the classical Fourier setting, known as the local
uncertainty principle. The second one goes to Benedicks and Amrein-Berthier. Benedicks [3] first introduced this theorem,
stating that if a function f has a subset S of finite measure as its support, and its Fourier transform £ has a subset X of finite
measure as its support, then f must be the null function. A stronger formulation of this principle was provided by Amrein
and Berthier in [2] for the classical Fourier occurence. In this paper we prove the analogue of all previous uncertainty
principle theorems when considering the CLWT.
Our paper is structured as follows.

In section 2, we start by giving some useful background evoking Laguerre hypergroup K and Fourier Laguerre transform
Z1. Section 3 summarizes key facts about basic Laguerre wavelet theory. Section 4 is devoted to our main results. First,
we prove Heisenberg-type uncertainty inequalities, analogous of inequality (1), considering the product of dispersions
with both position and scale as variables, for the CLWT. Second, we prove two theorems dealing with concentration
in the support of a given function and its CLWT. The first is a local uncertainty principle and the second deals with a
Benedicks-Amrein-Berthier’s uncertainty principle.

2 Laguerre hypergroup and Fourier Laguerre transform

Laguerre hypergroup emerges as the fundamental manifold of the radial function space in the (2n + 1)-dimensional
Heisenberg group H", where the multiplication operator is given by

(z1,01)(z22,82) = (z1 + 22, 11 + 12 — Im(z122)).

A function f on H" is considered radial if it remains invariant under the action of the unitary group % (n) via u.(z,t) =
(u.z,t). For additional details we refere the reader to [6,28,29]. Let oo > 0. The Laguerre hypergroup K = [0, +o0) x R is
equiped with the convolution product *. This product is defined for two bounded Radon measures p; and y, on K as:

<u1*all2,f>=/ THf(y,s)dpdps,
KxK

where 7,7 is the generalized translation operator on K given, for & = 0, by

1 2T
T;O;f(y,s)zﬁ/ F(V/x2 42+ 2xycos 6,1+ s+ xysin0) dO )
’ 0

and, for o > 0, by
TG f(y,s) =

o [2r rl
;/ / F(Vx2 432+ 2xyrcos 0,1 + s+ xyrsin0)r(1 — )% 'drd6. 3)
o Jo
Remark that if y; and p, are equal to Dirac measure at (x,¢) and (y,s) € K then
(5(x,l) *o 5(),s))(f) = E%f()’as)-
We find in [23] that (KK, *) has a commutative hypergroup structure in the sense of Jewett. The involution is defined by
the homeomorphism i(x,7) = (x,—t) and the Haar measure is given by
20

dma(x,t) = dedt- 4

e =(0,0) is the unit element of (K, *¢) since &, ;) *a 6(0,0) = 0(0,0) *a O(xr) = S(x)- In the case of Laguerre hypergroup,

the dual space, the space of all bounded functions  : K — C satisfying for (x,t) € K, ¥(x,7) = x(x,—t) = x(x,1), is
described by
{@am> (A,m) e R xN}U{@p; p >0},

where @
. [ o
®p = ja(px) and ®r.m(x,1) =t 2, (|l|x2). (&)
Note that j is the normalized Bessel function of order o and .,s,ﬂ,,ﬁ"‘) is the Laguerre function given on R by
« L%(x)
L (x) = e T ©)
" L(0)
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where L% is the Laguerre polynomial of order o and degree m,

arn vyl (m+a+1) 1 k
L’”(x)_,;)( Ve a1y Kim i1 7

Topologically, the dual space can be identified to the Heisenberg fan, the set

U () € B2 = [A]@m+ a+ DI J{(0,1) € B:p1 > 0},

meN

The subset {(0, 1) € R?;u >0} is usually disregarded since it has zero Plancherel measure. Therefore, it is natural to
concentrate on the characters @, ,,. For (A,m) € R x N, ¢, ,, is the unique solution to the problem

Diu=ilAu,
Dau=—afa|im+ 5y ®)

with the initial condition

)
u(0,0) =1, a—Z(O,I) =0 forallr € R,

where, for all oo > 0,

d
Dy = =
7,

b a1 L ©)
27 ox2 x Odx xaﬂ'

For (A,m) € K =R x N, the function @) satisfies, for all (x,7), (y,s) € K,

(P),,m(xat) (pl,m(yas) :73((3; (pl,m(yvs)' (10)

