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1 Introduction

The theory of wavelets and continuous wavelet transforms has garnered increased interest due to the limitations of Fourier
transform in providing complete information about a signal. In particular, Fourier transform can not be a suitable tool for
non stationary signals, in which frequency changes with respect to time. Hence appears the importance of the wavelet and
the continuous wavelet transform CWT. For an overview of CWT, we refer the reader to [5,27]. Motivated by the works
of [31,14,1], we consider in this paper, time-frequency localization problems in the case of continuous Laguerre wavelet
transform CLWT. The interest of studing Laguerre transform comes from Heisenberg group which replace the euclidean
space in quantium mechanics. Roughly speaking, Fourier Laguerre transform is non other than the Fourier transform of
radial functions in this occurence. Studying the uncertainty principle for FL was subject of several works by the authors
and many more, one can cite for instance [9,10,20,22,26]. However studying the uncertainty principle for CLWT still
less aborded. Note that the harmonic analysis associated to CLWT was initiated in [23], where the Plancherel and the
inversion formulas were established for CLWT. Recently Mejjaoli and Trimèche in [16,15] considered such problems in
the case of two-wavelets in Laguerre occurence. In this paper, we improve the litterature by giving uncertainty inequalities
for CLWT.

The uncertainty principle is one of the most interesting result which gives us an overview on the positioning of a
function and its Fourier transform. This principle states, in quantum mechanics, that an observer cannot determine
simultaneously the values of position and momentum of a quantum particule with precision. A precise quantitative
formulation of the uncertainty principle, usually called Heisenberg inequality [11,30] is stated for f ∈ L2(R), as follows:

∫

R

x2 | f (x)|2 dx .

∫

R

ξ 2
∣∣∣ f̂ (ξ )

∣∣∣
2

dξ ≥ 1

4

(∫

R

| f (x)|2 dx

)2

, (1)

where f̂ is the Fourier transform, given for suitable functions by

f̂ (ξ ) =
1√
2π

∫

R

f (x) e−iξ xdx.

∗ Corresponding author e-mail: selma.negzaoui@fst.utm.tn

© 2024 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

DOI: https://doi.org/10.47013/17.2.11


304 Soumeya Hamem and Selma Negzaoui: Uncertainty inequalities for CLWT

Another version of the uncertainty principle concems with concentration of f and its Fourier transform. We reference
two results: the first one was studied by Faris [17] and Price [18,19] in the classical Fourier setting, known as the local
uncertainty principle. The second one goes to Benedicks and Amrein-Berthier. Benedicks [3] first introduced this theorem,
stating that if a function f has a subset S of finite measure as its support, and its Fourier transform f̂ has a subset Σ of finite
measure as its support, then f must be the null function. A stronger formulation of this principle was provided by Amrein
and Berthier in [2] for the classical Fourier occurence. In this paper we prove the analogue of all previous uncertainty
principle theorems when considering the CLWT.

Our paper is structured as follows.
In section 2, we start by giving some useful background evoking Laguerre hypergroup K and Fourier Laguerre transform
FL. Section 3 summarizes key facts about basic Laguerre wavelet theory. Section 4 is devoted to our main results. First,
we prove Heisenberg-type uncertainty inequalities, analogous of inequality (1), considering the product of dispersions
with both position and scale as variables, for the CLWT. Second, we prove two theorems dealing with concentration
in the support of a given function and its CLWT. The first is a local uncertainty principle and the second deals with a
Benedicks-Amrein-Berthier’s uncertainty principle.

2 Laguerre hypergroup and Fourier Laguerre transform

Laguerre hypergroup emerges as the fundamental manifold of the radial function space in the (2n + 1)-dimensional
Heisenberg group Hn, where the multiplication operator is given by

(z1, t1).(z2, t2) = (z1 + z2, t1 + t2 − Im(z1z2)).

A function f on Hn is considered radial if it remains invariant under the action of the unitary group U (n) via u.(z, t) =
(u.z, t). For additional details we refere the reader to [6,28,29]. Let α ≥ 0. The Laguerre hypergroup K= [0,+∞)×R is
equiped with the convolution product ∗α . This product is defined for two bounded Radon measures µ1 and µ2 on K as:

< µ1 ∗α µ2, f >=

∫

K×K

T α
x,t f (y,s)dµ1dµ2,

where T α
x,t is the generalized translation operator on K given, for α = 0, by

T α
x,t f (y,s) =

1

2π

∫ 2π

0
f (
√

x2 + y2 + 2xycosθ , t + s+ xysinθ )dθ (2)

and, for α > 0, by
T α

x,t f (y,s) =

α

π

∫ 2π

0

∫ 1

0
f (
√

x2 + y2 + 2xyr cosθ , t + s+ xyr sinθ )r(1− r2)α−1drdθ . (3)

Remark that if µ1 and µ2 are equal to Dirac measure at (x, t) and (y,s) ∈K then

(δ(x,t) ∗α δ(y,s))( f ) = T α
x,t f (y,s).

