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Abstract: In this paper, we study frames which can be expressed as operator orbits {T n(φ)}n∈Z under a single generator φ and an

operator T on a right quaternionic Hilbert space H and prove a necessary and sufficient condition under which the sequence {hn}n∈Z
is expressible as orbit of some operator T . Also, a necessary condition for a frame {hn}n∈Z to have an operator orbit representation

{hn}n∈Z = {T n(h0)}n∈Z using a bounded operator T is given. Further, a characterization for the boundedness of the operator T ,

given that {hn}n∈Z = {T n(h0)}n∈Z forms a frame is obtained. Moreover, it is proved that a redundant frame with finite excess can

never be expressed as an orbit of a bounded operator whereas for a Riesz sequence an operator orbit representation with a bounded

operator is always possible. Furthermore, we discuss the stability of frames that can be expressed as an orbit of some operator and

prove that it remains undisturbed under some perturbation conditions. Finally as an application, we approximate frames that cannot be

expressed as operator orbit using the sub-orbit representation of hypercyclic operators.
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1 Introduction and Preliminaries

In recent years, many researchers have studied the concept of dynamical sampling with the help of frames. Aldroubi et al.
[1,2,3] presented the notion of dynamical sampling that analyses the properties of the sequences expressible as orbit of
some operator under single generator. Also, Christensen et al. [5,6] gave some crucial results concerning the boundedness
of the operator and stability of operator representation of frames. One of the main concerns of dynamical sampling is to
examine the frames expressible as {T n(ψ)}n∈Z where T : H→ H is a bounded operator and ψ ∈ H is a fixed element.
But, this is quite restrictive and not very easy to achieve expression using a bounded operator. Various necessary and
sufficient conditions required for these orbit representations have been already studied in Hilbert spaces [8,9]. Along
with that, there comes some limitations as well that are also considered and rectified by many researchers in context of
dynamical sampling [7]. But, can this very significant topic of dynamical sampling be extended to quaternionic Hilbert
spaces? This question motivates us to prove some of the important results of Hilbert spaces concerning orbit representation
of frames sequences, for quaternionic Hilbert spaces.

Moreover, the concept of frame sequences and their generalizations have been already introduced to quaternionic
Hilbert spaces in [11,13]. The generalization of this concept of frame sequences as operator orbits, to quaternionic
Hilbert spaces has become an interesting problem because of its significant applications in dynamical sampling
concerning quaternionic Hilbert spaces. In this article, our main concern is to deal with the frame properties of the
sequences {T n(ψ)}n∈Z, which are expressible as an orbit of some operator T in quaternionic Hilbert spaces. Once we
get the desired representation with the help of some operator, the very next crucial part is to check for the conditions
under which such an expression is feasible with some bounded operator T . It gives rise to many questions, as if every
frame could have this representation? If not, can we approximate these frames with orbit or sub-orbit of any operator?
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Can this operator T be bounded? and many more. In this paper, the answers of all these natural arising questions in
quaternionic Hilbert spaces are given, extending the important results of Hilbert spaces.

Throughout this paper, we consider the orbits generated by single elements, i.e., the orbit of T under some h0 ∈ H is
given by the sequence of the form {T n(h0)}n∈Z. Also, we denote by H, a right quaternionic Hilbert space, N denotes the
set of all natural numbers, Z the set of all integers, I a countable index set and Q denotes the set of all real quaternions.
The kernel and range of an operator T are denoted by ker(T ) and ran(T ), respectively. Also the terms ‘right-subspace’
and ‘rspan’ refers to the ‘subspace’ and ‘span’ respectively, with scalars on the right side of the vectors only.

The paper is structured as follows. In the remaining part of this section, we recall some basic definitions and results
concerning quaternionic Hilbert spaces. In Section 2, we firstly give a classification of sequences {hn}n∈Z having the
representation as an orbit of some operator i.e., {hn}n∈Z = {T n(h0)}n∈Z. A necessary condition for a frame to have a
representation as an orbit of some bounded operator is given. Moreover, for a frame of the form {hn}n∈Z = {T n(h0)}n∈Z,
a crucial characterization for the boundedness of the operator T is given with the help of the synthesis operator and
some important consequences of this result are derived. Further, it is proved that if a redundant frame with finite excess is
expressible as an operator orbit, the operator must be unbounded. Section 3 deals mainly with the stability of the frames
expressible as an orbit of some operator under some perturbation conditions. Lastly in Section 4, we define approximation
of a frame in H and approximate any arbitrary frame in H with a frame as a sub-orbit of some hypercyclic operator.

Quaternions are basically a four dimensional non-commutative extension of the set of complex numbers over R. The
quaternionic algebra Q contain elements of the form

q= q0 + iq1 + jq2 + kq3, q0,q1,q2,q3 ∈R

where, i2 = j2 = k2 = i jk =−1. For any q= q0 + iq1+ jq2 +kq3 ∈Q, q0 is called the scalar (or real part) and iq1+ jq2 +
kq3 is called the imaginary (or vector part) of q. Further, it can be expressed as q = a+ v, where a is the scalar part and v

is the imaginary part of q and its conjugate q̄ is given by

q̄= q0 − iq1 − jq2 − kq3.

This directs a norm for q ∈Q defined by

|q|=
√

qq̄=
√

q2
0 + q2

1 + q2
2 + q2

3.

The quaternion’s exponential function for q= a+ v ∈Q is given by

eq = ea
(

cos(|v|)+ v

|v| sin(|v|)
)

.

