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1 Introduction

Mathematical modeling is the process of creating mathematical representation, or models of real-world phenomena. Many
physical phenomena in plasma physics, physical chemistry, geophysics, fluid mechanics, nonlinear optics, electromagnetic
theory are expressed by integral equations. Hence, the investigation of the existence of solutions for the both linear
and nonlinear integral equations is of prime importance to the academic researches. For this reason, a lot of different
techniques have been dealt with by them. One of the most commonly used method is the concept of noncompactness
measure. The root of this concept go back to the famous work of Kuratowski [12]. This method plays a vital role in
the publications of researches [2]. In 1955, an extension of this direction has been introduced by Italian mathematican
Darbo [4] . He studied the existence of fixed point for condensing operators generalizing the Schauder fixed point theorem
and Banach contraction princilpe. After this pioneering work, the number of researches dealing with Darbo fixed point
theorem has increased considerably in the recent yaers([1,3,5,6,7,13,15,17,18,20]). In 2016, by the assitance of measure
of noncompactness and Petryshyn’s fixed point theorem Kazemi and Ezzati are established that the sublinear conditions
in Darbo fixed point theorem is a additional condition [10]. We employ the idea of Kazemi and Ezzati to the existence of
solutions for weakly singular integral equation as follows:

π(t) = Λ

(

t, f (t,π(θ (t))),
∫ t

0

λ β

(t −λ )ζ
k(t,λ ,π(θ̂ (λ )))dλ

)

, (1)

2 A generalization of Darbos fixed point theorem

This section is devoted to collect some definitions and theorems which will be needed further on.
Assume that (E,‖.‖) is a Banach space over R. Let Bα denotes the closed ball, that is,

Bα = {x ∈ E : ‖x‖ ≤ α} and ∂Bα = {x ∈ E : ‖x‖= α}.
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In what follows we will work in the Banach space C([0,a]) consisting of all real functions defined and continuous on
[0,a]. Now, we collect the construction of the measure of noncompactness which will be used in this paper.
Let us fix a nonempty and bounded subset T of C([0,a]). The Kuratowski measure of noncompactness[12] is

φ(T) = in f

{

ρ > 0 : T ⊂
n
⋃

i=1

Ti,Qi ⊂ X,diam(Ti)< ρ , i = 1, . . . ,n

}

. (2)

Also, the ball measure of noncompactness[9] is

µ(T) = in f

{

ρ > 0 : T ⊂
n
⋃

i=1

Bαi
,αi < ρ

}

. (3)

This measures of noncompactness are mutually equvalent in the sense that µ(T )≤ φ(T )≤ µ(T ).
For ψ ∈C([0,a]) and ρ ≥ 0 denoted by ∂ (ψ ,ρ), the modulus of continuty of the function ψ , i.e.,

∂ (ψ ,ρ) = sup{|ψ(t)−ψ(t̂)| : |t − t̂| ≤ ρ}.

The uniformly continuous ψ on [0,a] implies that ∂ (ψ ,ρ)→ 0 as ρ → 0.

Proposition 1.[16] Let T, T̂ ⊂ E then

1.µ(T
⋃

T̂ ) = max

{

µ(T ),µ(T̂ )

}

;

2.µ(T + T̂)≤ µ(T )+π(T̂);

3.µ(λ T ) = |λ |µ(T ), where λ T =

{

λ m : m ∈ T

}

;

4.µ(T )≤ µ(T̂ ), for T ⊂ T̂ ;

5.µ(coT ) = µ(T );

Proposition 2.[11] For all bounded subset T ⊂ [0,a] the measures of noncompactness (2) are equivalent to µ(T ) =
limsupρ→0∂ (ψ ,ρ), ψ ∈ T.

Let Ξ ∈ C(E). Ξ is called a κ-set contraction if for all bounded subset K ⊂ E , Ξ is bounded and φ(ΞK) ≤ κφ(K) for
all 0 < κ < 1. If φ(ΞK) ≤ φ(K) for all φ(K) > 0, then Ξ is called condensing map. In fact, a condensing mapping is a
mapping for which the image of any set in a certain sense more compact than the set itself, the degree of noncompactness
of a set is measured by means of functions called measure of noncompactness [8].
Let us recall the following important result, which is called Petryshyn’s fixed point theorem:

Proposition 3.[16] Let Ξ : Bα → E to be a condensing mapping which satisfying the boundary condition, if Ξ(x) = κx,

for some x ∈ ∂Bα , then κ ≤ 1, then F(Ξ) 6= /0.