We find in [23] that (K,∗α) has a commutative hypergroup structure in the sense of Jewett. The involution is defined by
the homeomorphism i(x, t) = (x,−t) and the Haar measure is given by

dmα(x, t) =
x2α+1

πΓ (α + 1)
dxdt. (4)

e = (0,0) is the unit element of (K,∗α) since δ(x,t) ∗α δ(0,0) = δ(0,0) ∗α δ(x,t) = δ(x,t). In the case of Laguerre hypergroup,

the dual space, the space of all bounded functions χ : K → C satisfying for (x, t) ∈ K, χ̃(x, t) = χ(x,−t) = χ(x, t), is
described by

{ϕλ ,m ; (λ ,m) ∈ R
∗×N}∪{ϕρ ; ρ ≥ 0},

where
ϕρ = jα (ρ x) and ϕλ ,m(x, t) = eiλ t

L
(α)

m (|λ |x2). (5)

Note that jα is the normalized Bessel function of order α and L
(α)
m is the Laguerre function given on R+ by

L
(α)
m (x) = e−

x
2

Lα
m(x)

Lα
m(0)

, (6)
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where Lα
m is the Laguerre polynomial of order α and degree m,

Lα
m(x) =

m

∑
k=0

(−1)k Γ (m+α + 1)

Γ (k+α + 1)

1

k!(m− k)!
xk. (7)

Topologically, the dual space can be identified to the Heisenberg fan, the set

⋃

m∈N
{(λ ,µ) ∈ R

2; µ = |λ |(2m+α + 1)}
⋃

{(0,µ) ∈ R
2; µ ≥ 0}.

The subset {(0,µ) ∈ R
2; µ ≥ 0} is usually disregarded since it has zero Plancherel measure. Therefore, it is natural to

concentrate on the characters ϕλ ,m. For (λ ,m) ∈R×N, ϕλ ,m is the unique solution to the problem

{
D1u = iλ u,

D2 u =−4|λ |(m+
α + 1

2
)u,

(8)

with the initial condition

u(0,0) = 1,
∂u

∂x
(0, t) = 0 for all t ∈ R,

where, for all α ≥ 0, 



D1 =
∂

∂ t

D2 =
∂ 2

∂x2
+

2α + 1

x

∂

∂x
+ x2 ∂ 2

∂ t2
.

(9)

For (λ ,m) ∈ K̂= R×N, the function ϕλ ,m satisfies, for all (x, t),(y,s) ∈K,

ϕλ ,m(x, t)ϕλ ,m(y,s) = T α
x,t ϕλ ,m(y,s). (10)

Furthermore, the Laguerre kernel is bounded function, and we have

∀(λ ,m) ∈ K̂, sup
(x,t)∈K

|ϕλ ,m(x, t)|= 1.

Denote Lp(K) = Lp(K,dmα) the space of measurable functions f satisfying

‖ f‖p,mα =

(∫

K

| f (x, t)|pdmα(x, t)

) 1
p

<+∞.

The Fourier Laguerre transform of a function f in L1(K) is defined by

FL f (λ ,m) =
∫

K

f (x, t)ϕ−λ ,m(x, t)dmα (x, t). (11)

The FL is bounded operator from L1(K) to L∞(K̂) and it satisfies ‖FL f‖∞ ≤ ‖ f‖1,mα . Moreover, the Fourier Laguerre
transform can be inverted by

F
−1
L f (x, t) =

∫

K̂

f (λ ,m)ϕλ ,m(x, t)dγα (λ ,m), (12)

where dγα is the unique positive Radon measure on K̂ for which the Fourier Laguerre transform becomes an L2-isometry.
This measure is given by

dγα(λ ,m) = Lα
m(0)δm ⊗|λ |α+1dλ . (13)

To simplify we will denote, when needed, dγα to state dγα(λ ,m). FL transform satisfies the following Plancherel Formula

‖FL f‖2,γα = ‖ f‖2,mα , (14)

where

‖g‖p,γα =

(∫

K̂

|g(λ ,m)|pdγα(λ ,m)

) 1
p

<+∞.
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By Riesz Thorin interpolation, we can expand the definition of FL f on Lp(K) for 1 ≤ p ≤ 2. Consequently, we obtain the

Hausdorff-Young inequality, for 1
p
+ 1

p′ = 1,

‖FL f‖p′,γα
≤ ‖ f‖p,mα . (15)

If f ∈ Lp(K) then, for all (x, t) ∈K, T α
x,t f ∈ Lp(K) and verifies

‖T α
x,t f‖p,mα ≤ ‖ f‖p,mα . (16)

Moreover
FL(T

α
x,t f )(λ ,m) = ϕλ ,m(x, t)FL f (λ ,m). (17)

The generalized convolution product of two functions f and g in L1(K) is defined by

f ⋆α g(x, t) =

∫

K

T α
x,t f (y,s).g(y,−s)dmα (y,s), (x, t) ∈K. (18)

Young’s inequality allows to extend the definition of ⋆α to Lp(K)× Lq(K), where p,q,r ≥ 1 and 1
r
= 1

p
+ 1

q
− 1. For

f ∈ Lp(K) and g ∈ Lq(K), where 1 ≤ p,q,r ≤ 2 with 1
r
= 1

p
+ 1

q
− 1, we get

‖ f ⋆α g‖r,mα ≤ ‖ f‖p,mα ‖g‖q,mα , (19)

and
FL( f ⋆α g) = FL( f )FL(g). (20)

3 Basic Laguerre wavelet theory

In this section, we gather some background related to CLWT. First and foremost, we shall adapt the definition of the
dilation operator in order to get formulas that can be compared to the classical Fourier Wavelets. We consider as in [21,

22] the dilated of (x, t) ∈K defined by δr(x, t) = (rx,r2t). For fr(x, t) = r−(2α+4) f (δ 1
r
(x, t)), we have

∫

K

fr(x, t) dmα(x, t) =

∫

K

f (x, t) dmα(x, t). (21)

We define, for a > 0, the dilation operator ∆a by

∆aψ(x, t) =
1

aα+2
ψ(

x

a
,

t

a2
) =

1

aα+2
ψ(δ 1

a
(x, t)). (22)

We can easily deduce the following properties.

