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Abstract: Let d(n) and ϕ(n) denote the number of positive integers dividing the positive integer n and the Euler’s phi function

representing the numbers less than and prime to n, respectively. In this paper, we determine all solutions of the equation d(n) = ϕ(ϕ(n))
and we prove that the equation d(kn) = ϕ(ϕ(n)) has a finite number of solutions for any k ≥ 1. Further, we characterize all solutions

of the last equation when k is prime.
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1 Introduction

Let N be the set of all positive integers and let n∈N. Let d (n) be the divisor function, which counts the number of positive
divisors of n, i.e., if n has the prime factorization n = q

a1
1 q

a2
2 ...q

ak

k with distinct primes q1,q2, ...,qk and positive integers
a1,a2, ...,ak, then

d (n) = (a1 + 1)(a2 + 1) ...(ak + 1) .

Let ϕ (n) be the Euler function, which counts the number of positive integers m ≤ n with gcd(m,n) = 1. From now on
gcd(m,n) will be denoted by (m,n). It is well-known that

ϕ (n) = q
a1−1
1 (q1 − 1)qa2−1

2 (q2 − 1)...q
ak−1
k (qk − 1) .

In our main results, we will use the following inequalities (for details, we refer the reader to [5, Problem 522] and [6,
pages 110, 116, 117, 183]). At first, for all positive integers m and n we have

d (n)≤ 2
√

n (1)

and

d (mn)≤ d (m)d (n) . (2)

Moreover, if (m,n)> 1, then

d (mn)< d (m)d (n) . (3)

If m divides n, then

d (n)≥ d (m) . (4)

Next, for n 6= 2 and n 6= 6, we have

ϕ(n)≥
√

n. (5)
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For all positive integers m and n, we also have

ϕ(mn) = ϕ(m)ϕ(n)
d

ϕ(d)
, (6)

where d = (m,n). From which it follows that

ϕ(m)ϕ(n)≤ ϕ(mn) (7)

In particular, if d > 1 then (6) and (7) give us the inequality

ϕ(m)ϕ(n)< ϕ(mn). (8)

Various diophantine equations involving the divisor function and Euler’s phi function were investigated by many
authors. For example, see [2], [3] and [4]. In [5, Problem 705, page 78], it is shown that ϕ (d (n)) = d (ϕ (n)) has infinitely
many solutions; while in [6, pages 110-111], it is shown that d (n) = ϕ (n) has the only solutions 1,3,8,10,24 and 30,
where d (n) < ϕ (n) for n ≥ 31. In the same context, in [7] it is shown that the equation ϕ(n)+ d(n) = n has the only
solutions n = 8 and n = 9. Other similar problems have been discussed in publications such as Sándor [8] and [9].

The present work is a continuation of the authors’ articles [1] and [3]. We first define for any positive integer k the
following sets:

Ek = {n ∈ Z
+ : d(kn) = ϕ(ϕ(n))}, (9)

Lk = {n ∈ Z
+ : d(kn)< ϕ(ϕ(n))}, (10)

Gk = {n ∈ Z
+ : d(kn)> ϕ(ϕ(n))}. (11)

So, the main focus of this paper is to examine the set Ek of solutions n of the equation d (kn) = ϕ (ϕ (n)) and related
inequalities. In fact, we characterize all the elements of E1, L1 and G1, respectively. Then we deduce that the sets Gk and
Ek are finite, while Lk is infinite. Moreover, we prove that if p is a prime number with p ≥ 23 and p 6= 31, then Ep = {11,
13, 33, 34, 35, 39, 62, 63, 76, 88, 98, 102, 104, 105, 110, 130, 154, 186, 228, 234, 264, 280, 294, 312, 330, 390, 462, 504,
540, 630, 840}.

2 The equation d(n) = ϕ(ϕ(n))

This section is devoted to investigate the elements of (9), (10) and (11) for k = 1.

Theorem 1. The numbers 1, 5, 7, 15, 22, 26 , 40, 56, 66, 70, 78, 108, 120, 126, 168, 210 are the only solutions of the

equation d(n) = ϕ(ϕ(n)). Moreover, the numbers 2, 3, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 24, 28, 30, 36, 42, 48, 54, 60, 72,

84, 90, 180 are the only solutions of the inequality d(n)> ϕ(ϕ(n)).

For the proof, we start by proving the following results in which, if the solution n= q
α1
1 q

α2
2 ...qαs

s with q1 < q2 < ... < qs

and αi are positive integers, then s ≤ 5 and αi ≤ 3 for 1 ≤ i ≤ s and qs ≤ 17. This means that the number of solutions is
finite. Let us start with square-free solutions.