3 An existence theorem

In this section we denote some notations as follows:

–M = sup

{

∣

∣k(t,λ ,π
∣

∣) : t,λ ∈ [0,a],π ∈ [−α,α]

}

,

–B(x,y) =
∫ 1

0 tx−1(1− t)y−1dt is called beta function, one can easily to show that

=
∫ t

0
sγ

(tσ−sσ )α ds = 1
σ B(1−α,

1+γ
σ )t1+γ−σα ,

–∂ (Λ ,ρ) = sup

{

∣

∣Λ(t,λ ,π)−Λ(t̂,λ ,π)
∣

∣ : |t̂ − t| ≤ ρ ,λ ∈ [−α,α], |π | ≤ Mt1+β−ζ B(1− ζ ,1+β )

}

,

–∂ (k,ρ) = sup

{

∣

∣k(t,λ ,π)− k(t,λ , π̂)
∣

∣ : t,λ ∈ [0,a],π , π̂ ∈ [−α,α], |π − π̂| ≤ ρ

}

,

–∂̂ (k,ρ) = sup

{

∣

∣k(t,λ ,π)− k(t̂,λ ,π)
∣

∣ : t, t̂,λ ∈ [0,a],π ∈ [−α,α], |t − t̂| ≤ ρ

}

,

–∂ ( f ,ρ) = sup

{

∣

∣ f (t,π)− f (t̂,π)
∣

∣ : |t̂ − t| ≤ ρ , t, t̂ ∈ [0,a],π ∈ [−α,α]

}

.
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To set our main results we introduce the following assumptions:

(A1) : Λ ∈C([0,a]×R×R,R), f ∈C([0,a]×R,R),k ∈C([0,a]× [0,a]×R,R)and θ , θ̂ : [0,a]→ [0,a]
is continous,

(A2) :

∣

∣

∣

∣

Λ(t,λ ,π)−Λ(t, λ̂ , π̂)

∣

∣

∣

∣

≤ m1

∣

∣

∣

∣

λ − λ̂

∣

∣

∣

∣

+m2

∣

∣

∣

∣

π − π̂

∣

∣

∣

∣

,

∣

∣

∣

∣

f (t,x)− f (t, x̂)

∣

∣

∣

∣

≤ m̂1

∣

∣

∣

∣

x− x̂

∣

∣

∣

∣

,

m1,m2, m̂1 nonnegative constants and m1m̂1 < 1,

(A3) : sup

{∣

∣

∣

∣

Λ(t,λ ,π)

∣

∣

∣

∣

: t ∈ [0,a],λ ∈ [−α,α], |π | ≤ Ma1+β−ζ B(1− ζ ,1+β )

}

≤ α.

Proposition 4.Under control conditions (A1)− (A3), the weak singular fractional integral equation (1) has at least one

solution in C([0,a]).

Proof.Let











Σ : Eα →C([0,a])

(Σπ)(t) = Λ

(

t, f (t,π(θ (t))),
∫ t

0
λ β

(t−λ )ζ k(t,λ ,π(θ̂ (λ )))dλ

)

,

where Eα =

{

π ∈C([0,a]),‖π‖ ≤ α

}

. We divided the proof into three steps:

Step1. We show that Σ is continuous on Eα . Assume that π , π̂ ∈ Eα and ρ > 0 such that |π − π̂|< ρ , we have

∣

∣

∣

∣

(Σπ)(t)− (Σπ̂)(t)

∣

∣

∣

∣

=

Λ

(

t, f (t,π(θ (t))),
∫ t

0
λ β

(t−λ )ζ k(t,λ ,π(θ̂(λ )))dλ

)

−Λ

(

t, f (t, π̂(θ (t))),
∫ t

0
λ β

(t−λ )ζ k(t,λ , π̂(θ̂ (λ )))dλ

)∣

∣

∣

∣

≤
∣

∣

∣

∣

Λ

(

t, f (t,π(θ (t))),
∫ t

0
λ β

(t−λ )ζ k(t,λ ,π(θ̂ (λ )))dλ

)

