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Abstract: A finite element analysis of the plane Poiseuille nanofluid flow and heat transfer based on the time-dependent Buongiorno

model equations is performed. A suitable weak formulation of the sequentially-linearized governing equations is first constructed.

Then, the spatial discretization of the weak form is done using the Galerkin finite element formulation, while a Backward-Euler finite

difference scheme is used for the temporal discretization. Existence, uniqueness, and stability of the weak, semi-discrete and fully-

discrete forms are discussed. Furthermore, L2-error estimates for the semi-discrete and fully-discrete forms are obtained. Moreover,

numerical computations are performed to verify the theoretical results and estimate the rate of convergence.
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1 Introduction

The finite element method was first formally introduced by Turner et al. [1] as a means of solving particular differential
equation problems in structural mechanics. Its most notable feature involves the breaking up of any given domain into a
finite set of simpler domains, which are each known as a finite element. This is a key advantage over numerical techniques
such as the finite difference method and allows it to be a powerful tool in solving many complex engineering problems.
The beauty of the method is that the solution of the problem over each finite element is found and then connected to form
an approximation of the solution over the entire domain. Initially, the finite element method was built for the still highly-
popular Galerkin formulation; however, more techniques have been developed such as the mixed finite element method,
stabilized finite element methods, and spectral element method. While initially conceived for structural mechanics, the
finite element method has since been found invaluable in areas such as computer animation, biomedical sciences, and
fluid dynamics.

Over decades, the finite element analysis of parabolic problems has long been a focal point of research due to these
problems playing significant roles in areas such as physics, chemistry, and financial mathematics. Wheeler [2] performed
finite element analysis on some non-linear parabolic equations. Separate cases of Dirichlet and Neumann boundary
conditions were analyzed for the corresponding initial boundary value problem. L2-error estimates for both the
semi-discrete and fully-discrete forms (based on the Forward-Euler and Crank-Nicolson schemes) were obtained in all
examined cases. Weng, Feng and Liu [3] conducted a stabilized mixed finite element analysis on a linear parabolic
problem with Dirichlet boundary conditions. An a priori L2-error estimate in the Crank-Nicolson fully discretized weak
form was obtained. In a chosen example, suitable numerical computations were made to determine the rate of
convergence of the method. In Jin et al. [4], finite element analysis on a space-fractional parabolic equation was done.
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The existence and uniqueness of the solution to the weak form of the problem were demonstrated. Furthermore, L2-error
estimates were produced for the semi-discrete form in the cases of smooth or non-smooth initial data. These types of
estimates were also obtained for the fully discrete form, where separate cases of the Backward-Euler and the
Crank-Nicolson time-stepping schemes were analyzed. Numerical computations were done to confirm the theoretical
results as well. Burman et al. [5] performed a finite element analysis on the heat equation. An L2-error estimate was
obtained for the fully discretized form. Additionally, numerical computations were done to confirm the theoretical rate of
convergence in space.

The finite element method is now one of the most popular tools for solving fluid-flow problems. It is widely used in
solving problems involving the Stokes equation as well as the Navier-Stokes equation. These equations play huge roles in
fluid dynamics, hence there are numerous recent studies on the use of the finite element method for fluid problems. Shang
[6] carried out an analysis of some stabilized finite element methods for a time-dependent Stokes equation. Suitable error
estimates on the semi-discrete form were obtained as well as a stability analysis of this form was performed. Appropriate
numerical results were obtained to confirm the theoretical results and demonstrate that the methods suitably solve the
time-dependent problem. Huang, Feng and Liu [7] applied a stabilized finite element method for the time-dependent
Stokes equations using the Crank-Nicolson scheme. Suitable L2 and H1-error estimates were obtained for the time scheme
and numerical computations were performed to confirm the theoretical rates of convergence. These computations were
compared with those obtained using the Backward-Euler scheme. Various plots of the Crank-Nicolson solutions were
presented for different numbers of time steps and compared with that obtained when using the Backward-Euler.

Like the Stokes equations, much research has been done with regard to time-dependent Navier-Stokes equations. Jia
et al. [8] analyzed the characteristic stabilized finite element method for a transient Navier-Stokes problem. The existence
and uniqueness of the approximate solution were proved. Suitable theoretical error estimates on the Backward-Euler fully
discretized problem were obtained. Numerical computations for the convergence rates were done for comparison to the
theoretical results as well as to the previously applied Galerkin stabilized method. Li et al. [9] performed an analysis of
the mixed finite element method for a time-fractional Navier-Stokes problem. Error estimates for both the semi-discrete
and fully-discrete forms were produced and checked using suitable numerical computations.

A prominent field of fluid dynamics is the study of nanofluids. These fluids consist of a base fluid within which there
are suspended nanoparticles. Due to the improved thermal properties over its base fluid, nanofluids are typically used as
coolants in heat transfer equipment. Nanofluid models can be described as either single-phase or two-phase. One popular
two-phase model is the Buongiorno model [10], which demonstrates that only Brownian diffusion and thermophoresis
are important slip mechanisms in nanofluids. Particularly, the Buongiorno model has been widely investigated using
different techniques such as the homotopy analysis method [11], differential transformation method [12] and finite
volume method [13]. However, owing to the relative novelty of the Buongiorno model, few articles exist in the literature
on two-phase nanofluid flows for which finite element analysis was conducted. Finite element analysis of a two-phase
Buongiorno model was carried out by Bänsch [14]. The existence and uniqueness of the time-discrete weak solution
were established along with bounds for this solution over time. Additionally, numerical solution plots were obtained and
analyzed. Anwar [15] used the finite element method to investigate the Couette flow of a two-phase viscoelastic
nanofluid. The author used a time-fractional Buongiorno model with mixed boundary conditions. Weak and
semi-discrete formulations were constructed over the spatial domain, while a finite difference scheme was used to
discretize in time. Using the numerical solution, the effects of important parameters were examined. Bänsch and Morin
[16] studied the time-independent thermodynamically consistent Buongiorno model using the finite element method. The
existence of regular solutions to the stationary problem was proven. Considering a family of quasi-uniform
triangulations, suitable error estimates were obtained in different norms. Moreover, numerical computations were done
to verify the theoretical results and to compare the effect of thermophoresis.