2.1 Square-free solutions

Proposition 1. The only prime numbers that satisfy the equation d(n) = ϕ(ϕ(n)) are 5 and 7.

Proof. Let p be a prime number. If p ∈ E1, then d(p) = 2 = ϕ(p− 1). If p− 1 6= 2,6, then by (5), p ≤ 5. In this case,
p = 5 is the only solution. If p− 1 = 2 or 6, it follows that p = 3 or 7, where 7 ∈ E1 while 3 /∈ E1. Finally, we conclude
that if p ∈ E1, then p is either 5 or 7.

We deduce the following corollary.

Corollary 1. Let p be a prime number. We have:

• If p is either 5 or 7, then p ∈ E1.

• If p is either 2 or 3, then p ∈G1.

• If p ≥ 11, then p ∈ L1.
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Proof. By the same way of the proof of Proposition 1, we conclude that if n = p is prime with p ≥ 11, then the inequality
d(n)≥ ϕ(ϕ(n)) cannot be true, and so p ∈ L1.

Proposition 2. The only square-free solutions of the form q1q2, where q1 and q2 are distinct primes, are 2 ·11, 2 ·13, 3 ·5
and 3 ·7.

Proof. Suppose that q1q2 ∈ E1, where q1,q2 are distinct primes with 2 ≤ q1 < q2. We obtain from (9) that

ϕ((q1 − 1)(q2− 1)) = 4.

If (q1 −1)(q2−1) 6= 2,6, then by (5) we have (q1 − 1)(q2 − 1)≤ 16. Here, q1 cannot be ≥ 5. There are two possibilities:

1. If q1 = 2, then q2 must be in {5,7,11,13,17}.

2. If q1 = 3, then q2 must be in {5,7}.

Thus, since 2 ·5, 2 ·7 and 2 ·17 are in G1, we get (q1,q2) ∈ {(2,11),(2,13),(3,5),(3,7)}.

By the same way we can prove the following proposition:

Proposition 3. If a solution n is square-free and has 3 or 4 distinct primes, then n is one the numbers 2 · 3 · 11, 2 · 5 · 7,

2 ·3 ·13 and 2 ·3 ·5 ·7.

Proposition 4. If a solution n is square-free and has more than 4 distinct primes, then n ∈ L1.

For the proof we need the following lemma:

Lemma 1. Let k ≥ 6 and let q1,q2, ...,qk be distinct primes. Then

(q1 − 1)(q2 − 1)...(qk − 1)> 22k.

Proof. The proof holds by induction on k, since (q1 − 1)(q2 − 1)...(q6 − 1) ≥ 22·6 for every 6-tuple (q1,q2, ...,q6) of
distinct primes.

Proof(Proposition 4). Let n = q1q2...qk, where q1,q2, ...,qk are distinct primes. We assume further that n ∈ E1 ∪G1. In
the case when k = 5. We see that

32 = d(q1q2...q5)≥ ϕ((q1 − 1)(q2 − 1)...(q5− 1)).

By (5), we obtain

ϕ((q1 − 1)(q2 − 1)...(q5 − 1))≥
√

(q1 − 1)(q2 − 1)...(q5 − 1),

and hence (q1 − 1)(q2 − 1)...(q5 − 1)≤ 1024. Since q1 < q2 < ... < q5, we distinguish the following cases:

• q1 = 2 and (q2,q3,q4,q5) must belong to the set

{(3,5,7,11),(3,5,7,13),(3,5,7,17),(3,5,7,19),(3,5,11,13)}.

But, the corresponding numbers n = q1q2...q5 belong to L1, which is impossible since n ∈ E1 ∪G1.
• q1 ≥ 3. We get (q1 − 1)(q2 − 1)...(q5 − 1)≥ 2 ·4 ·6 ·10 ·12 > 1024, which is impossible as well. Thus, q1 cannot be

greater than 3.

In the case when k ≥ 6, we also see that

2k = d(q1q2...qk)≥ ϕ((q1 − 1)(q2 − 1)...(qk − 1)),

and by (5) we have

ϕ((q1 − 1)(q2 − 1)...(qk − 1))≥
√

(q1 − 1)(q2 − 1)...(qk − 1).

It follows that

22k ≥ (q1 − 1)(q2 − 1)...(qk − 1).