−Λ

(

t, f (t, π̂(θ (t))),
∫ t

0
λ β

(t−λ )ζ k(t,λ ,π(θ̂ (λ )))dλ

)
∣

∣

∣

∣

+

∣

∣

∣

∣

Λ

(

t, f (t, π̂(θ (t))),
∫ t

0
λ β

(t−λ )ζ k(t,λ ,π(θ̂(λ )))dλ

)

−Λ

(

t, f (t, π̂(θ (t))),
∫ t

0
λ β

(t−λ )ζ k(t,λ , π̂(θ̂ (λ )))dλ

)∣

∣

∣

∣

≤ m1

∣

∣

∣

∣

f (t,π(θ (t)))− f (t, π̂(θ (t)))

∣

∣

∣

∣

+m2

∫ t
0

λ β

(t−λ )ζ

∣

∣

∣

∣

k(t,λ ,π(θ̂ (λ )))− k(t,λ , π̂(θ̂ (λ )))

∣

∣

∣

∣

dλ

≤ m1m̂1

∣

∣

∣

∣

π(θ (t))− π̂(θ (t))

∣

∣

∣

∣

+m2∂ (k,ρ)
∫ t

0
λ β

(t−λ )ζ dλ

≤ m1m̂1

∥

∥π − π̂
∥

∥+m2∂ (k,ρ)B(1− ζ ,1+β )t1+β−ζ

≤ m1m̂1

∥

∥π − π̂
∥

∥+m2∂ (k,ρ)B(1− ζ ,1+β )a1+β−ζ,

since k(t,λ ,π) is uniform continuity on the subset [0,a]× [0,a]× [−α,α] then limρ→0∂ (k,ρ) = 0, which implies that
the map of Σ is continuous on Eα .

Step 2. We will show that Σ is a condensing map. Let Γ ⊂ E to be a bounded set. For ρ > 0 and π ∈ Γ and t1, t2 ∈ [0,a]
with t2 − t1 ≤ ρ . We get:
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∣

∣

∣

∣

(Σπ)(t2)− (Σπ)(t1)

∣

∣

∣

∣

=

Λ

(

t, f (t2,π(θ (t2))),
∫ t2

0
λ β

(t2−λ )ζ k(t2,λ ,π(θ̂ (λ )))dλ

)

−Λ

(

t1, f (t1,π(θ (t1))),
∫ t1

0
λ β

(t1−λ )ζ k(t1,λ ,π(θ̂(λ )))dλ

)∣

∣

∣

∣

≤
∣

∣

∣

∣

Λ

(

t, f (t2,π(θ (t2))),
∫ t2

0
λ β

(t2−λ )ζ k(t2,λ ,π(θ̂(λ )))dλ

)

−Λ

(

t, f (t2,π(θ (t2))),
∫ t1

0
λ β

(t1−λ )ζ k(t1,λ ,π(θ̂ (λ )))dλ

)
∣

∣

∣

∣

+

∣

∣

∣

∣

Λ

(

t, f (t2,π(θ (t2))),
∫ t1

0
λ β

(t1−λ )ζ k(t1,λ ,π(θ̂ (λ )))dλ

)

−Λ

(

t, f (t2,π(θ (t1))),
∫ t1

0
λ β

(t1−λ )ζ k(t1,λ ,π(θ̂(λ )))dλ

)∣

∣

∣

∣

+

∣

∣

∣

∣

Λ

(

t, f (t2,π(θ (t1))),
∫ t1

0
λ β

(t1−λ )ζ k(t1,λ ,π(θ̂ (λ )))dλ

)

−Λ

(

t, f (t1,π(θ (t1))),
∫ t1

0
λ β

(t1−λ )ζ k(t1,λ ,π(θ̂(λ )))dλ

)
∣

∣

∣

∣

≤ m2

∣

∣

∣

∣

∫ t2
0

λ β

(t2−λ )ζ k(t2,λ ,π(θ̂ (λ )))dλ − ∫ t1
0

λ β

(t1−λ )ζ k(t1,λ ,π(θ̂(λ )))dλ

∣

∣

∣

∣

+m1

∣

∣

∣

∣

f (t2,π(θ (t2)))− f (t1,π(θ (t1)))