Definition 1([13]). A right quaternionic vector space H is said to be a right quaternionic pre-Hilbert space (or a right

quaternionic inner product space) over Q if it is endowed with the inner product 〈.|.〉 : H×H→Q satisfying the following

properties:

(a)〈h1|h2〉= 〈h2|h1〉, h1,h2 ∈H.
(b)〈h|h〉 > 0 if h 6= 0.
(c)〈h|h1 +h2〉= 〈h|h1〉+ 〈h|h2〉, h,h1,h2 ∈ H.
(d)〈h1|h2q〉= 〈h1|h2〉q, h1,h2 ∈H,q ∈Q.

A right quaternionic pre-Hilbert space is said to be a right quaternionic Hilbert space if it is complete with respect to the

norm induced by the above defined inner product. For more information on quaternionic Hilbert spaces one may refer

[10].

The right quaternionic vector space of all the square integrable quaternionic valued functions L2(R,Q) which is given by

L2(R,Q) =
{

h : R→Q
∣

∣

∣

∫

R

|h(x)|2dx < ∞
}

forms a right quaternionic Hilbert space under the quaternionic valued inner product

〈h|g〉=
∫

R

h(x)g(x)dx, h,g ∈ L2(R,Q)

where, dx denotes the usual Lebesgue measure on R and the right scalar multiplication hq : R→Q with (hq)(x) = h(x)q,
q ∈Q,x ∈ R.
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For b,w ∈R, we define the quaternionic translation operator Tb and the quaternionic modulation operator Ew on L2(R,Q)
as follows:

Tbh(x) = h(x− b) and Ewh(x) = h(x)e−2π jwx, h ∈ L2(R,Q), x ∈ R,

where Ew also denotes the mapping x 7→ e−2π jwx on R.

Definition 2.Let g ∈ L2(R,Q) be a non-zero function and α,β > 0. Then, define the Gabor system generated by g,α,β
as the set of time-frequency shifts given by

G (g,α,β ) = {gm,n := Eβ mTαng : m,n ∈ Z},
where g is called the window function for the system G (g,α,β ).

Also the space ℓ2
Z
(Q) which is defined by

ℓ2
Z
(Q) =

{

{qn}n∈Z ⊂Q
∣

∣

∣ ∑
n∈Z

|qn|2 < ∞
}

,

forms a right quaternionic Hilbert space under the right multiplication by quaternions together with the inner product
given by

〈{pn}n∈Z|{qn}n∈Z〉= ∑
n∈Z

pnqn, {pn}n∈Z,{qn}n∈Z ∈ ℓ2
Z(Q).

We define the analogue of the quaternionic translation operator, the right-shift operator R : ℓ2
Z
(Q)→ ℓ2

Z
(Q) by

R({qn}n∈Z) = {qn−1}n∈Z, {qn}n∈Z ∈ ℓ2
Z(Q).

Similarly, the left-shift operator on ℓ2
Z
(Q) can be defined.

Definition 3([13]). A sequence {hn}n∈Z in H is said to be a frame for H if there exist two positive constants 0< r1 ≤ r2 <∞
such that

r1‖h‖2 ≤ ∑
n∈Z

|〈hn|h〉|2 ≤ r2‖h‖2, h ∈ H.

The real constants r1, r2 are known as lower and upper frame bounds for the frame {hn}n∈Z, respectively. The sequence

{hn}n∈Z is said to be a Bessel sequence for H with Bessel bound r2, if it satisfies the upper frame condition.

For a Bessel sequence {hn}n∈Z in H, the operator Th : ℓ2
Z
(Q)→ H defined by

Th({qn}n∈Z) = ∑
n∈Z

hnqn, {qn}n∈Z ∈ ℓ2
Z
(Q)

is known as the synthesis operator and its adjoint T∗
h : H→ ℓ2

Z
(Q) given by

T∗
h(h) = {〈hn|h〉}n∈Z, h ∈ H

is known as the analysis operator for the frame {hn}n∈Z. Also, the kernel of the synthesis operatorTh for a frame {hn}n∈Z
is given by

ker(Th) =
{

{qn}n∈Z ∈ ℓ2
Z
(Q)

∣

∣

∣ ∑
n∈Z

hnqn = 0
}

.

Composing Th and T∗
h, we obtain the frame operator Sh = ThT

∗
h : H→ H such that

Sh(h) = ∑
n∈Z

hn〈hn|h〉, h ∈ H.

The frame operator Sh for the frame {hn}n∈Z is a positive, self-adjoint and invertible operator on H.
Also, a sequence {hn}n∈Z in H is said to be a Riesz sequence, if there exist two positive constants r1 ≤ r2 such that for

all finite sequences {qn}n∈Z ∈ ℓ2
Z
(Q),

r1 ∑
n∈Z

|qn|2 ≤
∥

∥

∥ ∑
n∈Z

hnqn

∥

∥

∥

2

≤ r2 ∑
n∈Z

|qn|2.

A Riesz sequence {hn}n∈Z is said to be a Riesz basis for H if rspan{hn}n∈Z = H. A redundant frame is a frame which
properly contains a Riesz basis and the excess for a frame {hn}n∈Z is the number of elements that can be eliminated from
the sequence {hn}n∈Z so that the remaining sequence forms a Riesz basis.
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2 Properties of Frames as Operator Orbits

In this section, we consider frames {hn}n∈Z in H that are expressible as an orbit of some operator T on H and
investigate various frame properties and conditions under which such an expression is feasible with the help of some
bounded operator. An important point to be mentioned here is that when we write {T n(h0)}n∈Z, then one should not get
confused for n < 0. We take T as an invertible operator and hence T −n = (T −1)n is well-defined for all n ∈ N. Also,
by right-linearly independent sequence we mean linear independence of the sequence with scalars on the right side. First
of all, we give a characterization for the sequences {hn}n∈Z in H that are expressible as {hn}n∈Z = {T n(h0)}n∈Z for an
operator T (may or may not be bounded) on H.