This contradicts Lemma 1. Hence, d(n)< ϕ(ϕ(n)).
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2.2 Nonsquare-free odd solutions

Proposition 5. Let s ≥ 2 and let n1,n2, ...,ns be relatively prime positive integers with ni ≥ 3 for i = 1,2, ...,s. If

n1,n2, ...,ns ∈ E1 ∪L1, then n1n2...ns ∈ L1.

Proof. Let n1,n2, ...,ns be as above and assume that n1,n2, ...,ns ∈ E1 ∪L1. Since (ϕ(ni),ϕ(n j)) > 1 for 1 ≤ i, j ≤ s, it
follows from (8) and the multiplicativity of d and ϕ that

d(n1n2...ns) = d(n1)d(n2)...d(ns)≤ ϕ(ϕ(n1))ϕ(ϕ(n2))...ϕ(ϕ(ns))

< ϕ(ϕ(n1)ϕ(n2)...ϕ(ns)) = ϕ(ϕ(n1n2...ns)).

Hence, n1n2...ns ∈ L1.

Proposition 6. Let α ≥ 2 and let n = qα be a prime power with q is odd. Then n ∈ L1 except for n = 32 ∈G1.

For the proof we need the following lemma.

Lemma 2. Let n be a positive integer with n ≥ 3 and let q be an odd prime number. Then

(n+ 1)2 < qn−1(q− 1).

Proof. This follows immediately using mathematical induction.

Proof(Proposition 6). Assume by way of contradiction that d(n)≥ ϕ(ϕ(n)). Therefore, α + 1 ≥ ϕ(qα−1(q− 1)). Also,
by (5), we get

ϕ(qα−1(q− 1))≥
√

qα−1(q− 1),

and so (α + 1)2 ≥ qα−1(q− 1), which is impossible by Lemma 2 except for (q,α) = (3,2).

Proposition 7. Let s ≥ 2 and let n = q
α1
1 q

α2
2 ...qαs

s be an odd number with max(α1,α2, ...,αs)≥ 2. Then n ∈ L1.

Proof. We distinguish three cases:
Case 1. s = 2. There are two subcases:
Subcase 1.1. q1 = 3. This means that n = 3α1qα2 , and we have three possibilities:

• α1 = 1, so α2 must be > 1 because q2 ≥ 5. Thus, it is clear that

22(α2 + 1)2 < 2q
α2−1
2 (q2 − 1).

If we assume that n ∈ E1 ∪G1, this means that 2(α2 + 1)≥ ϕ(2q
α2−1
2 (q2 − 1)), and by (5) we obtain

ϕ(2q
α2−1
2 (q2 − 1))≥

√

2q
α2−1
2 (q2 − 1).

Thus, 22(α2 + 1)2 ≥ 2q
α2−1
2 (q2 − 1). This is a contradiction. Hence, n ∈ L1.

• α1 = 2. Since q2 ≥ 5, we conclude that 32(α2 + 1)2 < 2 ·3 ·qα2−1
2 (q2 − 1). Hence, n ∈ L1.

• α1 > 2. By Corollary 1 and Proposition 6, q
αi
i ∈ E1 ∪L1 for 1 ≤ i ≤ s, so by Proposition 5, n ∈ L1.

Subcase 1.2. q1 > 3. By Corollary 1 and Proposition 6, q
αi
i ∈ E1 ∪L1 for 1 ≤ i ≤ s, so it is clear by Proposition 5 that

n ∈ L1.
Case 2. s = 3. Here, we also have two subcases:
Subcase 2.1. q1 = 3. We also distinguish three possibilities:

• α1 = 1. That is, α2 > 1 or α3 > 1. Then we can easily check that

22(α2 + 1)2(α3 + 1)2 < 2(q2 − 1)qα2−1
2 (q3 − 1)q

α3−1
3 ,

and hence n ∈ L1.
• α1 = 2. By the same way we find n ∈ L1.
• α1 > 2. By Corollary 1 and Proposition 6, q

αi
i ∈ E1 ∪L1 for 1 ≤ i ≤ s. So by Proposition 5, n ∈ L1.

Subcase 2.2. q1 > 3. By Corollary 1 and Proposition 6, q
αi
i ∈ E1 ∪L1 for 1 ≤ i ≤ s. So by Proposition 5, n ∈ L1.