Proposition 1.Let a > 0, we have

1.For all a,b > 0 ∆a∆b = ∆ab.

2.For all ψ ∈ L2(K), the function ∆a(ψ) belongs to L2(K) and satisfies

‖∆aψ‖2,mα = ‖ψ‖2,mα . (23)

3.For all ψ ∈ L2(K), the Fourier Laguerre of ∆a(ψ) is well defined and we have

FL∆aψ = ∆̂ 1
a
FL ψ , (24)

where

∆̂a f (λ ,m) = a−(α+2) f (δ ′
1
a

(λ ,m)),

and δ ′
r(λ ,m) = (r2λ ,m) is the dilated of (λ ,m) ∈ R×N.

4.Let h,g ∈ L2(K), we have

< ∆ah,g >L2(K)=< h,∆ 1
a
g >L2(K) .
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5.For all a > 0 and (x, t) ∈ K, ∆aT α
x,t = Tδa

(x, t)∆a, where T α
x,t is the translation operator associated to Laguerre

hypergroup given by (2) and (3).

Proof.1. For all a,b > 0,

∆a∆bψ(x, t) = ∆a

(
1

bα+2
ψ
( x

b
,

t

b2

))
=

1

(ab)α+2
ψ

(
x

ab
,

t

(ab)2

)
= ∆abψ(x, t).

2. The result is obvious by considering the substitutions y = x
a

and u = t
a2 .

3. Considering y = x
a

and u = t
a2 in (11), we get

FL∆a f (λ ,m) =

∫

K

f (y,u)ϕ−λ ,m(ay,a2u)aα+2 dmα(y,u).

Now using (5), we observe that aα+2ϕ−λ ,m(ay,a2u) = ϕ−a2λ ,m(y,u), which gives the wanted result.
4. By the same change of variables, we obtain

< ∆ah,g >= aα+2

∫

K

h(y,u)g(ay,a2u)dmα(y,u).

Hence, the result holds from (22).
5. The last point follows by remarking, in (2) and (3), that

f

(√
x2 +

(y

a

)2

+ 2x
y

a
r cosθ ,

t

a2
+ s+ x

y

a
r sin θ

)
= f

(√
(ax)2 + y2 + 2(ax)yr cosθ

a
,
t + a2s+(ax)yr sinθ

a2

)
.

Definition 1.Let ψ ∈ L2(K). We say that ψ is an admissible Laguerre wavelet on K if there exists a constant cψ satisfying,

for all m ∈ N and λ ∈ R,

0 < cψ =
∫ +∞

0
|FLψ(δ ′

a(λ ,m)|2 da

a
<+∞. (25)

According to [23], such admissible wavelet in Laguerre hypergroup exists. For instance, we cite the following function in
L2(K): ψ = F

−1
L (Θ), where

∀(λ ,m) ∈ K̂, Θ(λ ,m) = λ (m+
α + 1

2
)e−λ 2(m+ α+1

2 )2
. (26)

Now, let ψ be a Laguerre wavelet on K in L2(K). We consider the family ψa,x,t , of Laguerre wavelets on K, defined by

∀(x′, t ′) ∈K, ψa,x,t(x′, t ′) = T α
x,t(∆aψ(x′,−t ′)). (27)

By virtue of (16) and (23), we get immediately, for all a > 0 and (x, t) ∈K,

‖ψa,x,t‖2,mα ≤ ‖ψ‖2,mα . (28)

Definition 2.The continuous Laguerre wavelet transform CLWT, W L
ψ is defined for a regular function f on K by

∀(a,x, t) ∈ (0,+∞)×K, W L
ψ f (a,x, t) =

∫

K

f (x′, t ′)ψa,x,t(x′, t ′)dmα(x
′, t ′). (29)

We can also write

W L
ψ f (a,x, t) =< f ,ψa,x,t >L2(K)=< f ,T α

x,t ∆aψ >L2(K) . (30)

Moreover, relation (29) can be written as:

W L
ψ f (a,x, t) = f ⋆α ∆aψ(x, t). (31)
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By Young’s inequality, the CLWT can be defined for a function f ∈ Lp(K), where p ∈ [1,+∞], and an admissible wavelet

ψ ∈ Lp′(K), where p′ = p
p−1

. Consequently, for all (a,x, t) ∈ (0,+∞)×K,

|W L
ψ f (a,x, t)| ≤ a

2α+4
p′ −(α+2)‖ψ‖p′,mα

‖ f‖p,mα . (32)

Let U= (0,+∞)×K. For p ≥ 1, we equiped this space by the “affine” measure

dνα(a,x, t) =
da dmα(x, t)

a2α+5
. (33)

Denote by Lp(U) the space of measurable functions f on U that satisfies

‖ f‖p,να =

(∫ +∞

0

∫

K

| f (a,x, t)|pdνα(a,x, t)

) 1
p

<+∞. (34)

According to (31) we assert that if ψ is an admissible Laguerre wavelet on K, and f ∈ L2(K) then the following
Plancherel’s formula for CLWT holds.