Furthermore, the Laguerre kernel is bounded function, and we have

V(l,m) GKa sup |(P)L.m(xvt)|:1'
(xp)ekK

Denote L?(K) = LP(K,dmy) the space of measurable functions f satisfying

1
i p
1Nl pona = (/K |f(x,t)|”dma(x,t)) < oo,
The Fourier Laguerre transform of a function f in L' (K) is defined by

Fif(Aym) = /K F) g6, 1)dmg (x,1). (11)

The %, is bounded operator from L!(K) to L*(K) and it satisfies ||.ZLf||« < || f|l1.mq- Moreover, the Fourier Laguerre
transform can be inverted by

F et = [ F0m) @y 1)V (Rm), (12

where dy, is the unique positive Radon measure on K for which the Fourier Laguerre transform becomes an L2-isometry.
This measure is given by

dYa(A,m) = L%(0)5, @ |A|*TdA. (13)
To simplify we will denote, when needed, d ¥y, to state dyy (A, m). Fy, transform satisfies the following Plancherel Formula
1L f 2.0 = 1f|2mas (14)

where

1
P
e = ([ lehmlParetam ) < v

gl
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By Riesz Thorin interpolation, we can expand the definition of .%, f on L?(K) for 1 < p < 2. Consequently, we obtain the

Hausdorff-Young inequality, for % + i, =1,

IZLf | pt g < (15)
If f € LP(K) then, for all (x,7) € K, 7,7 f € LP(K) and verifies
TSl pma < (16)
Moreover
FLUTL)(Asm) = @ (x,0) FLf(A,m). (17)
The generalized convolution product of two functions f and g in L' (K) is defined by
f*ag X, t / lf y7 —s)dma(y,s), (X,f) € K. (18)
Young’s inequality allows to extend the definition of x4 to LP(K) x L(K), where p,q,r > 1 and % = % + é — 1. For
f€LP(K)and g € L1(K), where 1 < p,q,r <2 with 1 = %+§— 1, we get
[1f *a gllrmq < 19)
and
FL(f*ag) = FL()TL(8)- (20)

3 Basic Laguerre wavelet theory

In this section, we gather some background related to CLWT. First and foremost, we shall adapt the definition of the
dilation operator in order to get formulas that can be compared to the classical Fourier Wavelets. We consider as in [21,
22] the dilated of (x,7) € K defined by &, (x,z) = (rx,r%t). For f,(x,t) = r~2%t4) £(§; (x,1)), we have

/K Fo(x,1) dme(x,1) = /K F61) dme(x,1). @1
We define, for a > 0, the dilation operator A, by
1 x t 1
Aay(x,1) = WW(Z’ ;) = WW((S% (x,2)). (22)

We can easily deduce the following properties.

Proposition 1.Let a > 0, we have

LForallap>0  AuAp=Ag,.
2.For all y € L*(K), the function A,(y) belongs to L*(K) and satisfies

[Aa¥ll2.me = W ll2mq- (23)
3.For all y € L*(K), the Fourier Laguerre of A,() is well defined and we have
FLday =417y, 24)

where

Aaf(A,m) = a~ @D f(8] (A,m)),

and 8!(A,m) = (r*A,m) is the dilated of (A,m) € R x N.
4.Let h,g € L*(K), we have
< Agh,g >L2(K):< hAig >L2(]K) .
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S.Forall a >0 and (x,t) € K A TS = Ty, (x,t)Aq, where T is the translation operator associated to Laguerre
hypergroup given by (2) and (3).

Proof.1. For all a,b > 0,

1 x t 1 x t
AaApy(x,1) = Aq (WW(E’ ﬁ)) = WV’ (E’(aT)Z) =AY (x,1).

2. The result is obvious by considering the substitutions y = 7 and u = al_2
3. Considering y = 7 and u = al_2 in (11), we get

FrAnf (Ae,m) = /K FOv0) @ (ay,a?ia) a2 dimeg(y, ).

Now using (5), we observe that a®*2¢_; ,(ay,a*u) = @_2; ,,(v,u), which gives the wanted result.
4. By the same change of variables, we obtain

< Aahig >= a2 [ hy)g(ay.au)dmaln).

Hence, the result holds from (22).
5. The last point follows by remarking, in (2) and (3), that

2 21,2 2 :
f <\/x2+ (X) +2XXI‘COSG,L2+S+XXI‘Sin9> =f <\/(ax) Ty +2(ax)yrcos(97t+a s+(ax)yrsm9> .
a a a a

a a?