Case 3. s ≥ 4. Here, we distinguish two subcases:
Subcase 3.1. q1 = 3. By induction on s we can easily prove the following inequality

(α1 + 1)2(α2 + 1)2...(αs + 1)2 < 2 ·3α1−1(q2 − 1)qα2−1
2 ...(qs − 1)qαs−1

s ,

which gives n ∈ L1.
Subcase 3.2. q1 > 3. By Corollary 1 and Proposition 6, q

αi
i ∈ E1∪L1 for 1 ≤ i ≤ s. Similarly, by Proposition 5, n∈ L1.
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2.3 Nonsquare-free even solutions

In this subsection, we can prove the following proposition as those appearing with the case when n is nonsquare-free odd.

Proposition 8. Let n = 2α1q
α2
2 ...qαs

s be an even number such that max(α1,α2, ...,αs)≥ 2. There are four possibilities:

• s = 1. Here n is a prime power, where n = 2α1 with α1 ≥ 2. We have:

◦ If n is either 22 or 23 or 24, then n ∈G1.

◦ If α1 ≥ 5, then n ∈ L1.

• s = 2. We have:

◦ If n = 22 ·3,2 ·32,22 ·5,23 ·3,22 ·7,22 ·32,24 ·3,2 ·33,23 ·32, then n ∈G1.

◦ If n = 23 ·5,23 ·7,22 ·33, then n ∈ E1.

◦ If n is different from the previous mentioned numbers, then n ∈ L1.

• s = 3. We have:

◦ If n = 22 ·3 ·5,22 ·3 ·7,2 ·32 ·5,22 ·32 ·5, then n ∈G1.

◦ If n = 23 ·3 ·5,2 ·32 ·7,23 ·3 ·7, then n ∈ E1.

◦ If n is different from the previous mentioned numbers, then n ∈ L1.

• s ≥ 4. Here, we have n ∈ L1.

Now, we are ready to prove Theorem 1.

Proof(Theorem 1). Clearly, 1 ∈ E1. Assume that n = q
α1
1 q

α2
2 ...qαs

s with n 6= 1, 2, 3, 4, 5, 6, 7 , 8, 9, 10, 12, 14, 15, 16,
18, 20, 21, 22, 24, 26 , 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 84, 90, 108, 120, 126, 168, 180 and 210, where
q1 < q2 < ... < qs are primes and α1,α2, ...,αs are positive integers. There are five cases to consider:

Case 1. s = 1. There are two possibilities:

• α1 = 1. Since n 6= 2,3,5,7, it follows from Corollary 1 that n ∈ L1.
• α1 ≥ 2. Since n 6= 22,23,32,24, it follows from Propositions 6 and 8 that n ∈ L1.

Case 2. s = 2. There are two possibilities:

• α1 = α2 = 1. Since n 6= 10,14,15,21,22,26,34, by Proposition 2 we conclude that n ∈ L1.
• α1 or α2 ≥ 2. Since n 6= 12,18,20,24,28,36,40,48,54,56,72,108, it follows from Proposition 7 and Proposition 8

that n ∈ L1.

Case 3. s = 3.

• n is square-free. Since n 6= 30,42,66,70,78, by Propositions 3 and 4 we have n ∈ L1.
• n is not square-free. Since n 6= 60,84,90,120,126,168,180, it follows from Propositions 7 and 8 that n ∈ L1.

Case 4. s = 4.

• n is square-free. Since n 6= 210, it follows from Propositions 3 and 4 that n ∈ L1.
• n is not square-free. It follows from Propositions 7 and 8 that n ∈ L1.

Case 5. s ≥ 5. By Propositions 4, 7 and 8 we have n ∈ L1.

The proof is finished.

3 On the equation d(k ·n) = ϕ(ϕ(n)) with k ≥ 2

Proposition 9. Let s,k ≥ 2 and let n1,n2, ...,ns be relatively prime positive integers with ni ≥ 3 for i = 1,2, ...,s. If

n1,n2, ...,ns ∈ Ek ∪Lk, then n1n2...ns ∈ Lk.

Proof. This is similar to the proof of Proposition 5.

Theorem 2. Let k ≥ 2. The sets Gk and Ek are finite, while Lk is infinite.
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Proof. At first, we prove that for any prime p there exists an exponent α0 such that px ∈ Lk for every x ≥ α0. Let n = pα

be a prime power such that pα ∈ Ek ∪Gk. Then

d(k · pα)≥ ϕ(pα−1(p− 1)).