Theorem 1.Let {hn}n∈Z in H be a sequence such that rspan{hn}n∈Z is infinite-dimensional. Then, {hn}n∈Z is right-

linearly independent if and only if there exists a bijective right-linear operator T : rspan{hn}n∈Z → rspan{hn}n∈Z such

that {hn}n∈Z = {T n(h0)}n∈Z.

Proof.Let {hn}n∈Z be a right-linearly independent sequence in H. Define T (hn) := hn+1, n ∈ Z and by right-linearity, this
T extends to a well-defined operator on rspan{hn}n∈Z.

Conversely, let T : rspan{hn}n∈Z → rspan{hn}n∈Z be a bijective right-linear operator such that
{hn}n∈Z = {T n(h0)}n∈Z. On the contrary, assume that {hn}n∈Z is right-linearly dependent. This implies that there exist

some M,N ∈ Z and a finite sequence 0 6= {qn}N
n=M ⊂Q, such that

N

∑
n=M

hnqn = 0. Since the sequence {qn}N
n=M 6= 0, there

must exists some M ≤ m ≤ N such that qm 6= 0. If m 6= N, we may re-index the sequences {qn}N
n=M and {hn}N

n=M to get

qN 6= 0. So, we may assume qN 6= 0 which in turn implies that hN =
N−1

∑
n=M

hnpn for some {pn}N−1
n=M ⊂ Q. Now, let

U := rspan{hn}N−1
n=M. Clearly hN ∈U . Also, one may observe that T (U)⊆U . Indeed, for {qn}N−1

n=M ⊂Q, we have

T

( N−1

∑
n=M

hnqn

)

=
N−2

∑
n=M

hn+1qn +hNqN−1 ∈U.

Therefore, rspan{hn}n∈Z = U , which is a contradiction since rspan{hn}n∈Z is infinite-dimensional. Hence, {hn}n∈Z is a
right-linearly independent sequence.

In support of the above theorem, let us give a basic example of a frame that is expressible as an orbit of some operator on
H.

Example 1.Let {en}n∈Z be any orthonormal basis of H. Define T : H → H such that T (en) = en+1,n ∈ Z. One may
observe that T can extend right-linearly to a bounded operator on H and {en}n∈Z = {T n(e0)}n∈Z.

The above example has direct implications in Gabor analysis of L2(R,Q). An orthonormal basis of L2(R,Q) as the orbit
of an operator, can be generated with the help of a given Gabor orthonormal basis {Eβ mTαng}m,n∈Z by reindexing it on
Z. In the following result, it is proved that for Riesz sequences the orbit representation can be provided with a bounded
operator T (does not hold for arbitrary sequences or frames).

Theorem 2.For any right quaternionic Hilbert space H, the following statements hold:

(a)For every Riesz sequence {hn}n∈Z in H, there always exists a bounded bijective right-linear operator T on

rspan{hn}n∈Z such that {hn}n∈Z = {T n(h0)}n∈Z.

(b)For a bounded operator T on H such that {T n(h0)}n∈Z forms a frame for H for some h0 ∈ H, ran(T ) = H.

Proof.(a) Let {hn}n∈Z be any Riesz sequence in H. Then, there exist some A > 0 such that

A ∑
n∈Z

|qn|2 ≤
∥

∥

∥ ∑
n∈Z

hnqn

∥

∥

∥

2

,

for all finite sequences {qn}n∈Z ∈ ℓ2
Z
(Q). Define T (hn) := hn+1, n ∈ Z. Now by Theorem 3.5 in [14], the operator T

can extend right-linearly to a bounded operator T : rspan{hn}n∈Z → rspan{hn}n∈Z. It is easy to observe that ran(T ) =
rspan{hn}n∈Z and {hn}n∈Z = {T n(h0)}n∈Z.
(b) Let {T n(h0)}n∈Z form a frame for H for some h0 ∈ H. Then, the synthesis operator Th : ℓ2

Z
(Q)→ H which is given

by

Th({qn}n∈Z) = ∑
n∈Z

T
n(h0)qn, {qn}n∈Z ∈ ℓ2

Z
(Q)
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is a surjective operator, indeed, ran(Th) = rspan{T n(h0)}n∈Z = H. Also for {qn}n∈Z ∈ ℓ2
Z
(Q), we have

∑
n∈Z

T
n(h0)qn = T

(

∑
n∈Z

T
n−1(h0)qn

)

∈ ran(T ).

This gives, ran(T ) = H.

For a frame to be expressible as an orbit of some bounded operator is a more desired situation. So, in the following result
a necessary condition for a frame {hn}n∈Z to have a representation of the form {T n(h0)}n∈Z is obtained where, T is
given to be a bounded operator.

Theorem 3.Let {hn}n∈Z = {T n(h0)}n∈Z be a frame for H, where T : rspan{hn}n∈Z → rspan{hn}n∈Z is some bounded

right-linear operator. Then, ‖T ‖ ≥ 1. Moreover, if T −1 is also bounded, then ‖T −1‖ ≥ 1.

Proof.Let r1, r2 > 0 be lower and upper frame bounds of the frame {hn}n∈Z respectively. From the frame inequality, for
any m ∈N, we have

r1‖h‖2 ≤ ∑
n∈Z

|〈T n(h0)|h〉|2 = ∑
n∈Z

|〈T n−m(h0)|(T m)∗(h)〉|2

= ∑
n∈Z

|〈T n(h0)|(T m)∗(h)〉|2

≤ r2‖T ‖2m‖h‖2, h ∈H.

Thus r1 ≤ r2‖T ‖2m, m ∈ N and hence we get ‖T ‖ ≥ 1. Moreover, if T −1 is also bounded then the result is obtained by
replacing T with T −1.