∣

∣

∣

∣

+ ∂ ( f ,ρ)

≤ m2

{

∫ t1
0

λ β

(t2−λ )ζ

∣

∣

∣

∣

k(t2,λ ,π(θ̂(λ )))− k(t1,λ ,π(θ̂(λ )))

∣

∣

∣

∣

dλ

+
∫ t1

0

∣

∣

∣

∣

λ β

(t1−λ )ζ k(t1,λ ,π(θ̂ (λ )))− λ β

(t1−λ )ζ k(t1,λ ,π(θ̂ (λ )))

∣

∣

∣

∣

dλ +
∫ t2

t1

∣

∣

∣

∣

λ β

(t2−λ )ζ k(t2,λ ,π(θ̂ (λ )))

∣

∣

∣

∣

dλ

}

+m1

∣

∣

∣

∣

f (t2,π(θ (t2)))− f (t1,π(θ (t1)))

∣

∣

∣

∣

+ ∂ ( f ,ρ)

≤ m2∂̂ (k,ρ)B(1− ζ ,1+β )t
1+β−ζ
1 +m2 M B(1− ζ ,1+β )

{

t
1+β−ζ
2 − t

1+β−ζ
1

}

+m1

∣

∣

∣

∣

f (t2,π(θ (t2)))− f (t2,π(θ (t1)))

∣

∣

∣

∣

+m1

∣

∣

∣

∣

f (t2,π(θ (t1)))− f (t1,π(θ (t1)))

∣

∣

∣

∣

+ ∂ ( f ,ρ)

≤ m2∂̂ (k,ρ)B(1− ζ ,1+β )a1+β−ζ + 2 m2 M B(1− ζ ,1+β )ρ1+β−ζ +m1m̂1

∣

∣

∣

∣

π(θ (t))−π(θ (t1))

∣

∣

∣

∣

+m1∂̂ ( f ,ρ)+ ∂ ( f ,ρ)

≤ m2∂̂ (k,ρ)B(1− ζ ,1+β )a1+β−ζ + 2 m2 M B(1− ζ ,1+β )ρ1+β−ζ

+m1m̂1∂

(

u,∂ (β ,ρ)

)

+m1∂̂ ( f ,ρ)+ ∂ ( f ,ρ).

Thus ∂
(

Σπ ,ρ
)

≤ m1m̂1∂
(

π ,ρ
)

as ρ → 0. This implies that µ
(

ΣΓ
)

≤ m1m̂1µ
(

θ̂
)

. Thus, Σ is a condensing map.

Step 3. Finally, we investigation of Petryshyn conditions. Let π ∈ ∂Eα , if Σπ = k̂π then
∥

∥Σπ
∥

∥ = k̂
∥

∥π
∥

∥ = k̂α . The
condition(A1) implies that

∣

∣

∣

∣

Λπ(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

Λ

(

t, f (t,π(θ (t))),

∫ t

0

λ β

(t −λ )ζ
k(t,λ ,π(θ̂ (λ )))dλ

)∣

∣

∣

∣

≤ α,

for any t ∈ [0,a]. Thus,
∥

∥Σπ
∥

∥≤ α , so this show k̂ ≤ 1. This completes the proof.
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Proposition 5.Let m1,m2 to be nonnegativeconstant and k ∈C([0,a]× [0,a]×R,R), f ∈C([0,a]×R,R). If

(C1) : | f (t,π)− f (t, π̂)| ≤ m1

∣

∣

∣

∣

π − π̂|, |g(t,π)− g(t, π̂)| ≤ m2|π − π̂|,
∣

∣

∣

∣

f (t,0)

∣

∣

∣

∣

≤ b1, |g(t,0)
∣

∣

∣

∣

≤ b2,

(C2) : T here exist nonnegative constants c1,c2 such that

∣

∣

∣

∣

k(t,λ ,π)| ≤ c1 + c2|π |
f or t,λ ∈ [0,a],π ∈ R,

C3) : m1 + b1 +(m2 + b2)(c1 + c2)a
1+β−ζ B(1− ζ ,1+β )< 1.