Put k = pam, where a ≥ 0, m ≥ 1 and (p,m) = 1. Then

d(m)(a+α + 1)≥ pα−2(p− 1)ϕ(p− 1)

and by (1) and (5) we have

2
√

m(a+α + 1)≥ d(m)(a+α + 1)≥ pα−2(p− 1)ϕ(p− 1)≥ pα−2(p− 1)
√

p− 1. (12)

Therefore,
4m(a+α + 1)2 ≥ p2α−4(p− 1)3.

Since a and m are fixed and α is the exponent of p, the last inequality has only finite number of solutions. Thus, the
set Ek ∪Gk contains only finitely many prime powers, namely l

γ1
1 , l

γ2
2 , ..., l

γs
s . Consequently, it suffices to choose α0 =

max(γ1 + 1,γ2 + 1, ...,γs + 1).
Now, let n = q1q2...qm, where q1 < q2 < ... < qm are primes (m ≥ 2). Assume that n ∈ Ek ∪Gk. Therefore,

d(k ·q1q2...qm)≥ ϕ(ϕ(q1q2...qm)).

By (1), (2) and (5) we obtain

(2
√

k)(2m+1)≥ d(k)d(q1...qm)≥ d(k ·q1...qm)≥ ϕ(ϕ(q1...qm))≥
√

(q1 − 1)...(qm− 1),

from which it follows that
22m+24k ≥ (q1 − 1)(q2− 1)...(qm − 1). (13)

Since k is fixed and (q1 − 1)(q2 − 1)...(qm − 1) can be sufficiently large, we deduce that there exists a positive integer m0

for which the inequality (13) is not true for every m ≥ m0. Thus the inequality d (k ·n) ≥ ϕ (ϕ (n)) holds for finitely
many square-free integers.

Finally, let n = q
α1
1 q

α2
2 ...qαm

m , where q1 < q2 < ... < qm are prime numbers and α1,α2, ...,αm are positive integers.
Note that the number m cannot be sufficiently large as we wish such that d (k · s)≥ ϕ (ϕ (s)) for s = q1q2...qm . Moreover,

from above there exist positive integers α
(0)
1 ,α

(0)
2 , ...,α

(0)
m such that the numbers q

α
′
1

1 ,q
α
′
2

2 , ...,q
α ′

m
m satisfy the inequality

d
(

k ·qα ′
i

i

)

< ϕ

(

ϕ

(

q
α ′

i
i

))

for every α ′
i ≥ α

(0)
i (1 ≤ i ≤ m). Applying Proposition 9, the numbers n′ = q

α
′
1

1 q
α
′
2

2 ...q
α ′

m
m with α ′

i ≥ α
(0)
i (1 ≤ i ≤ m) satisfy

the inequality d (k ·n′)< ϕ (ϕ (n′)). Thus, the inequality d (k ·n)≥ ϕ (ϕ (n)) has only a finite number of solutions, while
the inequality d (n)< ϕ (ϕ (n)) has infinitely many solutions.

Proposition 10. We have ∩
k≥1

Gk =G1.

Proof. It suffices to prove that G1 ⊂ ∩
k≥1

Gk. As we have already seen

G1 = {2,3,4,6,8,9,10,12,14,16,18,20,24,28,30,36,42,48,54,60,72,84,90,180}.

Then for every k ≥ 1 and x in G1 we see that d(kx)> ϕ(ϕ(x)). This proves G1 ⊂Gk. This completes the proof.

Proposition 11. Let r,s ≥ 2. If r divides s, then Gr ⊂Gs.

Proof. Let n ∈Gr. Since r divides s, we see by (4) that

d (s ·n)≥ d (r ·n)> ϕ (ϕ (n)) ,

and so n ∈Gs, as required.
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Theorem 3. Let p be a prime number with p ≥ 23 and p 6= 31 . Then Ep = {11, 13, 33, 34, 35, 39, 62, 63, 76 , 88, 98,

102, 104, 105, 110, 130, 154, 186, 228, 234, 264, 280, 294, 312, 330, 390, 462, 504, 540, 630, 840} .

Proof. Let p ≥ 23 be prime with p 6= 31. Clearly, if n is one of the above numbers, then we can easily check that
d (p ·n) = 2d(n) = ϕ (ϕ (n)). Then the numbers mentioned in this theorem are part of the solution set.

Now, let n ≥ 1 such that n ∈ Ep ∪Gp. It follows that

2d(n)≥ d(p ·n)≥ ϕ(ϕ(n)).