Based on this literature review, there is no existing study on the numerical analysis of Galerkin finite element
formulations for transient two-phase Buongiorno models. In particular, error estimates for Galerkin semi-discrete and
fully-discrete formulations of these unsteady nanofluid flow problems are not available in the literature. Hence, this paper
seeks to analyze the Galerkin finite element method for time-dependent Poiseuille nanofluid flow using the two-phase
Buongiorno model. We will derive L2-error estimates for the velocity, temperature, and volume fraction approximations
in the semi-discrete and fully-discrete cases. Using these estimates and suitable numerical computations, the rate of
convergence for the finite element method will be determined.

2 Preliminaries

This section provides some definitions and mathematical concepts that are required for the subsequent analysis of the finite
element method in this study. We use the symbol Ω when referring to a bounded domain in R

n. As usual, Lp(Ω) denotes
the space of all Lebesgue p-integrable functions on Ω , where p ∈ N. Also, the space L∞(Ω) is the set of all essentially
bounded functions on Ω . In the present work, we denote the associated Lp norm by

∥∥ ·
∥∥

Lp for 1 ≤ p ≤ ∞, and the L2
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inner product by
(
·, ·
)
. The Sobolev space of order m ∈ N in L2(Ω) is denoted by Hm(Ω), whereas Hm

0 (Ω) is defined as
the subspace of Hm(Ω) whose trace vanishes on the boundary ∂Ω . The Sobolev norm and semi-norm are represented by∥∥ ·

∥∥
m

and
∣∣ ·
∣∣
m

respectively. Where applicable, the abbreviation “a.e.” is used to mean “almost every” with respect to the
Lebesgue measure.

If (V,
∥∥ ·

∥∥
V
) is a Banach space and t > 0, then the space L2(0, t;V ) is defined as the set of all measurable functions

f : (0, t)→V such that (∫ t

0

∥∥ f (s)
∥∥2

V
ds

)1/2

< ∞.

The following theorem is useful for establishing the existence and uniqueness of weak solutions to parabolic problems
[17,18].

Theorem 1. (Lions-Lax-Milgram). Let V and H be two Hilbert spaces, V ⊂ H, V is separable and also dense in H.

We identify H with its dual H
′

so that V ⊂ H ∼= H
′
⊂ V

′
. Let t ≥ 0 and consider a mapping a : [0, t]×V ×V → R such

that a(t; ·, ·) is bilinear for a.e. t ∈ [0, t]. Moreover, assume that ‘a’ satisfies the following properties:

(i)The function t → a(t;u,v) is measurable, ∀u,v ∈V.

(ii)∃M such that
∣∣a(t;u,v)

∣∣≤ M
∥∥u

∥∥
V

∥∥v
∥∥

V
for a.e. t ∈ [0, t], ∀u,v ∈V.

(iii)∃α > 0 and γ > 0 such that a(t;u,u)+ γ
∥∥u

∥∥2

H
≥ α

∥∥u
∥∥2

V
for a.e. t ∈ [0, t] and ∀u ∈V.

For f ∈ L2
(

0, t;V
′
)

and u0 ∈ H, the problem

“Find u such that u ∈ L2(0, t;V ), ut ∈ L2
(

0, t;V
′
)

and

(ut ,v)H + a(t;u,v) = f (t)(v), f or a.e. t ∈ [0, t], ∀v ∈V (1)

with u(0) = u0.”

has a unique solution.

3 Mathematical Model of the Problem

We consider the two-phase Poiseuille nanofluid flow between two stationary flat plates with separation l. Assuming that
the fluid is Newtonian, and the flow is driven by pressure gradient Px in the x-direction, we obtain the following parabolic
system [10]:

ρn f ut =−Px + µn f uzz, (2)

(ρc)n f Tt = κn f Tzz +(ρc)s

[
DBφzTz +

DT

T0

(Tz)
2
]
, (3)

φt = DBφzz +
DT

T0

Tzz, (4)

for (z, t) ∈ (0, l)× (0,∞), with initial conditions

u = 0, T = T0, φ = φ0 f or (z, t) ∈ [0, l]×{0} (5)

and boundary conditions
u = 0,T = T0,φ = φ0 f or (z, t) ∈ {0}× (0,∞), (6)

u = 0,T = T1,φ = φ0 f or (z, t) ∈ {l}× (0,∞). (7)

In the aforementioned equations, the symbols u, T , φ are the flow velocity, nanofluid temperature and volume fraction of
the nanoparticle, respectively. The constants ρn f , cn f , κn f , µn f represents the density, heat capacity, thermal conductivity,
and viscosity of the nanofluid while ρs, cs, DT , DB represent the nanoparticle density, specific heat, thermophoretic
diffusivity and Brownian diffusivity, respectively. Equations (2) to (4) and the initial and boundary conditions (5) to (7)
can be written in vector form as

A0Xt = B0Xzz +F(t,X), (8)

X(z,0) =




0
T0

φ0


= X0, ∀z ∈ [0, l], (9)
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X(0, t) =




0
T0

φ0


 , X(l, t) =




0
T1

φ0


 , ∀t > 0, (10)

where

X =




u

T

φ


 , A0 =




ρn f 0 0
0 (ρc)n f 0
0 0 1


 , B0 =




µn f 0 0
0 κn f 0
0 0 DB




and

F(t,X) =




−Px

(ρc)s

[
DBφzTz +

DT
T0
(Tz)

2
]

DT
T0

Tzz


=




−Px

f (X)
DT
T0

Tzz


 .

4 Galerkin Finite Element Method

In this section, we analyze the Galerkin finite element formulation of (8)-(10) under the following fixed-point iteration

A0X k+1
t = B0X k+1

zz +F
(
t,X k

)
, (11)

X k+1(z,0) =




0
T0

φ0


= X0, ∀z ∈ [0, l], (12)

X k+1(0, t) =




0
T0

φ0


 , X k+1(l, t) =




0
T1

φ0


 , ∀t > 0, (13)

where k = 0,1,2, ....