Definition 1.Let y € L*(K). We say that ¥ is an admissible Laguerre wavelet on K if there exists a constant cy satisfying,
forallm € Nand A € R,

oo
0<cy :/0 |<?Ll/l(5;(l,m)|2% < oo 25

According to [23], such admissible wavelet in Laguerre hypergroup exists. For instance, we cite the following function in
L*(K): y = %, (), where

V(h,m) €R, OA,m)=A(m+ O‘T“)e-ﬂm%“ﬂ (26)

Now, let W be a Laguerre wavelet on K in L?(K). We consider the family y**/, of Laguerre wavelets on K, defined by
VX', ) ek, wH (X)) = T:;(Aal//(x', —t"). (27)
By virtue of (16) and (23), we get immediately, for all a > 0 and (x,?) € K,

W 2me < [1Wll2ma- (28)

Definition 2.7he continuous Laguerre wavelet transform CLWT, WVL, is defined for a regular function f on K by

V(ant) € (0499) x K, WEf(ant) = [ (W00 dma (4 o). 29)
K
We can also write
WJ;f(CL.x,t) =< f, V’a7x7[ >L2(K):< f’7 E?;Aaw >L2(K) . (30)
Moreover, relation (29) can be written as:
Wy f(a,x,t) = fxq AaW(x,1). (31)
©2024 YU
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By Young’s inequality, the CLWT can be defined for a function f € L?(K), where p € [1, 400, and an admissible wavelet
v e LY (K), where p/ = %. Consequently, for all (a,x,t) € (0,+) x K,

—(a+2)

Wy f(a,x,1) s 1 e 32)
Let U = (0,+) x K. For p > 1, we equiped this space by the “affine” measure
dadmgy(x,t
dva(awnr)::——;;g%%——l (33)
Denote by L?(U) the space of measurable functions f on U that satisfies
1
+oo 7
s = ([ [ 1Ftaxnpavatans) <-+e. G4

According to (31) we assert that if ¥ is an admissible Laguerre wavelet on K, and f € L?(K) then the following
Plancherel’s formula for CLWT holds.

IWgA113 v, = £ m- (35)
Furthermore, we can deduce the following Parseval’s relation for f and g in L?(K),
~+oo
cy <f,8>px / / faxt Wg(axt)dva(axt) (36)

According to (32) and (35), we derive from Riesz Thorin interpolation theorem that the definition of CLWT can be
extended to L?(K) when 1 < p < 2. We get that W‘ﬁf belongs to L (U), where % + ﬁ =1, and

i =5
W lpve < ¢ (@@ 2N lema) 7 1l (37)

4 Main results : CLWT uncertainty inequalities
We shall introduce the following notations. For all (x,#) € K, the homogeneous norm on K is given by
1
(o) = (1)l = (x* +4r%) . (38)
R x N is equiped with the quasinorm defined, for all (1,m) € R x N, by

a+1
[(em)| = 4f2 |+ 222), (39)
4.1 Heisenberg type inequalites for CLWT
From [9,26], the Heinsenberg inequality for .%#| states that forb > 1 and f € LZ(K),

GO fll2amg (A m)

In the case of CLWT, Heisenberg type inequality dealing with dispersion on position (x,t), is given by the following
theorem.

b
270 2y = CIF3 g (40)

Theorem 1.Let v be an admissible Laguerre Wavelet on K and b > 1. Then for all f € L*(K),

b
1) Wy 2wl (A, m) 12 ZLE |2 2 €/l 13 g (41)

where C is the same constant given in (40).

©2024 YU
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Proof By virtue of relations (31) and (20), we have
| LWy fAem) P = | ZLf(Asm) [P | FLAy (A m) .
Relation (24) and the admissible condition (25) lead to

da

too
/0 Py (m)P e =y, 42)

Therefore, using Fubini’s theorem, we get

L L 1Gm L Zw s m e —gies = ey [ 1Gom)"\Z Goom) P

On the other hand, since f belongs to L*(K) then we deduce that the function Wy, f(a,.,.) belongs to L*(K). Applying
Heinsenberg type inequality (40) to W‘ﬁ fl(a,.,.), we get, for all a € (0,+o0),

</ |Gt PEWE f(a,x,0)] dmaxt) (/ |2y m) P|ZLWES (A m) Py (A m) >c/| L f(ax,1) Pdma (x,1).
K

d
Integrating with respect to , the left hand side is given by

ver ([, |(x,r>|2b|w$f<a,x,t>|2dva<a,x,r>>% (/,

and the right hand side is written as multiple of

/ /| faxt|dma(xt) f;is.