As in the proof of Theorem 1, we can show that the only solutions of 2d(n)≥ ϕ(ϕ(n)) are n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17 , 18, 19, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 48, 50, 52, 54 ,
56,60, 62, 63, 66, 70, 72, 76, 78, 80, 84, 88, 90 , 96, 98, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 130, 132, 140,
144, 150, 154, 156, 162, 168, 180, 186, 198, 210, 216, 228, 234, 240, 252, 264, 270, 280, 288, 294, 300, 312, 330, 336,
360, 390, 396, 420, 450, 462, 504, 540, 630 and 840. In addition, it is easy to check that the numbers 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 30, 32, 36, 38, 40, 42, 44, 45, 48, 50, 52, 54, 56,60, 66, 70, 72,
78, 80, 84, 90, 96, 100, 108, 112, 114, 120, 126, 132, 140, 144, 150, 156, 162, 168, 180, 198, 210, 216, 240, 252, 270,
288, 300, 336, 360, 396, 420 and 450 satisfy the inequality d(p · n)> ϕ(ϕ(n)). Thus, the numbers quoted in the text of
the present theorem are the only solutions of the equation d(p · n) = ϕ(ϕ(n)), where p ≥ 23 is prime with p 6= 31. This
completes the proof.

Remark. By the same argument as above and by a brute force search with Maple in the range 1 ≤ n ≤ 1010, one can show
that

• E2 = {11, 13, 33, 35, 38, 39, 44, 52, 63, 105, 114, 132, 140, 156, 252, 270, 420}.
• E3 = {11, 13, 34, 35, 45, 62, 76, 88, 98, 104, 110, 114 130, 154, 198, 252, 280, 360}.
• E5 = {11, 13, 33, 34, 39, 50, 62, 63, 76, 88, 98, 102, 104, 150, 154, 186, 228, 234, 264, 270, 294, 312, 462, 504}.
• E7 = {11, 13, 33, 34, 39, 62, 76, 88, 102 , 104, 110, 130, 186, 228, 234, 264, 312, 330, 390, 540}.
• E11 = {13, 34, 35, 39, 62, 63, 76, 98, 102 , 104, 105, 130, 186, 228, 234, 280, 294, 312, 390, 504 , 540, 630, 840}.
• E13 = {11, 33, 34, 35, 62, 63, 76, 88, 98 , 102, 105, 110 , 154, 186, 228, 264, 280, 294, 330, 462, 504, 540, 630, 840}.
• E17 = {11, 13, 33, 35, 39, 62, 63, 76, 88 , 98, 104, 105, 110, 130, 154, 186, 228, 234, 264, 280 , 294, 312, 330, 390,

462, 504, 540, 630, 840}.
• E19 = {11, 13, 33, 34, 35, 38, 39, 62, 63 , 88, 98, 102, 104, 105, 110, 114, 130, 154, 186, 234, 264, 280, 294, 312,

330, 390, 462, 504, 540, 630, 840} .
• E31 = {11, 13, 33, 34, 35, 39, 63, 76, 88, 98, 102, 104, 105, 110, 130, 154, 228, 234, 264, 280 , 294, 312, 330, 390,

462, 504, 540, 630, 840}.

Moreover, from the proof of Theorem 3, for any prime p ≥ 23 with p 6= 31 we deduce that Gp = {1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 24, 26, 27, 28, 30, 32, 36, 38, 40, 42, 44, 45, 48, 50, 52, 54, 56,60, 66, 70,
72, 78, 80, 84, 90, 96, 100, 108, 112, 114, 120, 126, 132, 140, 144, 150, 156, 162, 168, 180, 198, 210, 216, 240, 252, 270,
288, 300, 336, 360, 396, 420 450}. Thus, if I is a finite subset of positive integers, say I = {1,2, ...,N} with N ≥ 100, then
Lp ∩ I = I −Ep −Gp = {17, 19, 23, 25, 29, 31, 37, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 64, 65, 67, 68, 69, 71,
73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 99, ...}.

4 Conclusion

In the previous sections, we investigated the solutions n of the equation (i) d(kn) = ϕ(ϕ(n)) and also the respective
solutions of the corresponding inequalities (ii) d(kn) < ϕ(ϕ(n)) and (iii) d(kn) > ϕ(ϕ(n)). Since the positive integers
are naturally partitioned into 3 subsets according to (i), (ii) and (iii), we have also characterized the elements of the sets
E1, L1, G1, Ep, Lp and Gp whenever p is prime. As a conclusion, we gave the relation between the sizes of these sets,
where ∩ Ep = { /0} as p runs through the sequence of all primes. The same technique is applied to characterize the
elements Ek, Lk and Gk whenever k is composite.
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