4.1 Weak Formulation

Let V =
(
H1

0 (0, l)
)3

. Suppose that T̃ , φ̃ ∈ H1(0, l) such that

T̃ (0) = T0, T̃ (l) = T1, φ̃(0) = φ0 = φ̃ (l),

and define X̃ =




0

T̃

φ̃


. Then, the weak formulation can be written as:

Given t ≥ 0 and X k ∈ L2

(
0, t;

(
H1(0, l)

)3

)
for k = 0,1,2, ..., find X k+1 such that X k+1 − X ∈ L2(0, t;V ),

X k+1
t ∈ L2

(
0, t;V

′
)

and

(
X k+1

t ,W
)
(L2)3 +

(
A−1

0 B0X k+1
z ,Wz

)
(L2)3 = g

(
t,X k,W

)
, ∀W ∈V, (14)

with X k+1(0) = X0. In equation (14), the symbol
(
·, ·
)
(L2)3 represents the

(
L2(0, l)

)3
inner product,

g
(
t,X k,W

)
=
(

A−1
0

[
−Px, f (X k),0

]′
,W

)
(L2)3

+

([
0,0,−

DT

T0

T k
z

]′
,Wz

)

(L2)3

,

and the notation [ · ]
′

refers to the matrix transpose operator.

Theorem 2.The weak formulation has a unique solution provided that Px ∈ L2(0, t).
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Proof.(i) Existence: If X k+1
∗ (t) = X k+1(t)− X̃ , then we have X k+1(t) = X k+1

∗ (t)+ X̃ .

For p,q ∈V , let a(t; p,q) =
(
A−1

0 B0 pz,qz

)
(L2)3 . Then (14) becomes

(
X k+1
∗,t ,W

)
(L2)3 + a

(
t;X k+1

∗ ,W
)
= Gk(t)(W ), (15)

where Gk(t)(W ) = g(t,X k,W )−
(
A−1

0 B0X̃ ,Wz

)
(L2)3 .

It is clear that the function t → a(t; p,q) is measurable ∀p,q ∈V .

Choose a0 = max
{

µn f

ρn f
,

κn f

(ρc)n f
,DB

}
and a0 = min

{
µn f

ρn f
, κn f

(ρc)n f
,DB

}
.

Using the Cauchy-Schwarz inequality, we get

∣∣a(t; p,q)
∣∣=

∣∣∣∣
(
A−1

0 B0 pz,qz

)
(L2)3

∣∣∣∣≤
∥∥A−1

0 B0 pz

∥∥
(L2)3

∥∥qz

∥∥
(L2)3 ≤ a0

∥∥pz

∥∥
(L2)3

∥∥qz

∥∥
(L2)3 = a0

∥∥p
∥∥

V

∥∥q
∥∥

V
,

where
∥∥ ·
∥∥

V
represents the natural norm on V. Thus, for a fixed t, the bilinear form a(t; ·, ·) is continuous on V. Furthermore,

a(t; p, p)+
∥∥p

∥∥2

(L2)3 ≥ a(t; p, p) =
(
A−1

0 B0 pz, pz

)
(L2)3 ≥ a0

(
pz, pz

)
(L2)3 = a0

∥∥p
∥∥2

V
.

Now, let Bk
1(t) =

[
−Px, f (X k),0

]′
and Bk

2(t) =
[
0,0,−DT/T0T k

z

]′
. By the Poincaré inequality there exists C > 0 such that

∣∣Gk(t)(W )
∣∣≤

[
C
∥∥A−1

0 Bk
1(t)

∥∥
(L2)3 +

∥∥Bk
2(t)

∥∥
(L2)3 +

∥∥A−1
0 B0X̃

∥∥
(L2)3

]∥∥W
∥∥

V
=C(t)

∥∥W
∥∥

V
.

Thus, for each t ∈ [0, t], Gk(t) ∈V
′
.

Since ∂P
∂x
(·),

∥∥ f2(X
k)
∥∥

L2(·),
∥∥T k

z

∥∥
L2(·) ∈ L2(0, t) then

∥∥A−1
0 Bk

1

∥∥
(L2)3(·),

∥∥A−1
0 B0X̃

∥∥
(L2)3(·),

∥∥Bk
2

∥∥
(L2)3(·) ∈ L2(0, t).

Hence, we have ∫ t

0

∥∥Gk(t)
∥∥2

V
′ dt ≤

∫ t

0
C(t))2dt < ∞,

which implies that Gk ∈ L2
(
0, t;V

′)
.

Thus, by Theorem 1, a unique solution X k+1
∗ exists for (15). This implies that there exists such a solution X k+1 to our

original weak formulation.

(ii) Uniqueness: Suppose that X k+1
1 is another solution to our weak formulation. Then we have

(
X k+1

t −X k+1
1,t ,W

)
(L2)3 + a

(
t;X k+1 −X k+1

1 ,W
)
= 0, ∀W ∈V.

Since X k+1 −X k+1
1 ∈V , then by Gronwall’s lemma,

0 ≤
∥∥X k+1 −X k+1

1

∥∥2

(L2)3 ≤
∥∥X k+1(0)−X k+1

1 (0)
∥∥2

(L2)3 = 0.

This implies X k+1 = X k+1
1 .

4.2 Galerkin Semi-Discrete Formulation

In this section, we construct the spatial Galerkin formulation of the problem. The existence and uniqueness of the solution
to the semi-discrete formulation are discussed. Furthermore, L2-error estimates for this solution are obtained.