‖W L
ψ f‖2

2,να
= cψ‖ f‖2

2,mα
. (35)

Furthermore, we can deduce the following Parseval’s relation for f and g in L2(K),

cψ < f ,g >L2(K)=

∫ +∞

0

∫

K

W L
ψ f (a,x, t)W L

ψ g(a,x, t)dνα(a,x, t). (36)

According to (32) and (35), we derive from Riesz Thorin interpolation theorem that the definition of CLWT can be

extended to Lp(K) when 1 < p < 2. We get that W L
ψ f belongs to Lp′(U), where 1

p
+ 1

p′ = 1, and

‖W L
ψ f‖p′,να

≤ c

1
p′
ψ

(
a−(α+2)‖ψ‖∞,mα

)1− 2
p′ ‖ f‖p,mα . (37)

4 Main results : CLWT uncertainty inequalities

We shall introduce the following notations. For all (x, t) ∈K, the homogeneous norm on K is given by

|(x, t)|= |(x, t)|K = (x4 + 4t2)
1
4 . (38)

R×N is equiped with the quasinorm defined, for all (λ ,m) ∈ R×N, by

|(λ ,m)|= 4|λ |(m+
α + 1

2
). (39)

4.1 Heisenberg type inequalites for CLWT

From [9,26], the Heinsenberg inequality for FL states that for b ≥ 1 and f ∈ L2(K),

‖ |(x, t)|b f‖2,mα .‖ |(λ ,m)| b
2 FL f‖2,γα ≥C‖ f‖2

2,mα
. (40)

In the case of CLWT, Heisenberg type inequality dealing with dispersion on position (x, t), is given by the following
theorem.

Theorem 1.Let ψ be an admissible Laguerre Wavelet on K and b ≥ 1. Then for all f ∈ L2(K),

‖|(x, t)|bW L
ψ f‖2,να .‖|(λ ,m)| b

2 FL f‖2,γα ≥C
√

cψ‖ f‖2
2,mα

, (41)

where C is the same constant given in (40).
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Proof.By virtue of relations (31) and (20), we have

|FLW L
ψ f (λ ,m)|2 = |FL f (λ ,m)|2|FL∆aψ(λ ,m)|2.

Relation (24) and the admissible condition (25) lead to

∫ +∞

0
|FL∆aψ(λ ,m)|2 da

a2α+5
= cψ . (42)

Therefore, using Fubini’s theorem, we get

∫ +∞

0

∫

K̂

|(λ ,m)|b|FLW L
ψ f (λ ,m)|2dγα

da

a2α+5
= cψ

∫

K̂

|(λ ,m)|b|FL f (λ ,m)|2dγα .

On the other hand, since f belongs to L2(K) then we deduce that the function W L
ψ f (a, ., .) belongs to L2(K). Applying

Heinsenberg type inequality (40) to W L
ψ f (a, ., .), we get, for all a ∈ (0,+∞),

(∫

K

|(x, t)|2b|W L
ψ f (a,x, t)|2dmα(x, t)

) 1
2
(∫

K̂

|(λ ,m)|b|FLW L
ψ f (λ ,m)|2dγα(λ ,m)

) 1
2

≥C

∫

K

|W L
ψ f (a,x, t)|2dmα(x, t).

Integrating with respect to
da

a2α+5
, the left hand side is given by

√
cψ

(∫

U

|(x, t)|2b|W L
ψ f (a,x, t)|2dνα(a,x, t)

) 1
2
(∫

K̂

|(λ ,m)|b|FL f (λ ,m)|2dγα(λ ,m)

) 1
2

,

and the right hand side is written as multiple of

∫ +∞

0

∫

K

|W L
ψ f (a,x, t)|2dmα(x, t)

da

a2α+5
.

Using Plancherel formula, this integral equals to

X =

∫ +∞

0

∫

K̂

|FLW L
ψ f (λ ,m)|2dγα(λ ,m)

da

a2α+5
.

Therefore, relation (42) leads to

X =
∫ +∞

0

∫

K̂

|FL f (λ ,m)|2|FL∆aψ(λ ,m)|2dγα(λ ,m)
da

a2α+5

= cψ

∫

K̂

|FL f (λ ,m)|2dγα(λ ,m)

= cψ ‖ f‖2
2,mα

.

Consequently

√
cψ

(∫

U

|(x, t)|2b|W L
ψ f (a,x, t)|2dνα (a,x, t)

) 1
2
(∫

K̂

|(λ ,m)|b|FL f (λ ,m)|2dγα

) 1
2

≥C cψ ‖ f‖2
2,mα

.

which allows to deduce inequality (41).

As an application, we proceed in similar way as in [1], we deduce the following result:

Corollary 1.For all s,β ≥ 1 and for all f ∈ L2(K), we have

‖|(x, t)|sW L
ψ f‖β

2,να
.‖|(λ ,m)|

β
2 FL f‖s

2,γα
≥C(

√
cψ)

1−β (s−1)‖ f‖s+β
2,mα

. (43)
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Proof.Let s,β > 1. For f ∈ L2(K), assume that

‖|(x, t)|sWL
ψ f‖β

2,να
, ‖|(λ ,m)|

β
2 FL f‖s

2,γα
<+∞.