Remark.The converse of the above theorem is not true, which can be visualized by taking the identity operator I on H.
The system {In(h0)}n∈Z = {h0} never forms a frame for H with infinite-dimension.

In the next result, a characterization for the boundedness of the operator T is given, for the case when the frame {hn}n∈Z
in H is expressible as {T n(h0)}n∈Z. For this, we need to recall the definition of an invariant right-subspace. A right-
subspace M⊂ H is said to be invariant under an operator T : H→ H if T (M)⊆M.

Theorem 4.Let {hn}n∈Z = {T n(h0)}n∈Z be a frame for H, for some right-linear operator

T : rspan{hn}n∈Z → rspan{hn}n∈Z with lower and upper frame bounds r1 and r2 respectively and frame operator Sh.

Then, the following statements are equivalent:

(a)The operator T is bounded.

(b)ker(Th) is invariant under the right-shift operator where Th is the synthesis operator for {hn}n∈Z.

Proof.Assume that for a bounded right-linear operator T : rspan{hn}n∈Z → rspan{hn}n∈Z, the sequence

{hn}n∈Z = {T n(h0)}n∈Z form a frame for H. Then, T extends right-linearly to a bounded operator T̂ : H → H. For
{qn}n∈Z ∈ ker(Th), we have

Th(R{qn}n∈Z) = ∑
n∈Z

hnqn−1 = ∑
n∈Z

hn+1qn

= T̂

(

∑
n∈Z

hnqn

)

= 0.

Thus, we conclude that R(ker(Th))⊆ ker(Th).

Conversely, let ĥ ∈ rspan{hn}n∈Z. Then, ĥ=
N

∑
n=M

hnq̂n for some M,N ∈ Z and q̂n ∈Q. We may consider the sequence

{q̂n}N
n=M as an element {q̂n}n∈Z of ℓ2

Z
(Q) by assigning zeros at q̂n for n > N and n < M. Also, we can split {q̂n}n∈Z as

{q̂n}n∈Z = {pn}n∈Z+ {p̃n}n∈Z, for some {pn}n∈Z ∈ ker(Th) and {p̃n}n∈Z ∈ ker(Th)
⊥. Now using the fact that {hn}n∈Z
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form a frame for H and ker(Th) is invariant under the right-shift operator, we have

‖T (ĥ)‖2 =
∥

∥

∥

N

∑
n=M

hn+1q̂n

∥

∥

∥

2

=
∥

∥

∥ ∑
n∈Z

hn+1(pn + p̃n)
∥

∥

∥

2

=
∥

∥

∥
Th(R{pn}n∈Z)+ ∑

n∈Z
hn+1p̃n

∥

∥

∥

2

=
∥

∥

∥ ∑
n∈Z

hn+1p̃n

∥

∥

∥

2

≤ r2 ∑
n∈Z

|p̃n|2. (1)

As the range of the synthesis operator ran(Th) is closed (being equal to H), Proposition 3.8 in [12] implies that the range

of the analysis operator ran(T∗
h) is closed as well. Therefore ker(Th)

⊥ = ran(T∗
h). From the frame inequality, we have

(

∑
n∈Z

|〈hn|h〉|2
)2

= |〈Sh(h)|h〉|2

≤ ‖Sh(h)‖2‖h‖2

≤ 1

r1

‖Sh(h)‖2 ∑
n∈Z

|〈hn|h〉|2, h ∈ H.

This gives

r1 ∑
n∈Z

|〈hn|h〉|2 ≤ ‖Sh(h)‖2 = ‖Th{〈hn|h〉}n∈Z‖2, h ∈ H.

As ker(Th)
⊥ = ran(T∗

h), we get

r1 ∑
n∈Z

|qn|2 ≤ ‖Th{qn}n∈Z‖2, {qn}n∈Z ∈ ker(Th)
⊥. (2)

From (1) and (2), we obtain

‖T (ĥ)‖2 ≤ r2

r1

∥

∥

∥ ∑
n∈Z

hnp̃n

∥

∥

∥

2

=
r2

r1

∥

∥

∥ ∑
n∈Z

hnq̂n

∥

∥

∥

2

=
r2

r1

‖ĥ‖2.

Thus, T is a bounded operator with ‖T ‖ ≤
√

r2
r1

.

Corollary 1.Let {hn}n∈Z = {T n(h0)}n∈Z be a frame for H, where T : rspan{hn}n∈Z → rspan{hn}n∈Z is a right-linear

operator. Then, the operator T −1 is bounded if and only if ker(Th) is invariant under the left-shift operator where Th is

the synthesis operator for {hn}n∈Z .

Proof.We may write {h−n}n∈Z = {(T −1)n(h0)}n∈Z. Let U be the synthesis operator for {h−n}n∈Z. It is easy to observe
that {qn}n∈Z ∈ ker(Th) if and only if ∑

n∈Z
hnqn = 0. Also we may write ∑

n∈Z
hnqn = ∑

n∈Z
h−nq−n =U ({q−n}n∈Z). Therefore,

{qn}n∈Z ∈ ker(Th) if and only if {q−n}n∈Z ∈ ker(U ). This implies that ker(U ) is right-shift invariant if and only if

ker(Th) is left-shift invariant. Hence, from Theorem 4, T −1 is bounded if and only if ker(Th) is left-shift invariant.

We know from Theorem 1 that every right-linearly independent sequence {hn}n∈Z in H is expressible as
{hn}n∈Z = {T n(h0)}n∈Z. Also, if T is a bounded operator, it extends uniquely to a bounded operator

T̂ : rspan{hn}n∈Z → rspan{hn}n∈Z such that

T̂

(

∑
n∈Z

hnqn

)

= ∑
n∈Z

hn+1qn.