Let τh be a triangulation of the interval (0, l) with mesh parameter

h = max
E∈τh

diam(E).
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We consider the finite-dimensional piecewise mth-degree polynomial space

Ŝh =
{

qh ∈C[0, l] : qh

∣∣
E
∈ Pm(E),∀E ∈ τh

}
∩H1

0 (0, l)

and the associated product space Sh =
(
Ŝh

)3
. We state our semi-discrete formulation as:

Given t > 0, k = 0,1,2, ... and X k
h ∈ L2

(
0, t;

(
H1(0, l)

)3

)
, find X k+1

h such that X k+1
h − X̃ ∈ L2(0, t;Sh), X k+1

h,t ∈ L2
(

0, t;S
′

h

)

and (
X k+1

h,t ,Wh)(L2)3 +
(
A−1

0 B0X k+1
h,z ,Wh,z

)
(L2)3 = g(t,X k

h ,Wh), ∀Wh ∈ Sh, (16)

with X k+1
h (0) =




0
T0

φ0


.

The existence and uniqueness of the solution to (16) follows from the well-known theory and analysis of ordinary
differential equations (see Braun [19]).

We now derive L2-error estimates between the weak solution X k+1 =
[
u,T k+1,φ k+1

]′
and the corresponding semi-

discrete solution X k+1
h =

[
uh,T

k+1
h ,φ k+1

h

]′
. For these estimates, we have the following interpolation property [20]:

∥∥v−Ihv
∥∥

L2 ≤Chm+1
∥∥v
∥∥

m+1
, ∀v ∈ Hm+1(0, l)∩H1

0 (0, l), (17)

where Ih : Hm+1(0, l)∩H1
0 (0, l)→ Ŝh is an interpolation operator.

Theorem 3.For k = 0,1,2, , let X k+1 and X k+1
h be the solutions to (14) and (16) respectively. Suppose that

u(t), T k+1(t)− T̃ , φ k+1(t)− φ̃ ∈ Hm+1(0, l)

for t ∈ (0, t],

ut , T k+1
t , φ k+1

t ∈ L2
(
0, t;Hm+1(0, l)

)
,

and Jk = DBφ k
z +

DT
T0

T k
z ∈ L2(0, t;L∞(0, l)). Then for some C > 0, the following hold:

∥∥uh(t)− u(t)
∥∥

L2 ≤ 2Chm+1

∫ t

0

∥∥ut(s)
∥∥

m+1
ds, (18)

∥∥T k+1
h (t)−T k+1(t)

∥∥
L2 ≤ 2Chm+1

[∥∥T0 − T̃
∥∥

m+1
+

∫ t

0

∥∥T k+1
t (s)

∥∥
L2 ds

]
+

(ρc)s

(ρc)n f

∫ t

0

∥∥Jk
h(s)− Jk(s)

∥∥
L∞

∥∥T k
z (s)

∥∥
L2ds

+
(ρc)s

(ρc)n f

∫ t

0

(∥∥Jk
h(s)− Jk(s)

∥∥
L∞ +

∥∥Jk(s)
∥∥

L∞

)∥∥T k
h,z(s)−T k

z (s)
∥∥

L2 ds (19)

and

∥∥φ k+1
h (t)−φ k+1(t)

∥∥
L2 ≤ 2Chm+1

[∥∥φ0 − φ̃
∥∥

m+1
+

∫ t

0

∥∥φ k+1
t (s)

∥∥ds

]
+

DT

T0

∥∥Dz

∥∥
Ŝh,L

2

∫ t

0

∥∥T k
h,z(s)−T k

z (s)
∥∥ds. (20)

Proof: To obtain (18), let θu(t) = uh(t)−Rhu(t) and χu(t) = Rhu(t)−u(t), where Rh : H1
0 (0, l)→ Ŝh is the Ritz projection

onto Ŝh. Then we can write uh(t)− u(t) = θu(t)+ χu(t). By the interpolation property (17), we have

∥∥χu(t)
∥∥

L2 =
∥∥uh(t)−Rhu(t)

∥∥
L2 ≤Chm+1

∥∥u(t)
∥∥

m+1
≤Chm+1

∫ t

0

∥∥ut(s)
∥∥

m+1
ds.

Also, from the first components of the vector equations (14) and (16),

ρn f

(
θu,t ,w1h

)
+ µn f

(
θu,z,w1h,z

)
=−ρn f

(
Rhut − ut ,w1h

)
=−ρn f

(
χu,t ,w1h

)
, ∀w1h ∈ Ŝh.
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Since θu ∈ Ŝh, we can choose w1h = θu to obtain

ρn f

(
θu,t ,θu

)
+ µn f

∥∥θu,z

∥∥2

L2 =−ρn f

(
χt ,θu

)
⇒

∥∥θu(t)
∥∥

L2

d

dt

∥∥θu(t)
∥∥

L2 ≤
∥∥χu,t(t)

∥∥
L2

∥∥θu(t)
∥∥

L2 .

If
∥∥θu(t)

∥∥
L2 = 0, then our desired result would be trivially true. Hence, by assuming that

∥∥θu(t)
∥∥

L2 6= 0 and applying

Grönwall’s inequality, we get
∥∥θu(t)

∥∥
L2 ≤

∥∥θu(0)
∥∥

L2 +

∫ t

0
‖χu,t(s)

∥∥
L2ds.

Since
∥∥χu,t(t)

∥∥
L2 =

∥∥Rhut(t)− ut(t)
∥∥

L2 ≤Chm+1
∥∥ut(t)

∥∥
m+1

and

∥∥θu(0)
∥∥

L2 =
∥∥uh(0)−Rhu(0)

∥∥
L2 ≤Chm+1

∥∥u(0)
∥∥

m+1
= 0,

then we arrive at the desired inequality

∥∥uh(t)− u(t)
∥∥

L2 ≤ 2Chm+1
∫ t

0

∥∥ut(s)
∥∥

m+1
ds.

To obtain (19), let T k+1
∗ (t) = T k+1(t)− T̃ , T k+1

∗h (t) = T k+1
h (t)− T̃ , and take θ k+1

T (t) = T k+1
∗h (t)−RhT k+1

∗ (t) and χk+1
T (t) =

RhT k+1
∗ (t)−T k+1

∗ (t). Similar to the case of the velocity, we have

∥∥χk+1
T (t)

∥∥
L2 ≤Chm+1

(∥∥T0 − T̃
∥∥

m+1
+

∫ t

0

∥∥T k+1
t (s)

∥∥
m+1

ds

)
.