Applying Hölder’s inequality, we have

‖|(x, t)|WL
ψ f‖2,να ≤ ‖|(x, t)|sWL

ψ f‖1/s

2,να
‖WL

ψ f‖1/s′
2,να

and

‖|(λ ,m)| 1
2 FL f‖2,γα ≤ ‖|(λ ,m)|

β
2 FL f‖1/β

2,γα
‖FL f‖1/β ′

2,γα
.

Therefore

‖|(x, t)|sWL
ψ f‖2,να ≥

‖|(x, t)|WL
ψ f‖s

2,να

‖WL
ψ f‖s−1

2,να

and

‖|(λ ,m)|
β
2 FL f‖2,γα ≥

‖|(λ ,m)| 1
2 FL f‖β

2,γα

‖FL f‖β−1
2,γα

.

Using Theorem 1, we derive that

‖|(x, t)|sWL
ψ f‖β

2,να
‖|(λ ,m)|

β
2 FL f‖s

2,γα
≥

C
√

ch‖ f‖2β s
2,mα

‖WL
ψ f‖β (s−1)

2,να
‖FL f‖s(β−1)

2,γα

.

Plancherel formula and relation (37) allow to deduce the wanted result.

Lemma 1.Let β ∈ R. We consider ψ , an admissible Laguerre wavelet, satisfying

∀(λ ,m) ∈ K̂, FLψ(λ ,m) = φ(|λ |). (44)

If f belongs to L2(K) then

‖aβW L
ψ f‖2

2,να
= M (|ψ̃ |2)(2β ).‖|λ |

β
2 FL f‖2

2,γα
, (45)

where φ̃(λ ) = φ(λ 2) and M is the Mellin transform defined by

M f (x) =

∫ +∞

0
tx f (t)

dt

t
.

Proof.

‖aβW L
ψ f‖2

2,να
=

∫ +∞

0
a−2β

∫

K̂

|FL f (λ ,m)|2|FL∆aψ(λ ,m)|2dγα(λ ,m)
da

a2α+5

=
+∞

∑
m=0

Lα
m

∫

R

|FL f (λ ,m)|2Ψ(λ )dγα(λ ,m),

where

Ψ(λ ) =

∫ +∞

0
a2β |FLδ ′

aψ(λ ,m)|2 da

a
.

Making a change of variable, we have

Ψ(λ ) = |λ |β
∫ +∞

0
u2β |φ̃ (u)|2 du

u
= |λ |β M (|φ̃ |2)(2β ).

Thus

‖a−βW L
ψ f‖2

2,να
= M (|φ̃ |2)(2β )

+∞

∑
m=0

Lα
m

∫

R

|λ |β |FL f (λ ,m)|2dγα(λ ,m).

This gives the wanted result.

Theorem 2.Let s,β ≥ 1 and h an admissible Laguerre wavelet verifying (44). Then, for all f belonging to L2(K), we have

‖aβW L
ψ f‖s

2,να
‖|(x, t)|sW L

ψ f‖β
2,να

≥C cψ M (|φ̃ |2)(2β ).‖|λ |
β
2 FL f‖2

2,γα
‖ f‖2

2,mα
. (46)

Proof.Theorem 2 holds from Lemma 1 and Corollary 1.
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4.2 Lp Local uncertainty principles for CLWT

This section is devoted to uncertainty principles of concentration type for CLWT in the Lp theory.

Theorem 3.If 1 < p ≤ 2, q = p
p−1

and , then for all nonzero f ∈ Lp(K) and for all measurable subset T ⊂ U such that

0 < να(T )<+∞, we have

(a) If 0 < s < 2α+4
q

,

∥∥χTW L
ψ f
∥∥

q,να
≤ C1(s,q,α) c

1
q− s

2α+4
ψ να (T )

s
2α+4 ‖|(x, t)|s f‖p,mα

, (47)

where C1(s,q,α) is a constant that depends on s, q and α .

(b) If s > 2α+4
q

,

∥∥χTW L
ψ f
∥∥

q,να
≤ C2(s,q,α) να(T )

1
q ‖ f‖

p
q (1− 2α+4

sq )
p,mα ‖ |(x, t)|s f‖

p
q
(2α+4)

sq
p,mα , (48)

where C2(s,q,α) is a constant that depends on s, q and α .

(c) If s = 2α+4
q

,

∥∥χTW L
ψ f
∥∥

q,να
≤C3(q,α)c

1
q− 2

q(2α+4)
ψ να(T )

2
q(2α+4) ‖ f‖1− 1

α+2
p,α

∥∥∥ |(x, t)|
2α+4

q f

∥∥∥
1

α+2

p,α
, (49)

where C3(q,α) =C1(
2
q
,q,α)(α + 2) (α + 1)

1
α+2−1.

Proof.(a) For all r > 0, we define Br = {(x, t) ∈K ; |(x, t)| ≤ r} . Denote by χBr and χBc
r

the characteristic functions.

Let f ∈ L
p
α(K),1 < p ≤ 2 and q = p

p−1
. It follows using Minkowski’s inequality,

∥∥χTW L
ψ f
∥∥

q,να
≤
∥∥χTW L

ψ ( f χBr)
∥∥

q,να
+
∥∥χTW L

ψ ( f χBc
r
)
∥∥

q,να
.