Now, given that {hn}n∈Z = {T n(h0)}n∈Z form a frame for H, for some operator T on rspan{hn}n∈Z, the following result
gives a necessary and sufficient condition for the operator T to have a bounded bijective extension on H.
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Lemma 1.Let {hn}n∈Z = {T n(h0)}n∈Z be a frame for H, for some right-linear operator

T : rspan{hn}n∈Z → rspan{hn}n∈Z. Then, ker(Th) is invariant under both the right and left-shift operators if and only if

the operator T extends to a bounded right-linear bijective operator T̂ : H→ H where Th is the synthesis operator for

{hn}n∈Z .

Proof.Let us assume that ker(Th) is invariant under both the right and left-shift operators. Then from Theorem 4, the

operators T and T −1 are bounded and T T −1 = T −1T = I on rspan{hn}n∈Z. Hence, T and T −1 can extend to

bounded right-linear operators T̂ and T̂ −1 respectively on H such that T̂ T̂ −1 = T̂ −1T̂ = I on H.

Conversely, let T extends to a bounded right-linear bijective operator T̂ : H→ H. As T is invertible, T and T −1

as a restriction of T̂ and ˆT −1 are again bounded which further implies that ker(Th) is invariant under both the right and
left-shift operators using Theorem 4 and Corollary 1.

We now obtain an important consequence of Theorem 4 which shows that if a redundant frame with finite excess is
expressible as an orbit of some operator T , then T must be unbounded.

Lemma 2.Let {hn}n∈Z = {T n(h0)}n∈Z be a redundant frame for H, where T :H→H is a bounded right-linear operator.

Then, ker(Th) is infinite-dimensional where Th is the synthesis operator for {hn}n∈Z.

Proof.Let p= {pn}n∈Z be a non-zero element of ker(Th). As T is given to be a bounded operator, Theorem 4 implies that
ker(Th) is invariant under the right-shift operator and hence Rn(p) ∈ ker(Th), n ∈ N. Now, we claim that the sequence

{Rn(p)}n∈N is a right-linearly independent sequence in ker(Th). Define an operator Φ : ℓ2
Z
(Q)→ L2([0,1],Q) such that

Φ({qn}n∈Z) = ∑
n∈Z

Enqn, {qn}n∈Z ∈ ℓ2
Z(Q)

where En : [0,1]→Q be such that En(x) = e−2π jnx,n ∈ Z. One may observe that Φ is a well-defined operator. Indeed, for
{qn}n∈Z ∈ ℓ2

Z
(Q)

∫ 1

0

∣

∣

∣ ∑
n∈Z

Enqn(x)
∣

∣

∣

2

dx =
∫ 1

0

∣

∣

∣ ∑
n∈Z

e−2π jnxqn

∣

∣

∣

2

dx

≤
∫ 1

0
∑
n∈Z

|e−2π jnxqn|2dx

=

∫ 1

0
∑
n∈Z

|qn|2dx < ∞.

Also for q= {qn}n∈Z ∈ ℓ2
Z
(Q),

Φ(R(q)) = ∑
n∈Z

Enqn−1 = ∑
n∈Z

En+1qn = ∑
n∈Z

(E1.En)qn

= E1.
(

∑
n∈Z

Enqn

)

= E1.Φ(q).

Thus, Φ(R(q)) = E1.Φ(q), q ∈ ℓ2
Z
(Q). Let us assume that there exists some M ∈ N and {rn}M

n=1 ⊂ Q such that
M

∑
n=1

Rn(p)rn = 0. Then

0 = Φ
( M

∑
n=1

R
n(p)rn

)

=
M

∑
n=1

(

Φ(Rn(p))
)

rn =
M

∑
n=1

(

En.Φ(p)
)

rn.

This gives
M

∑
n=1

(

(En.Φ(p))(x)
)

rn = 0, for almost all x ∈ [0,1] by the definition of L2([0,1],Q) (as the elements of

L2([0,1],Q) are equivalence classes). Since p 6= 0, we have Φ(p) 6= 0 and hence Φ(p) has support of positive measure.

Thus, we conclude that
M

∑
n=1

En(x)rn = 0, for almost all x ∈ [0,1]∩ supp Φ(p), which further gives that rn = 0 for

1 ≤ n ≤ M. Therefore, {Rn(p)}n∈N is a right-linearly independent sequence in ker(Th) and hence ker(Th) is
infinite-dimensional.
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We may observe that the excess of a frame in equal to the dimension of the kernel of its synthesis operator. Now Lemma
2 directs to a significant result that a redundant frame having finite excess is expressible as the orbit of some unbounded
operator only (if the operator representation is possible).
Note that, the converse of Lemma 2 is not true in general; i.e., even if {hn}n∈Z = {T n(h0)}n∈Z forms a redundant frame
for H and ker(Th) is infinite-dimensional, the operator T may not be bounded. The following example demonstrates this
statement.