Then

π(t) = f (t,π(θ (t)))+ g(t,π(β (t)))

∫ t

0

λ β

(t −λ )ζ
k(t,λ ,π(θ̂(λ )))dλ , (4)

has at least one solution in C([0,a]).

Proof.Let Λ(t,s,v,w) = f (t,s) + vw, where v = g(t,π(β (t))) and w =
∫ t

0
λ β

(t−λ )ζ k(t,λ ,π(θ̂ (λ )))dλ ). For ‖π‖ ≤ α we

have

|π(t)| = | f (t,π(θ (t)))+ g(t,π(β (t)))
∫ t

0
λ β

(t−λ )ζ k(t,λ ,π(θ̂ (λ )))dλ |

≤
∣

∣

∣

∣

f (t,π(θ (t)))− f (t,0)

∣

∣

∣

∣

+ | f (t,0)|+
(

|g(t,π(β (t)))− g(t,0)|+ |g(t,0)|
)

∫ t
0

∣

∣

∣

∣

λ β

(t−λ )ζ k(t,λ ,π(θ̂ (λ )))

∣

∣

∣

∣

dλ

≤ m1‖π‖+ b1+(m2‖π‖+ b2)(c1 + c2‖π‖)a1+β−ζB(1− ζ ,1+β ),

This implies that

m1α + b1 +(m2α + b2)(c1 + c2α)a1+β−ζ B(1− ζ ,1+β )≤ α. (5)

Using mean value theorem, one can easily prove that the inequality (5) has a solution in (0,1). Therefore the condition
(A2) is obtain. On the other hand, the controls (C1),(C2) implies that (A3) is holds.

4 Examples

In this section, some examples have been presented using proposition (4). With the help of MATLAB R2018a, we obtain
the parameter α .

Example 1.Consider the following weakly singular integral equation

π(t) =
t4π(

√
t)

6(1+ t4)
+

sint

8(et2
+ 4cos

√
t)

∫ t

0

λ
1
4

(t −λ )
3
4

× 1+ cos
√

λ + |π(
√

λ)|
1+λ t2+ lnt

dλ , t ∈ [0,1] (6)

the assumptions (A1) and (A2) of proposition (4) are satisfied. Now, we check that (A3) also holds. Suppose that
‖π(t)‖ ≤ r, then

|π(t)|=
∣

∣

∣

∣

t4π(
√

t)

6(1+ t4)
+

sint

8(et2
+ 4cos

√
t

∫ t

0

λ
1
4

(t −λ )
3
4

× 1+ cos
√

λ + |π(
√

λ )|
1+λ t2+ lnt

∣

∣

∣

∣

dλ ≤ r.

The (A3) holds if,
1

6
r+

1

8
B(

1

4
,

5

4
)(2+ r)≤ r,

By choosing r ≥ 1.3483 the condition (A3) holds. This implies that the equation (??) has at least one solution in C[0,1].

Example 2.In 1971, Miller [14] introduced a nonlinear integral equation as follow:

π(t) = 1−
√

3

π

∫ t

0

λ
1
3 π(t)4

(t −λ )
2
3

dλ . (7)
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Now, by using theorem 4 we will prove that the equation of 7 has a one solution. Suppose that ‖π(t)‖ ≤ α , then

|π(t)|=
∣

∣

∣

∣

1−
√

3

π

∫ t

0

λ
1
3 π(t)4

(t −λ )
2
3

∣

∣

∣

∣

dλ ≤ α,

hence,

1+

√
3

π
αB(

1

3
,

4

3
)≤ α.

By choosing α ≥ 2.169098 the condition (A3) holds. This implies that 7 has at least one solution in C[0,1].

5 Conclusion

The basic tools used in this paper is the techniques of measure of non compactness and Petryshyn’s fixed point theorem
which is a generalization of Darbo’s Fixed Point theorem. In this work, we studied the existence of solutions for weakly
singular integral equations by Petryshyns fixed point theorem. By using Petryshyns fixed point theorem, it is not necessary
to verify that the involved operator maps a closed convex subset onto itself. Finally, some examples are given
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