Using Plancherel formula, this integral equals to

1

(/1,m)IbI%f(lvm)ldea(l,mO g

oo d
X = / /m L) Py (hm) s,

Therefore, relation (42) leads to

e da
X = [ [ IZLrmPFiaay (hm)Paya(hm) s

— ¢y /]K \ZLf (Am)2dye(A,m)
= eyl F1Z -

Consequently

1

vew ([ 10 P werannPavatann ) ( [1Gam |2 Par) > Coy 111,

which allows to deduce inequality (41).

As an application, we proceed in similar way as in [1], we deduce the following result:

Corollary 1.For all s, > 1 and for all f € L*(K), we have

s E K — 5S— S
Gt PWELS A m)| T FLfNS 4 > Clye) P58 (43)

©2024 YU
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ProofLet s, 8 > 1. For f € L>(K), assume that

[Spes)

G WA oo 111 m)
Applying Holder’s inequality, we have

FLL 3,5 < oo

s 1/s 1/s
Gt ) W Fllave < G0 W FI1S W £113,

2,Vq 2,Vq
and
1 Am)| ZL g < M) = ZL A5 | 2L p)E
Therefore
) FWE £y > DV,
IWE I3,
and

1
(A, m)? %fnéim

B
(A, m)[2 ZLf |2, >

[El%
Using Theorem 1, we derive that
2Bs
(eI LA ILE Ty p——" 1 i, —
IWE LI5S, V17115,
Plancherel formula and relation (37) allow to deduce the wanted result.
Lemma 1.Let B € R. We consider v, an admissible Laguerre wavelet, satisfying
V(hm) €K, Fry(h.m) = (Al). (44)

If f belongs to L>(K) then

laP Wy f13.v, = A(GP)2P)-NA1E Zif 1By, 45)

where §(A) = ¢(A?) and M is the Mellin transform defined by

i@ = [

t

Proof.

da
W s 1B, = /0 a2 [0S Rom) Pl LAy ()P pm) s

=M§OL32 L1711 m) P () dya (2 m)

where e p
va) = [ mEymP
0

Making a change of variable, we have
T . du -
l1"(/1):|/1|3/0 u2ﬁ|¢)(u)|27:|/'L|3///(|¢)|2)(2ﬁ).
Thus
la P WEfI3 , =4 (16)(28) ZL“ LA 17 )P ,m).

This gives the wanted result.

Theorem 2.Let s, 3 > 1 and h an admissible Laguerre wavelet verifying (44). Then, for all f belonging to L*(K), we have

s s e B
HaPWE 1S o || )W £1B > Cey tt (1612)@B)-NA 2 ZLE (3 £ B (46)

Proof Theorem 2 holds from Lemma 1 and Corollary 1.

©2024 YU
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4.2 LP Local uncertainty principles for CLWT

This section is devoted to uncertainty principles of concentration type for CLWT in the L? theory.

Theorem 3.If | < p <2, g = -5 and, then for all nonzero f € LP(K) and for all measurable subset T C U such that
0 < vo(T) < +oo, we have
(a)If0<s < 20‘—;4

s

1 .
Wil < Cils.a,0) ey ™ val(T) 55 [[[) £l g » 47)

where C|(s,q, ) is a constant that depends on s, q and .
(b) If s > 222,

. L. 2as+4 (2f1+4)
I Wirl),.. < Cals.q.0) Vel 7l I 1) , @)
where Cy(s,q, Q) is a constant that depends on s, q and o.
(C) IfS 206+4
4~ T @ 2t G
Wyl ,, < C3(a,@)ey V(1) T | 150 || )| b (49)

where C3(¢,0) = C (2,q,a)(a+2) (a+ )72,

Proof.(a) For all r > 0, we define B, = {(x t) €K ; |(x,r)| <r}.Denote by xp, and xpc the characteristic functions.