Example 2.Let {en}n∈N denote an orthonormal basis for H. We now execute a repeated procedure to construct another
sequence {un}n∈N in H as follows:

We divideN into two disjoint and infinite subsets A1 and B1 such that N=A1∪B1. Let u1 := ∑
k∈A1

1√
2

k ek. Clearly, {en}n∈A1
∪

{u1} is a right-linearly independent redundant frame sequence with excess 1. Now, starting with the orthonormal sequence

{en}n∈B1
, we continue this process. In the mth- step, we define Bm−1 = Am∪Bm and define um := 1

m ∑
k∈Am

1√
2

k ek. Again, the

construction of um gives that {en}n∈Am ∪{um} is a right-linearly independent redundant frame with excess 1. As {en}n∈N
is a right-linearly independent sequence (being the orthonormal basis), the construction of the sequence {un}n∈N implies
that {hn}n∈N := {en}n∈N∪{un}n∈N = ∪∞

n=1({ek}k∈An
∪{un}) form a right-linearly independent frame for H with infinite

excess.
Reordering the frame {hn}n∈N, we now define

T (hn) = hn+1, n ∈N

and extends right-linearly to rspan{hn}n∈N. For any n > 1, there exists some k ∈ N, such that ‖hk‖ ≤ 1
n

and ‖hk+1‖ = 1.
Therefore,

∥

∥

∥
T

( hk

‖hk‖
)∥

∥

∥
=

‖hk+1‖
‖hk‖

≥ n.

Thus, we conclude that T is an unbounded operator.

3 Stability of Frames as Operator Orbits

For practical purposes, we need to check for the stability of the frames obtained as the orbits of operators, under some
perturbation conditions. Here we give a perturbation condition that preserves or retains the existence of the expression
of frames as orbit of some operator which is a generalization of a result by Christensen [5]. Firstly, a lemma for the
invertibility of an operator T on H is given, which will be used in the main result.

Lemma 3.Let T : H→ H be a right-linear operator and there exist some α,β ∈ [0,1) satisfying

‖T (h)−h‖ ≤ α‖h‖+β‖T (h)‖, h ∈ H.

Then, T is a bounded invertible operator such that

1−α

1+β
‖h‖ ≤ ‖T (h)‖ ≤ 1+α

1−β
‖h‖, 1−β

1+α
‖h‖ ≤ ‖T −1(h)‖ ≤ 1+β

1−α
‖h‖, h ∈ H.

Proof.Follows directly on the same lines as in complex Hilbert spaces [4].

Theorem 5.Let {hn}n∈Z = {T n(h0)}n∈Z be a frame for H, for some right-linear operator

T : rspan{hn}n∈Z → rspan{hn}n∈Z with lower and upper frame bounds r1 and r2 respectively. Now let {gn}n∈Z be any

sequence in H and suppose there exist two constants α,β ∈ [0,1) satisfying

∥

∥

∥ ∑
n∈Z

(hn −gn)qn

∥

∥

∥
≤ α

∥

∥

∥ ∑
n∈Z

hnqn

∥

∥

∥
+β

∥

∥

∥ ∑
n∈Z

gnqn

∥

∥

∥
(3)

for all the finite sequences {qn}n∈Z ∈ ℓ2
Z
(Q). Then, {gn}n∈Z form a frame for H with lower and upper frame bounds

r1

(

1−α
1+β

)2

and r2

(

1+α
1−β

)2

respectively. Further, {gn}n∈Z can be expressed as the orbit of a right-linear operator P :

rspan{gn}n∈Z → rspan{gn}n∈Z, i.e., {gn}n∈Z = {Pn(g0)}n∈Z. Moreover, if T is bounded then so is P.
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Proof.Let I ⊂ Z be a finite set. Then, by (3), we have
∥

∥

∥ ∑
n∈I

gnqn

∥

∥

∥
≤
∥

∥

∥ ∑
n∈I

(hn −gn)qn

∥

∥

∥
+
∥

∥

∥ ∑
n∈I

hnqn

∥

∥

∥

≤ (1+α)
∥

∥

∥ ∑
n∈I

hnqn

∥

∥

∥
+β

∥

∥

∥ ∑
n∈I

gnqn

∥

∥

∥
.

This implies

∥

∥

∥ ∑
n∈I

gnqn

∥

∥

∥
≤ (1+α)

(1−β )

∥

∥

∥ ∑
n∈I

hnqn

∥

∥

∥
. (4)

Also,
∥

∥

∥ ∑
n∈I

hnqn

∥

∥

∥
= sup

‖f‖=1

∣

∣

∣

〈

∑
n∈I

hnqn

∣

∣

∣
f
〉∣

∣

∣

≤
(

∑
n∈I

|qn|2
)

1
2

sup
‖f‖=1

(

∑
n∈I

|〈hn|f〉|2
)

1
2

≤√
r2

(

∑
n∈I

|qn|2
) 1

2
. (5)

From (4) and (5), we get

∥

∥

∥ ∑
n∈I

gnqn

∥

∥

∥
≤ (1+α)

√
r2

(1−β )

(

∑
n∈I

|qn|2
)

1
2
.

Define U : ℓ2
Z
(Q)→ H by

U({qn}n∈Z) = ∑
n∈Z

gnqn, {qn}n∈Z ∈ ℓ2
Z(Q).

Then, ‖U‖ ≤ (1+α)
√

r2

(1−β ) and hence U is a bounded operator. Thus by Theorem 3.4 [13], {gn}n∈Z form a Bessel sequence

for H with Bessel bound r2

(

1+α
1−β

)2

.

Now, let Th be the synthesis operator and Sh = ThT
∗
h be the frame operator for {hn}n∈Z. Define an operator V : H →

ℓ2
Z
(Q) by

V(h) = (T∗
h(ThT

∗
h)

−1)(h), h ∈ H.

As {(ThT
∗
h)

−1(hn)}n∈Z form a frame for H with lower and upper frame bounds 1
r2

and 1
r1

respectively, we have

‖V(h)‖2 = ∑
n∈Z

|〈S−1
h (hn)|h〉|2 ≤

1

r1

‖h‖2, h ∈ H.