Therefore ∥∥χTW L
ψ f
∥∥

q,να
≤ να(T )

1
q
∥∥W L

ψ ( f χBr)
∥∥

∞,να
+
∥∥W L

ψ ( f χBc
r
)
∥∥

q,να
. (50)

Using relation (32), we get

∥∥χTW L
ψ f
∥∥

q,να
≤ να(T )

1
q a−(α+2)‖ψ‖∞,mα ‖ f χBr‖1,mα +

∥∥W L
ψ ( f χBc

r
)
∥∥

q,να
. (51)

Let 0 < s < 2α+4
q

. By Hölder’s inequality, we obtain

‖ f χBr‖1,mα
≤ ‖ |(x, t)|s f‖p,mα

∥∥ |(x, t)|−sχBr

∥∥
q,mα

. (52)

Considering (38), let’s examine polar coordinates in the Laguerre hypergroup structure:

{
x = ρ cos(θ )

1
2

t = ρ2

2
sin(θ )

, where ρ = |(x, t)|K.

The Jacobian is given by: ∣∣∣∣∣
cos(θ )

1
2 ρ sin(θ )

− ρ
2

sin(θ )cos(θ )−
1
2

ρ2

2
cos(θ )

∣∣∣∣∣=
ρ2

2
cos(θ )−

1
2

and
∥∥ |(x, t)|−sχBr

∥∥q

q,mα
=

1

2πΓ (α + 1)

∫ r

0

∫ π
2

− π
2

ρ−sq+2α+3 cos(θ )α dρdθ = A(s,q,α)q.

Therefore, we have

‖ f χBr‖1,mα
≤ A(s,q,α) r

2α+4
q −s ‖ |(x, t)|s f‖p,mα

, (53)
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where A(s,q,α) =

(
B(α+1

2
, 1

2
)

2πΓ (α + 1)(2α + 4− sq)

) 1
q

, B is the beta function.

On the other hand, by relation (32), we obtain

∥∥W L
ψ ( f χBc

r
)
∥∥

q,να
≤ c

1
q
ψ

(
a−(α+2)‖ψ‖∞,mα

)1− 2
q ‖ f χBc

r
‖p,mα

≤ c
1
q
ψ

(
a−(α+2)‖ψ‖∞,mα

)1− 2
q ‖ |(x, t)|s f‖p,mα

∥∥ |(x, t)|−s χBc
r

∥∥
∞,mα

.

Hence
∥∥W L

ψ ( f χBc
r
)
∥∥

q,να
≤ c

1
q
ψ

(
a−(α+2)‖ψ‖∞,mα

)1− 2
q

r−s ‖ |(x, t)|s f‖p,mα
. (54)

Combining the relations (51),(53) and (54), we deduce that

∥∥χTW L
ψ f
∥∥

q,να
≤ gα ,s(r) ‖ |(x, t)|s f‖p,mα

, (55)

where gα ,sis the function defined on (0,+∞) by

gα ,s(r) = c
1
q
ψ

(
a−(α+2)‖ψ‖∞,mα

)1− 2
q

r−s +A(s,q,α) a−(α+2)‖ψ‖∞,mα να(T )
1
q r

2α+4
q −s.

By minimization of the right-hand side of the relation (55) over r > 0, we get

∥∥χTW L
ψ f
∥∥

q,να
≤ C1(s,q,α) c

1
q− s

2α+4
ψ να (T )

s
2α+4 ‖|(x, t)|s f‖p,mα

,

where

C1(s,q,α) =

(
2α + 4

2α + 4− sq

) (
2α + 4

sq
− 1

) sq
2α+4 (

a−(α+2)‖ψ‖∞,mα

)1− 2
q+

2s
2α+4

A(s,q,α)
sq

2α+4 .

(b) The inequality (48) holds if ‖|(x, t)|s f‖p,mα
=+∞. Assume that ‖|(x, t)|s f‖p,mα

<+∞.
From the hypothesis s > 3α + 2, we derive that the function

(x, t) 7−→ (1+ |(x, t)|ps)−
1
p

belongs to Lq(K). Hölder’s inequality leads to

‖ f‖1,mα
≤
∥∥∥(1+ |(x, t)|ps)

1
p f

∥∥∥
p,mα

∥∥∥(1+ |(x, t)|ps )−
1
p

∥∥∥
q,mα

. (56)

Since ∥∥∥(1+ |(x, t)|ps)
1
p f

∥∥∥
p

p,mα

= ‖ f‖p
p,mα

+ ‖ |(x, t)|s f‖p
p,mα

then

‖ f‖1,mα
≤ N(s,q)

(
‖ f‖p

p,α + ‖ |(x, t)|s f‖p
p,mα

) 1
p
. (57)

where

N(s,q,α) =
∥∥∥(1+ |(x, t)|ps)−

1
p

∥∥∥
q,mα

.

Using polar coordinates in the Laguerre hypergroup structure, we obtain

N(s,q,α) =


B(α+1

2
, 1

2
)B( q

p
− 2(α+2)

sp
, 2(α+2)

sp
)

2π spΓ (α + 1)




1
q

.