Let f € L5(K),1 < p <2 and g = -Z. It follows using Minkowski’s inequality,
\!er$f e < Wy (12, o, + ler Wy (P2,
Therefore :
2 Wyt < Va(T)e [Wy(rxs )., ,, + IWeFas)l, ., (50)

Using relation (32), we get

Wyl ., < Va(T) 10 2 Y | £ 28, |1 e + |WEF ) e 51)

Let0<s < Zo‘fq‘”. By Holder’s inequality, we obtain

25, @O Pl | 160128, - (52)
Considering (38), let’s examine polar coordinates in the Laguerre hypergroup structure:
1
x= pcos(9)7
, wherep =|(x,1)|k.
{ o) p=1(x0)
The Jacobian is given by:
1 . 2
[ st psin6) £ cos(6)
—5sin(0)cos(8)72 5-cos(0)
and
1 rrs
t s - —sq+2a+3 0 ocd do = A q.
H | )C | xBr qma 27[1"((1_’_1)/(; ‘/7%p COS( ) p (sﬂQﬂa)
Therefore, we have
2044
1528 1 < Als gy 0) 77T LD g (53)

©2024 YU
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B(L 1) q
where A(s,q,0t) = AT (et 1 )2(2’ 2+ s ) B is the beta function.
2)

On the other hand, by relation (32), we obtain

1 1-2
W), <t (a2 N lome)
1 5 175
<cf (@D NWloma ) EOE Ly |10
Hence
. 1, 1-2 . ,
Wg (sl ,, <cb (a ) IEOF Pl (54)
Combining the relations (51),(53) and (54), we deduce that
2 Wy £l < gas(r) IO Flp g (55)

where gq sis the function defined on (0, +eo) by

200+4

1-2 1
we) T A0 0) @D vl

1
gaslr) =y (a

By minimization of the right-hand side of the relation (55) over r > 0, we get

| Wi f|| Ci(s,9, )cfy By (T) 25 || ()

q.Vo — pime?

59
20+4 2a+4 Yot
1 (
Gils.q.@) = <206+4—SC1)< 5q >

where

=%+ oaa sq
o+ L -
ma) T A, @)%,

(b) The inequality (48) holds if [|[(x,2)[* f] , ,,,, = +oo. Assume that |||(x,2)[* f],, ., < +oo-
From the hypothesis s > 3@ + 2, we derive that the function
1
(x,1) = (14 [(x, 1)) >
belongs to L9(K). Holder’s inequality leads to
(TS (T (e Lo Ly I (RN L (56)
P 4ma
Since R
[ 1oz gl|) =11 g+ DI £,
then 1
1l <NGss0) (171 1D 75, ) (57
where
Ns,q.0) = |1+ ol 7|
q,Mq
Using polar coordinates in the Laguerre hypergroup structure, we obtain
1
+1 1 2(a+2) 2(a+2) q
o 2w spl(a+1)
For r > 0, we consider f,(x,t) = r~(2#*4) f(% L) Then we have
Hfr”l,ma = Hf“l,ma’ (58)
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Hfr”pma - pma (59)
and
GO fell g = 1" ) Fl1 g - (60)
Considering f, in relation (57), we conclude that for all r > 0, we get
q
20+4 P
1y <G50 (75 Uy 7 1008 11, )
By minimizing the right-hand side of this inequality, we deduce
sq 2044 sq atd) pled)
a)? -1) s« | ——— " H|* . 61
OV B e ers ) L 4 M [ 01 1)
Then, according to relation (61), the function f belongs to L! (K), and we have
L
lerWirl?, < ver) W fnw N
svam( ) 1A g
Using the relation (61), we get
(2a+4)

Wy}, < va(T) Ci(s.q, @) Hprm; " I

Y

where
20+4

q sq 5 sq
N o)? -1 — .
) (s,4.00) (2a+4 sq(2a+4))

(c) Consider s = %(a +2). Using the fact that for € > 0,

Cl(s,q,00) = (cf

2(o+2)
(G0 @
2(a+2) ’
E 4

(6,0

5

~

<1+

ENIS]

it follows that 5 ) 2 2 2
H |(xt 5 fH < gq Hf||p,oc+8§_a(a+2)H |(x’t)|§(oc+2) f‘

Optimizing in €, we get:

1
20+4 o2

[Cen)] 7 f

H |(x,t)|% prya < (+2) (a+ )a+2 ||f||p T

P
Together with (47) for s = = < 2‘”4 , we get the wanted result.