Now for h ∈ H, let {qn}n∈Z =V(h). Then from (3),

‖h−UV(h)‖ ≤
∥

∥

∥ ∑
n∈Z

hn〈S−1
h (hn)|h〉− ∑

n∈Z
gn〈S−1

h (hn)|h〉
∥

∥

∥

=
∥

∥

∥ ∑
n∈Z

(hn −gn)〈S−1
h (hn)|h〉

∥

∥

∥

≤ α‖h‖+β‖UV(h)‖, h ∈ H.

From Lemma 3, UV is invertible and ‖(UV)−1‖ ≤ 1+β
1−α . Now for each h ∈H, we have

h= (UV)(UV)−1(h)

= ∑
n∈Z

gn〈S−1
h (hn)|(UV)−1h〉.
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Therefore for each h ∈ H, we have

‖h‖4 =
∣

∣

∣

〈

∑
n∈Z

gn〈S−1
h (hn)|(UV)−1h〉

∣

∣

∣
h
〉
∣

∣

∣

2

≤ ∑
n∈Z

|〈S−1
h (hn)|(UV)−1h〉|2

(

∑
n∈Z

|〈gn|h〉|2
)

≤ 1

r1

(1+β

1−α

)2

‖h‖2
(

∑
n∈Z

|〈gn|h〉|2
)

.

This gives

r1

(1−α

1+β

)2

‖h‖2 ≤ ∑
n∈Z

|〈gn|h〉|2, h ∈ H.

Therefore, {gn}n∈Z form a frame for H with lower and upper frame bounds r1

(

1−α
1+β

)2

and r2

(

1+α
1−β

)2

respectively.

Now, from (3) it follows that for all finite sequences {qn}n∈Z ∈ ℓ2
Z
(Q),

∑
n∈Z

hnqn = 0 ⇐⇒ ∑
n∈Z

gnqn = 0,

and since {hn}n∈Z is right-linearly independent, therefore {gn}n∈Z is also right-linearly independent. Thus by Theorem 1,
there exists a bijective right-linear operatorP : rspan{gn}n∈Z → rspan{gn}n∈Z such that {gn}n∈Z = {Pn(g0)}n∈Z. Now let
us assume that T is bounded and Th, Tg : ℓ2

Z
(Q)→ H be the synthesis operators for {hn}n∈Z and {gn}n∈Z respectively.

Let {qn}n∈Z ∈ ker(Tg) be arbitrary i.e., ∑
n∈Z

gnqn = 0 and hence {qn}n∈Z ∈ ker(Th). Since T is a bounded operator,

Theorem 4 gives that ker(Th) is invariant under the right-shift operator i.e., ∑
n∈Z

hnqn−1 = 0 which further implies that

∑
n∈Z

gnqn−1 = 0. This implies that ker(Tg) is invariant under the right-shift operator. Again from Theorem 4, we conclude

that P is a bounded operator.

One may observe that (3) is a particular case of the condition

∥

∥

∥ ∑
n∈Z

(hn −gn)qn

∥

∥

∥
≤ α

∥

∥

∥ ∑
n∈Z

hnqn

∥

∥

∥
+β

∥

∥

∥ ∑
n∈Z

gnqn

∥

∥

∥
+ γ

(

∑
n∈Z

|qn|2
)

1
2
, (6)

with γ = 0. On the similar lines as in Theorem 5, it can be easily proved that if for some right-linear operator
T : rspan{hn}n∈Z → rspan{hn}n∈Z, {hn}n∈Z = {T n(h0)}n∈Z form a frame for H, with lower and upper frame bounds r1

and r2 respectively and {gn}n∈Z in H satisfy (6) for all the finite sequences {qn}n∈Z ∈ ℓ2
Z
(Q) with α,β ,γ ≥ 0 and

max
(

α + γ√
r1
,β

)

< 1, then {gn}n∈Z also form a frame for H with lower and upper frame bounds r1

(

1−
α+β+

γ√
r1

1+β

)2

and r2

(

1+
α+β+

γ√
r2

1−β

)2

respectively. But the problem with the perturbation condition (6) is that it doesn’t guarantee the

preservation of the existence of the representation as an orbit of some operator.

Example 3.Let {en}n∈Z denote an orthonormal basis for H. For some index set J, consider the right-linearly independent

frame sequence {hn}n∈J := {en}n∈Z∪{ 1
3 ∑

k∈N
1
3k ek}. One can easily verify that in view of the inequality (6),{gn}n∈J :=

{en}n∈Z∪{0} is a perturbation of {hn}n∈J with α = β = 0 and γ = 1
6
. Clearly by Theorem 1, g cannot be expressed as

orbit of any operator being right-linearly dependent.

4 Approximating Frames via sub-orbits of Operators

Since now, we have observed that only a special category of frames can be expressed as operator orbits. In this section,
we approximate an arbitrary frame of H with a frame as a sub-orbit of some hypercyclic operator. Now similar to the case
of complex Hilbert spaces, we call a bounded operator T : H → H as a hypercyclic operator if there exists an element

h0 ∈H such that {T n(h0)}∞
n=0 = H. Firstly we define, what we mean by an approximation of a frame in H.
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Definition 4.Let {hn}n∈I be a frame for H and γ > 0. A sequence {gn}n∈I in H is said to be a γ-approximation of

{hn}n∈I if for all finite sequences {qn}n∈I ⊆Q

∥

∥

∥ ∑
n∈I

(hn −gn)qn

∥

∥

∥

2

≤ γ ∑
n∈I

|qn|2. (7)

Example 4.As in Example 3, {gn}n∈Z forms a 1
6
-approximation of {hn}n∈Z.

Now in the next result, it is shown that for good enough small values of γ , a γ-approximation {gn}n∈I of {hn}n∈I , also
form a frame for H having the same excess. Moreover, its synthesis and frame operators can also be approximated using
the synthesis and frame operators of {hn}n∈I respectively.