Also, for every w2h ∈ Ŝh,

(ρc)n f

(
θ k+1

T,t ,w2h

)
+κn f

(
θ k+1

T,z ,w2h,z

)
=
(

f (X k
h )− f (X k),w2h

)
− (ρc)n f

(
χk+1

T,t ,w2h).

Taking w2h = θ k+1
T gives

∥∥θ k+1
T (t)

∥∥
L2 ≤

∥∥θ k+1
T (0)

∥∥
L2 +

∫ t

0

∥∥χk+1
T,t (s)

∥∥
L2 ds+

1

(ρc)n f

∫ t

0

∥∥ f (X k
h )− f (X k)

∥∥
L2ds.

Now, if we define Jk
h = DBφ k

h,z −
DT
T0

T k
h,z, then

∥∥ f (X k
h )− f (X k)

∥∥
L2 = (ρc)s

∥∥T k
h,zJ

k
h −T k

z Jk
∥∥

L2 ≤ (ρc)s

(∥∥Jk
h − Jk

∥∥
L∞ +

∥∥Jk
∥∥

L∞

)∥∥T k
h,z −T k

z

∥∥
L2 +(ρc)s

∥∥Jk
h − Jk

∥∥
L∞

∥∥T k
z

∥∥
L2 .

Thus, with
∥∥θ k+1

T (0)
∥∥

L2 ≤Chm+1
∥∥T0 − T̃

∥∥
m+1

and
∥∥χk+1

T,t

∥∥
L2 ≤Chm+1

∥∥T k+1
t (t)

∥∥
m+1

, we get

∥∥T k+1
h (t)−T k+1(t)

∥∥
L2 ≤ 2Chm+1

(∥∥T0 − T̃
∥∥

m+1
+

∫ t

0

∥∥Tt(s)
∥∥

m+1
ds

)
+

(ρc)s

(ρc)n f

∫ t

0

∥∥Jk
h(s)− Jk(s)

∥∥
L∞

∥∥T k
z (s)

∥∥
L2ds

+
(ρc)s

(ρc)n f

∫ t

0

(∥∥Jk
h(s)− Jk(s)

∥∥
L∞ +

∥∥Jk(s)
∥∥

L∞

)∥∥T k
h,z(s)−T k

z (s)
∥∥

L2 ds.

For the final estimate (20), let φ k+1
∗ (t) = φ k+1(t)− φ̃ and φ k+1

∗h (t) = φ k+1
h (t)− φ̃ and take θ k+1

φ (t) = φ k+1
∗h (t)−Rhφ k+1

∗ (t)

and χk+1
φ (t) = Rhφ k+1

∗ (t)−φ k+1
∗ (t). In a similar manner to the temperature estimate, we have

∥∥χk+1
φ (t)

∥∥
L2 ≤Chm+1

(∥∥φ0 − φ̃
∥∥

m+1
+

∫ t

0

∥∥φ k+1
t (s)

∥∥
m+1

ds

)

and

∥∥θ k+1
φ (t)

∥∥
L2 ≤Chm+1

(∥∥φ0 − φ̃
∥∥

m+1
+

∫ t

0

∥∥φ k+1
t (s)

∥∥
m+1

ds

)
+

DT

T0

∥∥Dz

∥∥
Ŝh,L

2

∫ t

0

∥∥T k
h,z(s)−T k

z (s)
∥∥

L2 ds,
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where
∥∥Dz

∥∥
Ŝh,L

2 represents the operator norm of the weak derivative operator Dz:Ŝh → L2(0, l) defined by

Dzv = vz, ∀v ∈ Ŝh.

Hence by the triangle inequality, we have the estimate

∥∥φ k+1
h (t)−φ k+1(t)

∥∥
L2 ≤ 2Chm+1

[∥∥φ0 − φ̃
∥∥

m+1
+

∫ t

0

∥∥φ k+1
t (s)

∥∥
m+1

ds

]
+

DT

T0

∥∥Dz

∥∥
Ŝh,L

2

∫ t

0

∥∥T k
h,z(s)−T k

z (s)
∥∥

L2ds.

Corollary 1.Let the assumptions of Theorem 3 hold and suppose that there exist positive constants Dk
1, Dk

2 and D3 such

that for a.e. t ∈ [0, t],

∥∥T k
h,z(t)−T k

z (t)
∥∥

L2 ≤ Dk
1hm+1,

∥∥Jk
h(t)− Jk(t)

∥∥
L∞ ≤ Dk

2hm+1 and
∥∥Dz

∥∥
Ŝh,L

2 ≤ D3.

Then
∥∥X k+1

h (t)−X k+1(t)
∥∥
(L2)3 ∈ O(hm+1) as h → 0 and

lim
h→0

∥∥X k+1
h (t)−X k+1(t)

∥∥
(L2)3 = 0.

Proof.This follows directly from the inequalities (18) to (20) in Theorem 3.

5 Fully-Discrete Formulation

In this section, we perform a time discretization of the problem by applying the backward-Euler scheme to the semi-
discrete equation (16). Let t1, t2, , tN be equally spaced points in [0, t] such that

t1 = 0 < t2 < t3 < ... < tN = t.

Define ∆ t = tn − tn−1, ∀n = 2,3, ...,N and consider the backward-difference operator

D−X
k+1,n
h =

X
k+1,n
h −X

k+1,n−1
h

∆ t
,

where

X k+1
h (tn) =




uh(tn)

T k+1
h (tn)

φ k+1
h (tn)


≃




un
h

T
k+1,n

h

φ k+1,n
h


= X

k+1,n
h .

For X
k+1,n
h − X̃ ∈ Sh, we obtain the fully discrete form

(
D−X

k+1,n
h ,Wh

)
(L2)3 +

(
A−1

0 B0X
k+1,n
h,z ,Wh,z

)
(L2)3 = g

(
tn,X

k,n
h ,Wh

)
, ∀Wh ∈ Sh. (21)

In the following theorem, L2 error estimates are obtained for the fully discrete Galerkin finite element solution of equation
(21).