For r > 0, we consider fr(x, t) = r−(2α+4) f ( x
r
, t

r2 ). Then we have

‖ fr‖1,mα
= ‖ f‖1,mα

, (58)
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‖ fr‖p
p,mα

= r
−(2α+4)p

q ‖ f‖p
p,mα

, (59)

and

‖ |(x, t)|s fr‖p
p,mα

= r
p(s− 2α+4

q ) ‖ |(x, t)|s f‖p
p,mα

. (60)

Considering fr in relation (57), we conclude that for all r > 0, we get

‖ f‖q
1,mα

≤ N(s,q,α)q

(
r
−(2α+4)p

q ‖ f‖p
p,mα

+ r
p(s− 2α+4

q ) ‖ |(x, t)|s f‖p
p,mα

) q
p

.

By minimizing the right-hand side of this inequality, we deduce

‖ f‖q
1,mα

≤ N(s,q,α)q(
sq

2α + 4
− 1)

2α+4
sq

(
sq

sq− (2α + 4)

)
‖ f‖p(1− 2α+4

sq )
p,mα ‖|(x, t)|s f‖p

(2α+4)
sq

p,mα . (61)

Then, according to relation (61), the function f belongs to L1(K), and we have

∥∥χTW L
ψ f
∥∥q

q,να
≤ να(T )

∥∥W L
ψ f
∥∥q

∞,να

≤ να(T )
(

a−(α+2)‖ψ‖∞,mα

)q

‖ f‖q
1,mα

.

Using the relation (61), we get

∥∥χTW L
ψ f
∥∥q

q,να
≤ να(T ) C

q
2(s,q,α) ‖ f‖p(1− 2α+4

sq )
p,mα ‖ |(x, t)|s f‖p

(2α+4)
sq

p,mα ,

where

C
q
2(s,q,α) =

(
a−(α+2)‖ψ‖∞,mα

)q

N(s,q,α)q

(
sq

2α + 4
− 1

) 2α+4
sq
(

sq

sq− (2α + 4)

)
.

(c) Consider s = 2
q
(α + 2). Using the fact that for ε > 0,

|(x, t)|
2
q

ε
2
q

≤ 1+
|(x, t)|

2(α+2)
q

ε
2(α+2)

q

,

it follows that ∥∥∥ |(x, t)|
2
q f

∥∥∥
p,α

≤ ε
2
q ‖ f‖p,α + ε

2
q− 2

q (α+2)
∥∥∥ |(x, t)|

2
q (α+2)

f

∥∥∥
p,α

.

Optimizing in ε , we get:

∥∥∥ |(x, t)|
2
q f

∥∥∥
p,α

≤ (α + 2) (α + 1)
1

α+2−1 ‖ f‖1− 1
α+2

p,α

∥∥∥ |(x, t)|
2α+4

q f

∥∥∥
1

α+2

p,α
.

Together with (47) for s = 2
q
< 2α+4

q
, we get the wanted result.

Theorem 4.Let s, p be two real numbers such that 0 < s < 2α +4 and p ≥ 1. Then, for every function f ∈ Lp(K) and for

every measurable subset T ⊂ U such that 0 < να(T )<+∞, we have

∥∥χTW L
ψ f
∥∥

p,να
≤ C να(T )

1
p(p+1)

∥∥∥∥|(
1

a
,x, t)|sW L

ψ f

∥∥∥∥
κ

2,να

(
‖h‖2,mα

‖ f‖2,mα

)1−κ
, (62)

where κ =
2(2α + 4)− s

(p+ 1)(2α + 4)
and C is a constant that depends on s, p and α .

Note here that ∣∣∣∣(
1

a
,x, t)

∣∣∣∣ = (
1

a4
+ x4 + 4t2)

1
4 .
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Proof.One can assume that ‖ f‖2,mα
= 1, and ‖ψ‖2,mα

= 1. The general formula follows by making the substitution

f :=
f

‖ f‖2,mα

and ψ :=
ψ

‖ψ‖2,mα

.

For all r > 0, we put Vr =
{
(a,x, t) ∈ (0,+∞)×K ; |( 1

a
,x, t)| ≤ r

}
. Let 0 < s < 2α + 4. By Hölder’s inequality, we

obtain ∥∥χTW L
ψ f
∥∥

p,να
≤
∥∥χT∩VrW

L
ψ f
∥∥

p,να
+
∥∥χT∩V c

r
W L

ψ f
∥∥

p,να
.

Let 0 < s < 2α + 4. Using Hölder’s inequality and relation (32), we obtain

∥∥χT∩VrW
L
ψ f
∥∥

p,να
≤
∥∥W L

ψ ( f )
∥∥ p

p+1

∞,να

(∫

U

χT (a,x, t)χVr(a,x, t)|W L
ψ f (a,x, t)|

p
p+1 dνα

) 1
p

≤ να (T )
1

p(p+1)
∥∥χVrW

L
ψ f
∥∥ 1

p+1

1,να

≤ να (T )
1

p(p+1)

∥∥∥∥|(
1

a
,x, t)|sW L

ψ f

∥∥∥∥
1

p+1

2,να

∥∥∥∥|(
1

a
,x, t)|−sχVr

∥∥∥∥
1

p+1

2,να

.