Theorem 6.Let {hn}n∈I be a frame for H with lower and upper frame bounds r1 and r2 respectively and {gn}n∈I be a

γ-approximation of {hn}n∈I for some γ ∈ (0,r1). Then, the following statements hold:

(a){gn}n∈I form a frame for H with lower and upper frame bounds r1

(

1−
√

γ
r1

)2

and r2

(

1+
√

γ
r2

)2

respectively.

(b)Let Th, Tg be the synthesis operators and Sh, Sg be the frame operators for {hn}n∈I and {gn}n∈I respectively.

Then

‖Th−Tg‖ ≤
√

γ, ‖Sh−Sg‖ ≤
√

γr2

(

2+

√

γ

r2

)

,

and

‖S−1
h −S−1

g ‖ ≤
√

γr2

(

2+
√

γ
r2

)

r2
1

(

1−
√

γ
r1

)2
.

Proof.(a) One may easily observe that inequality (7) is a particular case of the condition (6) where α = β = 0 and hence,
{gn}n∈I form a frame for H on the similar lines as in Theorem 5.
(b) Let {qn}n∈I ∈ ℓ2

I
(Q). Then, we have

‖Th({qn}n∈I )−Tg({qn}n∈I )‖2 =
∥

∥

∥ ∑
n∈I

(hn −gn)qn

∥

∥

∥

2

≤ γ ∑
n∈I

|qn|2.

This gives ‖Th−Tg‖ ≤
√

γ . Now for the frame operators, we have

Sh−Sg = ThT
∗
h−TgT

∗
g = (Th−Tg)T

∗
h+Tg(T

∗
h−T∗

g). (8)

Since {hn}n∈I and {gn}n∈I are frames for H with upper bounds r2 and r2

(

1+
√

γ
r2

)2

respectively, we have

‖Th‖ ≤
√

r2 and ‖Tg‖ ≤
√

r2

(

1+

√

γ

r2

)

. (9)

From (8) and (9),

‖Sh−Sg‖ ≤ ‖(Th−Tg)‖‖T∗
h‖+ ‖Tg‖‖(T∗

h−T∗
g)‖

≤ (
√

γ)(
√

r2)+ (
√

γ)(
√

r2)
(

1+

√

γ

r2

)

=
√

γr2

(

2+

√

γ

r2

)

.

Since ‖S−1
h ‖ ≤ 1

r1
, we obtain

‖S−1
h −S−1

g ‖= ‖S−1
h (Sh−Sg)S

−1
g ‖ ≤ 1

r1

√
γr2

(

2+

√

γ

r2

) 1

r1

(

1−
√

γ
r1

)2

as desired.
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Next, we give an equivalent condition of (7), for being a γ-approximation of a frame of H.

Lemma 4.Let {hn}n∈I be a frame for H with lower bound r1 and γ ∈ [0,r1) be given. Then a sequence {gn}n∈I in H
form a γ-approximation of {hn}n∈I , if

∑
n∈I

‖hn −gn‖2 ≤ γ.

Proof.For any finite sequence {qn}n∈I ⊆Q, we have

∥

∥

∥ ∑
n∈I

(hn −gn)qn

∥

∥

∥

2

≤
(

∑
n∈I

‖hn −gn‖|qn|
)2

≤
(

∑
n∈I

‖hn −gn‖2
)(

∑
n∈I

|qn|2
)

≤ γ ∑
n∈I

|qn|2.

Thus, {gn}n∈I is a γ-approximation of {hn}n∈I .

In the following result, we approximate a frame with sub-orbit of a given operator T .

Corollary 2.Let {hn}n∈N be a frame for H with lower bound r1 and T : H→ H be a given bounded operator. Suppose

h0 ∈H and for some γ ∈ (0,r1) and each n ∈ N, there exists a non-negative integer φn satisfying

‖hn −T
φn(h0)‖2 ≤ γ

2n
,

then {T φn(h0)}n∈N is a γ-approximation of {hn}n∈N and hence form a frame for H.

Proof.Consider

∑
n∈N

‖hn −T
φn(h0)‖2 ≤ ∑

n∈N

γ

2n
= γ.

Thus, Lemma 4 and Theorem 6 implies that {T φn(h0)}n∈N is a γ-approximation of {hn}n∈N and hence form a frame for
H.

Remark.Let {hn}n∈N be a frame for H and T : H→ H be a hypercyclic operator on H. Then for every frame element hn

and sufficiently small γ > 0, there exists a non-negative integer φn such that

‖hn −T
φn(h0)‖2 ≤ γ

2n
.

Therefore, by Corollary 2, {T φn(h0)}n∈N is a γ-approximation of {hn}n∈N and hence form a frame for H.

5 Conclusion

Frames expressed as operator orbits contributes a lot in the field of dynamical sampling which has immense applications
in the field of data center temperature sensing, neuron-imaging and satellite remote sensing but is specially known for its
applications in Wireless Sensor Networks (WSN) to gather information about some physical quantity such as pressure,
temperature etc., where measurements devices are distributed at some locations that exploits the evolutionary structure
and the positions of sensors to recover an unknown function.

In this paper, we discussed frames which can be expressed as operator orbits under a single generator in quaternionic
Hilbert spaces. A necessary and sufficient condition is discussed for the representation of the system with a bounded
operator. Testing of the stability of a system under various perturbations is an important aspect. Keeping this in mind,
we obtain conditions for the stability of frames as operator orbits. Approximation of an arbitrary frame with a frame as
a sub-orbit of an operator is also taken into consideration. These results are motivated by there applications in the area
of dynamical sampling. The idea of dynamical sampling is to ensure the recovery of an unknown function h which is
evolving in time through some operator T from the roughly sampled states T n(h) at each time n.
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