Theorem 4.For k = 0,1,2, ..., and n = 2,3, ...,N, let X k+1(tn) and X
k+1,n
h be the solutions to (14) and (21) respectively.

Suppose that u(tn),T
k+1(tn)− T̃ , φ k+1(tn)− φ̃ ∈ Hm+1(0, l); ut , T k+1

t , φ k+1
t ∈ L2

(
0, t;Hm+1(0, l)

)
; and utt , T k+1

tt , φ k+1
tt ∈

L2
(
0, t;L2(0, l)

)
. Then

∥∥un
h − u(tn)

∥∥
L2 ≤ 2Chm+1

∫ tn

0

∥∥ut(s)
∥∥

m+1
ds+∆ t

∫ tn

0

∥∥utt(s)
∥∥

L2 ds, (22)

∥∥T
k+1,n

h −T k+1(tn)
∥∥

L2 ≤ 2Chm+1

[∥∥T0 − T̃
∥∥

m+1
+

∫ tn

0

∥∥T k+1
t (s)

∥∥
m+1

ds

]

+
∆ t(ρc)s

(ρc)n f

n

∑
j=2

(∥∥J
k, j
h − Jk(t j)

∥∥
L∞ +

∥∥Jk(t j)
∥∥

L∞

)∥∥T
k, j

h,z −T k
z (t j)

∥∥
L2
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+
∆ t(ρc)s

(ρc)n f

n

∑
j=2

∥∥J
k, j
h − Jk(t j)

∥∥
L∞

∥∥T k
z (t j)

∥∥
L2 +∆ t

∫ tn

0

∥∥T k+1
tt (s)

∥∥
L2ds (23)

and
∥∥φ k+1,n

h −φ k+1(tn)
∥∥

L2 ≤ 2Chm+1

[∥∥φ0 − φ̃
∥∥

m+1
+

∫ tn

0

∥∥φ k+1
t (s)

∥∥
m+1

ds

]

+∆ t

∫ tn

0

∥∥φ k+1
tt (s)

∥∥
L2 ds+

DT ∆ t

T0

∥∥Dz

∥∥
Ŝh,L

2

n

∑
j=2

∥∥T
k, j

h,z −T k
z (t j)

∥∥
L2 . (24)

Proof.We first obtain the velocity estimate (22) by taking un
h − u(tn) = θ n

u + χn
u , where θ n

u = un
h − Rhu(tn) and χn

u =
Rhu(tn)− u(tn). Using a similar approach to the semi-discrete estimate (18), we have

∥∥χn
u

∥∥
L2 ≤Chm+1

∫ tn

0

∥∥ut(s)
∥∥

m+1
ds.

Now for every w1h ∈ Ŝh,

ρn f (D
−θ n

u ,w1h)+ µn f (θ
n
u,z,w1h,z) =−ρn f (λ

n
u ,w1h),

where

λ n
u = RhD−u(tn)− ut(tn) = [RhD−u(tn)−D−u(tn)]+ [D−u(tn)− ut(tn)] = λ n

1u +λ n
2u.

Taking w1h = θ n
u ,

ρn f (D
−θ n

u ,θ
n
u )+ µn f

∥∥θ n
u,z

∥∥2

L2 =−ρn f (λ
n
u ,θ

n
u )

implies that ∥∥θ n
u

∥∥
L2 ≤

∥∥θ n−1
u

∥∥
L2 +∆ t

∥∥λ n
u

∥∥
L2 .

By repeated application of the aforementioned inequality, we have

∥∥θ n
u

∥∥
L2 ≤

∥∥θ 1
u

∥∥
L2 +∆ t

n

∑
j=2

∥∥λ j
u

∥∥
L2 ≤ ∆ t

n

∑
j=2

∥∥λ
j

1u

∥∥
L2 +∆ t

n

∑
j=2

∥∥λ
j

2u

∥∥
L2 .

We note that for each j = 2,3, ...,n,

λ j
1u = (Rh − I)D−u(t j) = (Rh − I)

1

∆ t

∫ t j

t j−1

ut(s)ds,

where I is the identity operator on H1
0 (0, l). Hence,

∥∥λ j
1u

∥∥
L2 ≤

1

∆ t
Chm+1

∫ t j

t j−1

∥∥ut(s)
∥∥

m+1
ds ⇒ ∆ t

n

∑
j=2

∥∥λ j
1u

∥∥
L2 ≤Chm+1

∫ tn

0

∥∥ut(s)
∥∥

m+1
ds.

Also, since

∆ tλ
j

2u = ∆ tD−u(t j)−∆ tut(t j) =−

∫ t j

t j−1

(s− t j−1)utt(s)ds,

we obtain

∆ t
n

∑
j=2

∥∥λ j
2u

∥∥
L2 ≤ ∆ t

∫ tn

0

∥∥utt(s)
∥∥

L2ds.

This leads to the inequality

∥∥θ n
u

∥∥
L2 ≤Chm+1

∫ tn

0

∥∥ut(s)
∥∥

m+1
ds+∆ t

∫ tn

0

∥∥utt (s)
∥∥

L2 ds.

Hence the desired velocity estimate is

∥∥un
h − u(tn)

∥∥
L2 ≤ 2Chm+1

∫ tn

0

∥∥ut(s)
∥∥

m+1
ds+∆ t

∫ tn

0

∥∥utt(s)
∥∥

L2 ds.
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Now for the temperature estimate (23), let T
k+1,n
∗h = T

k+1,n
h − T̃ , T k+1

∗ (tn) = T k+1(tn)− T̃ , and take

θ k+1,n
T = T

k+1,
∗h −RhT k+1

∗ (tn) and χk+1,n
T = RhT k+1

∗ (tn)−T k+1
∗ (tn). Then we can see that

∥∥χk+1,n
T

∥∥
L2 ≤Chm+1

[∥∥T0 − T̃
∥∥

m+1
+

∫ tn

0

∥∥T k+1
t (s)

∥∥
m+1

ds

]

and
∥∥θ k+1,n

T

∥∥
L2 ≤Chm+1

[∥∥T0 − T̃
∥∥

m+1
+

∫ tn

0

∥∥T k+1
t (s)

∥∥
m+1

ds

]
+Chm+1

∫ tn

0

∥∥T k+1
t (s)

∥∥
m+1

ds

+∆ t

∫ tn

0

∥∥T k+1
tt (s)

∥∥
L2ds+

∆ t

(ρc)n f

n

∑
j=2

∥∥ f (X k,n
h )− f (X k(tn))

∥∥
L2 .

