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Abstract: The work of the Sine-G distribution family is extended in this paper. The applicability of the sine exponential Pareto

distribution is highlighted via the goodness-of-fit approach to data. Various properties of the suggested distribution, including moments,

quantiles, entropy, and order statistics are acquired. For model parameters estimation, the maximum likelihood technique is used.

Four extensive data sets are empirically used to demonstrate the potential significance and applicability of the proposed distribution.

The results of the investigation indicated that the Sine Exponential Pareto distribution was superior than numerous other competing

distributions.
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1 Introduction

In general operator theory, inverse and half-inverse problems have received a lot of attention lately[5],[6], and[11].
Furthermore, a lot of authors have emphasized the importance of generated families of distributions, such as the
Kumaraswamy-G[10], sine generated (S-G) family by[18], Weibull-G[7], odd Frechet-G[12], Burr type X-G[31],
truncated Cauchy power-G[3], Type-I half-logistic Burr X-G[4], generalized odd half-Cauchy-G[9], exponentiated
sine-G family[23], Sine Half-Logistic Inverse Rayleigh [28], Sine Modified Lindley [29], Sin Topp-Leone-generated
family[1], beyond the Sin-G family[15] and others. The Sine-G (S-G) family of distributions, a recently developed
family of distributions, was first introduced in [18]. The cumulative distribution function (CDF) of the S-G family.

F(x;Ψ) = sin[
π

2
G(x;Ψ )], x ∈ R. (1)

where G(x;Ψ) is the CDF of baseline model with parameter vector Ψ .

The probability density function (PDF) of the S-G family is

f (x;Ψ ) =
π

2
g(x;Ψ)cos[

π

2
G(x;Ψ )], x ∈ R. (2)

A well-known probability model for modeling and forecasting many socioeconomic elements is the Pareto
distribution, which bears the name of swiss economist Vilfredo Pareto (1848-1923).

Pareto distribution has been studied in literature in numerous applications in lifetests, climate science, economics,
finance, biology, physics, and actuarial science. Even though the distribution has many applications, studying the
distribution of income is one of its most significant and significant applications. [25] pioneered this approach in his
personal economic texts. Studying some of the distribution’s applications in simulating earthquakes, forest fire zones, oil
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and gas field sizes [8].[2]proposed a novel distribution known as the exponential Pareto distribution with (CDF) and
(PDF) are given by

G(x) = 1− e
(−σ

(
x
µ

)k
)
,x > 0. (3)

g(x) =
σkxk−1

µk
e
(−σ

(
x
µ

)k
)
,x > 0. (4)

where σ , k ∈ R+ are the shape parameters and µ > 0 is a scale parameters.
To improve the flexibility of the S-G family of distributions without adding any additional parameters, to produce

heavy-tailed distributions with fewer parameters that provide a better parametric fit to a given data set than some existing
distributions, to produce distributions that are roughly symmetric, right-skewed, and reversed-J shaped, and to generate
distributions capable of mode estimation are the main reasons for our proposal. To include all of these variables, it is
necessary to expand the S-G family of distributions. As a result, the present paper is strivingto develop a new distribution
that is more flexible than the Exponential Pareto model using the S-G family. It may be viewed as a useful model for
fitting asymmetric data that may not be well fitted by some common models, and it can be used to solve a variety of
problems in many fields, as well as to provide more accurate fits than some popular models with good results for some
existing distributions. The new model is called the Sine Exponential Pareto (S-EP) model. The manuscript is organized as
follows. Section 2 is the S-EP Distribution. Some distributional properties of the proposed (S-EP) distribution are derived
in Section 3. Entropy is discussed in Section 4. Section 5 presents the distributions of various order statistics. Section 6
discusses maximum likelihood estimation of model parameters. Outlines the suggested model’s Monte Carlo simulation
are presented in Section 7. Section 8 includes the application of the distribution to four data, and Section 9 concludes the
study.

2 The S-EP Distribution

Letting a random variable X have S-EP distribution, then the CDF, PDF, survival function (SF), and hazard rate function
(HRF) of X are

F (x;σ ,µ ,k) = sin

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

]
, x,σ ,µ ,k > 0, (5)

f (x;σ ,µ ,k) =
πσkxk−1

2µk
e

(
−σ
(

x
µ

)k
)

cos

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

]
, (6)

R(x) = 1− sin

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

]
, (7)

h(x) =

πσkxk−1

2µk e

(
−σ
(

x
µ

)k
)

cos

[
π
2
[1− e

(
−σ
(

x
µ

)k
)

]

]

1− sin

[
π
2
[1− e

(
−σ
(

x
µ

)k
)

]

] . (8)

where σ > 0 and k > 0 are shape parameters and µ > 0 is a scale parameter.