Making the change of variables





u = 1
a2

v = x2

w = 2t

, we get

∥∥∥∥|(
1

a
,x, t)|−sχVr

∥∥∥∥
2

2,να

=
∫

U

(u2 + v2 +w2)−
2s
4 χVr

uα+1vα

8πΓ (α + 1)
dudvdw.

Applying polar coordinates in R3, we find

∥∥∥∥|(
1

a
,x, t)|−sχVr

∥∥∥∥
2

2,να

=

∫ r

0
ρ−2s

∫ π
2

0

∫ π
2

− π
2

(ρ cos(θ )cos(ϕ))α+1(ρ sin(θ )cos(ϕ))α

8πΓ (α + 1)
ρ2 cos(ϕ)dρ dθ dϕ .

By a simple calculation, we get

‖|(1

a
,x, t)|−sχVr‖2,να = A1(s,α)r2α+4−s,

where A1(s,α) =

(
B(α+1

2
, α

2
+ 1)B(α + 3

2
, 1

2
)

16π (2α + 4− s)Γ (α + 1)

) 1
2

. Thus we obtain

∥∥χT∩VrW
L
ψ f
∥∥

p,να
≤ να(T )

1
p(p+1)

∥∥∥∥|(
1

a
,x, t)|sW L

ψ f

∥∥∥∥
1

p+1

2,να

C
p+1
1 s

2α+4−s
p+1 . (63)

On the other hand, using Hölder’s inequality and relation (32), we conclude that

∥∥χT∩V c
r
W L

ψ f
∥∥

p,να
≤
∥∥W L

ψ f
∥∥ p−1

p+1

∞,να

(∫

U

χT∩V c
r
(a,x, t)|W L

ψ f (a,x, t)|
2p

p+1 dνα(a,x, t)

) 1
p

≤ να(T )
1

p(p+1)

(∫

U

χVc
r
(a,x, t)|W L

ψ f (a,x, t)|2dνα(a,x, t)

) 1
p+1

≤ να(T )
1

p(p+1)

∥∥∥∥|(
1

a
,x, t)|sW L

ψ f

∥∥∥∥
2

p+1

2,να

r
−s

p+1 .

Hence

∥∥χTW L
ψ f
∥∥

p,να
≤ hα ,s(r) να(T )

1
p(p+1)

∥∥∥∥|(
1

a
,x, t)|sW L

ψ f

∥∥∥∥
1

p+1

2,να

, (64)
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where hα ,s is the function defined on (0,+∞) by

hα ,s(r) = A1(s,α)p+1s
2α+4−s

p+1 +

∥∥∥∥|(
1

a
,x, t)|sW L

ψ f

∥∥∥∥
1

p+1

2,να

r
−s

p+1 .

By minimizing the right-hand side of the inequality (64) with respect to r > 0, we obtain

∥∥χTW L
ψ f
∥∥

p,να
≤ C(s, p,α) να(T )

1
p(p+1)

∥∥∥∥|(
1

a
,x, t)|sW L

ψ f

∥∥∥∥
2

p+1− s
(p+1)(2α+4)

2,να

,

where

C(s, p,α) = (
2α + 4

2α + 4− s
) (

2α + 4− s

s
)

s
2α+4 A1(s,α)

s
p(2α+4) .

4.3 Benedicks-Amrein-Berthier’s uncertainty principle for CLWT

A strong formulation of Benedicks-Amrein-Berthier’s result for the Laguerre Fourier transform was established by the

second author in [20]. This result asserts that, for S ⊂ K, Σ ⊂ K̂ a pair of measurable subsets of finite measures
µα(S), µ̂α(Σ)<+∞, we can find a constant C(S,Σ) such that, for all f ∈ L2(K),

‖ f‖2
2,mα

≤C(S,Σ)

(∫

K\S
| f (x, t)|2dmα(x, t)+

∫

K̂\Σ
|FL f |2dγα(λ ,m)

)
. (65)

The constant C(S,Σ) is called the annihilating constant, and (S,Σ) is termed a strong annihilating pair. In the context of
CLWT, we obtain the following result.

Theorem 5.Consider two measurable subsets S ⊂ K, Σ ⊂ K̂ with finite measures µα(S), µ̂α(Σ) < +∞. Let ψ be a

Laguerre wavelet on K in L2(K). For an arbitrary function f ∈ L2(K),the following uncertainty inequality holds.

cψ‖ f‖2
2,mα

C(S,Σ)
≤
∫ +∞

0

∫

K\S
|W L

ψ f (a,x, t)|2dνα(a,x, t)+ cψ

∫

K̂\Σ
|FL f (λ ,m)|2dγα , (66)

where C(S,Σ) is the annihilating constant given in (65).

Proof.We have, for all a > 0, W L
ψ f (a, ., .) ∈ L2(K) whenever f ∈ L2(K). This allows using (65) to get

‖WL
ψ f‖2

2,mα
≤C(S,Σ)

(∫

K\S
|W L

ψ f (x, t)|2dmα(x, t)+

∫

K̂\Σ
|FLW L

ψ f |2dγα(λ ,m)

)
.

Integrating both sides with respect to
da

a2α+5
, we proceed similarly to the proof of Theorem 1. Consequently, (66) holds

using relations (35) and (42).
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[15] H. Mejjaoli, K. Trimèche, Two-wavelet multipliers on the dual of the Laguerre hypergroup and applications. Mediterr. J. Math.,

16 (2019) [Paper No. 126]:[35 p.]
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