Since

∆ t

(ρc)n f

n

∑
j=2

∥∥ f (X k,n
h )− f (X k(tn))

∥∥
L2 ≤

∆ t(ρc)s

(ρc)n f

n

∑
j=2

(∥∥J
k, j
h − Jk(t j)

∥∥
L∞ +

∥∥Jk(t j)
∥∥

L∞

)∥∥T
k, j

h,z −T k
z (t j)

∥∥
L2

+
∆ t(ρc)s

(ρc)n f

n

∑
j=2

∥∥J
k, j
h − Jk(t j)

∥∥
L∞

∥∥T k
z (t j)

∥∥
L2 ,

then the temperature estimate (23) is obtained as

∥∥T
k+1,n

h −T k+1(tn)
∥∥

L2 ≤ 2Chm+1

[∥∥T0 − T̃
∥∥

m+1
+

∫ tn

0

∥∥T k+1
t (s)

∥∥
m+1

ds

]
+∆ t

∫ tn

0

∥∥T k+1
tt (s)

∥∥
L2 ds

+
∆ t(ρc)s

(ρc)n f

n

∑
j=2

(∥∥J
k, j
h − Jk(t j)

∥∥
L∞ +

∥∥Jk(t j)
∥∥

L∞

)∥∥T
k, j

h,z −T k
z (t j)

∥∥
L2 +

∆ t(ρc)s

(ρc)n f

n

∑
j=2

∥∥J
k, j
h − Jk(t j)

∥∥
L∞

∥∥T k
z (t j)

∥∥
L2 .

Finally, to obtain the volume fraction estimate (24) we define φ k+1,n
∗h = φ k+1,n

h − φ̃ , φ k+1,n
∗ = φ k+1,n − φ̃ ,

θ k+1,n
φ = φ k+1,n

∗h −Rhφ k+1
∗ (tn) and χk+1,n

φ = Rhφ k+1
∗ (tn)−φ k+1

∗ (tn). Then

∥∥χk+1,n
φ

∥∥
L2 ≤Chm+1

[∥∥φ0 − φ̃
∥∥

m+1
+

∫ tn

0

∥∥φ k+1
t (s)

∥∥
m+1

ds

]

and
∥∥θ k+1,n

φ

∥∥
L2 ≤Chm+1

[∥∥φ0 − φ̃
∥∥

m+1
+

∫ tn

0

∥∥φ k+1
t (s)

∥∥
m+1)

ds

]
+∆ t

∫ tn

0

∥∥φ k+1
tt (s)

∥∥ds

+
DT ∆ t

T0

∥∥Dz

∥∥
Ŝh,L

2

n

∑
j=2

∥∥T
k, j

h,z −T k
z (t j)

∥∥
L2 .

The volume fraction estimate (24) follows from the triangle inequality.

Corollary 2.Let the assumptions of Theorem 4 hold and suppose for each j = 2,3, ...,N, there exists positive real numbers

D
k, j
1 , D

k, j
2 and D3 such that

∥∥T
k, j

h,z −T k
z (t j)

∥∥
L2 ≤ D

k, j
1 hm+1,

∥∥J
k, j
h − Jk, j

∥∥
L∞ ≤ D

k, j
2 hm+1 and

∥∥Dz

∥∥
Ŝh,L

2 ≤ D3.

Then
∥∥X

k+1,n
h −X k+1(tn)

∥∥
(L2)3 ∈ O(hm+1)+O(∆ t) and

lim
(h,∆ t)→0

∥∥X
k+1,n
h −X k+1(tn)

∥∥
(L2)3 = 0.

Proof.This is a direct consequence of the fully-discrete error estimates (22) to (24).
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6 Numerical Computations and Results

In this section, a numerical example is considered for the implementation of the finite element method as analyzed in
Sections 4 and 5. For this example, we consider the Poiseuille flow of an alumina-water nanofluid, with plate separation
l =1m. We will assume that the water is pure and that the alumina nanoparticles are spherical with diameter 10nm. The
temperature on the lower and upper plates are taken to be 298.15K, 308.15K, respectively. We take the nanoparticle
volume fraction to be 0.05, and assume that the flow be driven by oscillating pressure gradient

Px(t) =−

(
0.1+ 0.5sin

10πt

t

)
.

The density ρb f , specific heat cb f , thermal conductivity κb f and viscosity µb f of pure water at 298.15K are 997.1kg/m3,

4183J/(kg·K), 0.5948W/(m·K) and 8.905×10−4Pa·s [21]. The specific heat and density of the nanoparticles are
775J/kg·K) and 388kg/m3, respectively [22]. Using these values, ρn f , cn f , µn f , κn f , DB and DT can be calculated from
their respective formulae in Boungiorno [10].

Following the fully-discrete formulation in Section 5, suppose that the triangulation τh consists of Nel quadratic line

elements (m = 2). Let {ψ j}
Nh

j=1 be the Lagrange basis for the piecewise quadratic function space

Ph =
{

qh ∈C[0, l] : qh|E ∈ P2(E),∀E ∈ τh
}
,

where Nh = dimPh = 2Nel + 1. We can express the fully-discrete solution X
k+1,n
h as

X
k+1,n
h =

Nh

∑
j=1

ξ k+1,n
h, j ψ j.