Theorem 4.Let s, p be two real numbers such that 0 < s < 20t +4 and p > 1. Then, for every function f € LP(K) and for
every measurable subset T C U such that 0 < vy (T) < +oo, we have

K

WS C Vo(T) 77T

(T (6

2,Va

1
_ t .YwL
oDl WS

Pva_

2Q2a+4)—s

(p+1)(2a+4)
Note here that

where K = and C is a constant that depends on s, p and .

‘ 1

1
(;wxat) = (F +X4+4t2)‘l‘.
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Proof.One can assume that ||f||,,, =1, and ||y]|,,, = 1. The general formula follows by making the substitution
f v

fi=r—and y:= —/———

Hf”Z,ma

For all r > 0, we put V, = {(a,x,1) € (0,+)xK ; |($,x,t)| <r}.Let 0 <s <20 +4. By Holder’s inequality, we
obtain

Wyt o, < lrw Wl o, + lroveWirl,,,,

Let 0 < s < 2a + 4. Using Holder’s inequality and relation (32), we obtain

1

[xrov, Wy, < Wy (/) x&/mammem mmm%wg”

< Va1 |, W ]

1,V
L
L 1 s L 1 B Pl
< v (T) P |l|(=x 1) 'W, |(=x0) 2,
a 2. Va a 2, Vg
y= 1
Making the change of variables < y = x2 , we get
w=2t
2 ot

1
—x.t)* = 2 2 4 ——dudvdw.
W%wﬁlmjv [0+ )y v

1V

Applying polar coordinates in R?, we find

p2cos(@)dp dOde.

Lo P 7 (peos(8)cos(9))*H! (psin(8) cos(¢))
e I L A PN

By a simple calculation, we get

1 B —
x0Tl = A (5,002,

. Thus we obtain

where A (s, o) = <

1
a2t 20+4—s
Lell™ ertts™or, (63)

2,V

|, 1
HmeVrWV%pryva < Va(T)7P (%, W

On the other hand, using Holder’s inequality and relation (32), we conclude that

1
p+l 1724{_1 ’
f XTnVC a,x,t)|W, f(a,x,t)| dvg(a,x,t)

°°Va

| 2rewe Wy f||

PVa — H

1
1 pam)
< v (T)?etD (/ xvrc(a,x,t)|W$f(a,x,t)|2dva(a,x,t))1
U

R
< v (T) Pt |[[(=,x,1)|'W, rpet,
a 2,Vq
Hence
1
L A1 surL gl 7!
[2rWy £l < Pocs(r) Va(T) 00 N[ ) Wy f| (64)
’ 2,Va
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where hgq 4 is the function defined on (0, +o0) by

4—s 1
hs(r) = A (s, )P s P++1 H|(—ax7f)|SWLf
’ a

T
yp+l,

2,Va

By minimizing the right-hand side of the inequality (64) with respect to r > 0, we obtain

1 1 oo L % - (p+l)(SZot+4)
lerWirll,, < Clovp@) Va(T)FT || ) Wi ,
2,V
where
20+4 20+4 — s s
Cls,p,a) = (5ot 2y (FEE2 8 s g (5, 00) ),

20+4—s K

4.3 Benedicks-Amrein-Berthier’s uncertainty principle for CLWT

A strong formulation of Benedicks-Amrein-Berthier’s result for the Laguerre Fourier transform was established by the
second author in [20]. This result asserts that, for § C K, X C K a pair of measurable subsets of finite measures
Uee(S), flg(X) < +oo, we can find a constant C(S, X) such that, for all f € L?>(K),

1, <€6.2) ([ nPamaten) + [ 150 Pdnam). 3

The constant C(S,X) is called the annihilating constant, and (S, X) is termed a strong annihilating pair. In the context of
CLWT, we obtain the following result.

Theorem 5.Consider two measurable subsets S C K, £ C K with finite measures Uy (S), fla(E) < +oo. Let W be a
Laguerre wavelet on K in L*(KK). For an arbitrary function f € L*(K),the following uncertainty inequality holds.

CWWHZW /M/K\ WEf(a,x,1)]*dve(a,x r)+cw/ | ZLf(Am) P d Ve, (66)

where C(S,X) is the annihilating constant given in (65).

Proof.-We have, for all a > 0, WVL,f(a, .,+) € L*(K) whenever f € L?(K). This allows using (65) to get
W, < €. 2) ([ s Pamatun) + [ 15 Parahm)) .

Integrating both sides with respect to
using relations (35) and (42).

Tis’ we proceed similarly to the proof of Theorem 1. Consequently, (66) holds
a
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