Substituting into (21), we obtain the system of equations

(M+∆ tK)ξ k+1,n
h = Mξ k+1,n−1

h +∆ tG
k,n
h , (25)

where Mi j =
(
ψ j,ψi

)
(L2)3 , Ki j =

(
A−1

0 B0ψ j,z, ψi,z

)
(L2)3 and G

k,n
h = g

(
tn,X

k,n
h ,ψi

)
.

Let αn, β k,n and γk,n be the solution vectors for velocity, temperature and volume fraction. Given that ξ k,n
h =




αn

β k,n

γk,n


, we

solve the fixed-point equation (25) iteratively using the mathematical software MATLAB with stopping criterion

∥∥β k+1 −β k
∥∥2

f ro
+
∥∥γk+1 − γk

∥∥2

f ro∥∥β k+1
∥∥2

f ro
+
∥∥γk+1

∥∥2

f ro

< 10−12,

where β k, γk are (2Nel + 1)×N matrices with columns β k,n, γk,n for each n = 1,2, ,N and
∥∥ ·

∥∥
f ro

is the Frobenius norm.

The obtained numerical results for the velocity, temperature and volume fraction are presented in graphical and tabular
form as shown in Figures 1 to 6 and Tables 1 to 2.

Figures 1 to 3 show plots of the velocity, temperature, and volume fraction approximations over time for different
values of N = Nt . We observe that for each Nt , the temperature and the volume fraction increase over time. Moreover,
for each Nt , the velocity approaches a periodic steady state as time increases. Figures 4 to 6 show profiles of the velocity,
temperature, and volume fraction approximations for different values of Nel . The velocity and temperature plots in Figures
4 and 5 (respectively) are almost indistinguishable from each other, implying that only a small number of elements are
required to achieve a reasonable approximation. However, this was not the case for the volume fraction (Figure 6); a
significantly larger number of elements are required in order to obtain a reasonable approximation.

In Table 1, the L2-error eN
h (∆ t) =

∥∥XN
h −X(tN)

∥∥
(L2)3 at time tN = t is shown for different values of the spatial mesh

parameter h when ∆ t = t/20. The spatial mesh convergence rate is estimated using the computed value of eN
h (∆ t) and

compared with the theoretical results obtained in Corollary 2. The weak solution X(tN) is represented by the fully-discrete
solution on a fine mesh with h = 0.01 and ∆ t = t/2000. From Table 1, as h decreases the error decreases and the spatial
convergence rate increases towards a value of 3. These computed values indicate a cubic rate of convergence in h and is
consistent with the theoretical results obtained in Section 5 for the case of quadratic elements (m = 2). Furthermore, the
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Fig. 1: Plots of u vs. t for Varying Nt with Nel = 50 and z = 0.5.

Fig. 2: Plots of T vs. t for varying Nt with Nel = 50 and z = 0.5.

computed cubic convergence rate is consistent with experimental order of convergence results obtained by Bänsch and
Morin [16] for piecewise quadratic finite element approximations.

Table 2 displays the L2-error eN
h (∆ t) at time tN = t for different values of the time step-size ∆ t when h = 0.2. The

temporal mesh convergence rate is estimated using the computed L2-error and a comparison is made with the theoretical
rate obtained in Corollary 2. From Table 2, we can observe that the error decreases as ∆ t decreases; this reduction in error
is less pronounced than in Table 1. Furthermore, the convergence rate increases towards unity with decreasing ∆ t, which is
consistent with the theoretical results on the fully-discrete solution in Section 5. The computed linear rate of convergence
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Fig. 3: Plots of φ vs. z for varying Nt with Nel=50 and z=0.5.

Fig. 4: Plots of u vs. z for varying Nel with Nt = 100 and t = 106.

in ∆ t arises from the Backward-Euler scheme used for the time discretization, and is consistent with theoretical and
computational results obtained for time-dependent fluid flow problems investigated in Jia et al. [8].

7 Conclusion

In this article, we analyzed the Galerkin finite element method for an unsteady two-phase Poiseuille nanofluid flow and
heat transfer based on the Buongiorno model. The high degree of non-linearity in the governing equations (particularly
the temperature and volume fraction) proved to be the main difficulty in the finite element analysis. Using the fixed-point
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Fig. 5: Plots of T vs. z for varying Nel with Nt = 100 and t = 106.

Fig. 6: Plots of φ vs. z for varying Nel with Nt = 100 and t = 106.

iteration method when dealing with the non-linearities, we discussed the existence and uniqueness of the weak, semi-
discrete and fully-discrete forms along with obtaining L2-error estimates for the semi-discrete and fully-discrete forms.
The numerical computations done for the spatial and temporal rates of convergence in Section 6 proved to be in accordance
with the theoretical results from Section 5. This indicated that the Galerkin finite element method is suitable for solving
Poiseuille nanofluid problems based on the Buongiorno model. We believe the present study is impactful since Poiseuille
flow models play important roles in fluid dynamics and have many applications in the medical sciences. Moreover, this
work contributes to providing theoretical support for applying the Galerkin finite element method to the model.

© 2024 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JJMS 17, No. 3, 413-428 (2024 ) / 427

h eN
h
(∆ t) Spatial Rate Computational Time, sec

1/2 5.2830×10−2 3.88229

1/4 6.8236×10−3 2.9527 5.44585

1/6 2.0391×10−3 2.9789 7.07477

1/8 3.0204×10−4 2.9820 14.2058

1/10 1.5514×10−4 2.9856 16.5768

Table 1: Table Showing Mesh Parameter h, Absolute Error eN
h (∆ t), Spatial Convergence Rate and Computational Time

with ∆ t = t/20.

∆ t eN
h
(∆ t) Temporal Rate Computational Time, sec

t/30 0.2583 16.6559

t/50 0.1632 0.8751 29.1953

t/70 0.1189 0.9251 38.6864

t/90 0.0932 0.9586 53.5539

t/110 0.0763 0.9843 60.3190

Table 2: Table Showing Time Step-size ∆ t, Absolute Error eN
h (∆ t), Temporal Convergence Rate and Computational Time

with h = 0.2.
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