Figure 1 and 2 show various shapes of S-EP distribution for the PDF , HRF and CDF, SF at different parameter values of
σ ,µ and k. PDF has various shapes including the reverse-J, unimodal, right-skewed, decreasing, and approximately
symmetric shapes, and various degrees of kurtosis. Moreover, the HRF can take several shapes, such as the increasing,
decreasing, and bathtub shapes. These different behaviours indicate the flexibility and adaptability for the S-EP
distribution to fit a variety of data shapes.

3 Statistical Properties

Several statistical features of the S-EP distribution are shown in this section. These qualities include moments, the moment
generating function, the quantile function, and random sample simulation.
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Fig. 1: The PDF and HRF for the S-EP distribution
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Fig. 2: The CDF and SF for the S-EP distribution

3.1 The Moments

Theorem 1.Let X be a random variable having the S-EP distribution, then the rth moment of X about the origin is

E (X r) =
µk+r

k

∞

∑
i=0

2i

∑
j=0

ϕi, j
Γ (1+

(
r
k

)
)

(σ(1+ j))1+ r
k

,

r = 1,2, ... ,where Γ (1+ r/k) is the gamma function.

Proof.The rth moment is given by
E (X r) =

∫ ∞
0 xr f (x)dx

=

∫ ∞

0
xr πσkxk−1

2µk
e

(
−σ
(

x
µ

)k
)

cos

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

]
dx

=
∫ ∞

0

πσkxk+r−1

2µk
e

(
−σ
(

x
µ

)k
)

cos

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

]
dx
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By inserting the expansion cos[z(x)] = ∑∞
i=0

(−1)i

(2i)! z(x)2i
, then

=
∞

∑
i=0

σk(−1)i

µk(2i)!

(π

2

)2i+1
∫ ∞

0
xk+r−1e

(
−σ
(

x
µ

)k
)

[1− e

(
−σ
(

x
µ

)k
)

]2idx (9)

By the general binomial expansion, we have

[1− e
(−σ( x

µ )k)]2i =
2i

∑
j=0

(
2i

j

)
(−1) je

(−σ j( x
µ )k)

(10)

Substitute from (10) in (9), to get

E (X r) =
∞

∑
i=0

2i

∑
j=0

σk(−1)i+ j

µk(2i)!

(π

2

)2i+1
(

2i

j

)∫ ∞

0
xk+r−1e

(
−σ(1+ j)

(
x
µ

)k
)

dx

The last equation can be rewritten as follows:

E (X r) =
∞

∑
i=0

2i

∑
j=0

ϕi, j

∫ ∞

0
xk+r−1e

(
−σ(1+ j)

(
x
µ

)k
)

dx,

Where ϕi, j =
σk(−1)i+ j

µk(2i)!

(
π
2

)2i+1(2i
j

)

Using the transformation y = ( x
µ )

k then x = µ k
√

y and dx = µ
k

k
√

y1−kdy using y in the above equation, we get

E (X r) =
∞

∑
i=0

2i

∑
j=0

ϕi, j

∫ ∞

0
µk+r−1y

k+r−1
k e(−σ(1+ j)y) µ

k

k
√

y1−kdy

=
µk+r

k

∞

∑
i=0

2i

∑
j=0

ϕi, j

∫ ∞

0
y

r
k e−(σ(1+ j))y dy

Using the relation
∫ ∞

0 tbe−atdt = Γ (1+b)

a(1+b) , then E (X r) becomes

E (X r) =
µk+r

k

∞

∑
i=0

2i

∑
j=0

ϕi, j
Γ(1+

(
r
k

)
)

(σ(1+ j))1+ r
k

3.2 The Moment Generating Function

Theorem 2.Let X be a random variable which has the S-EP distribution, then the moment generating function (MGF) of

X is

MX (t) =
µk+r

k

∞

∑
r,i=0

2i

∑
j=0

ϕi, j
tr

r!

Γ(1+
(

r
k

)
)

(σ(1+ j))1+ r
k

Proof.We know that

MX (t) = E
(
etx
)
=

∫ ∞

−∞
etx f (x)dx

Using series expansion of etx,

MX (t) =
∞

∑
r=0

tr

r!

∫ ∞

0
xr f (x)dx =

∞

∑
r=0

tr

r!
E (xr)

Then

MX (t) =
µk+r

k

∞

∑
r,i=0

2i

∑
j=0

ϕi, j
tr

r!

Γ(1+
(

r
k

)
)

(σ(1+ j))1+ r
k
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Some moments for selected parameters values in order (σ ,µ ,k): (0.1, 0.5, 3.5), (0.1, 0.5, 4), (0.1, 0.5, 5), (0.4, 0.5,
3.5), (0.7, 0.5, 3.5), (0.4, 0.7, 3.5) and (0.4, 1.5, 3.5) are given in Table 1, where SD, CV, CS, and CK represent the
standard deviation, coefficient of variation, skewness, and kurtosis, respectively, and 3D plots of skewness and kurtosis
for the S-EP distribution are given in Figures 2. We observe that When µ is held constant, we notice that an increase in k

causes an increase in skewness and kurtosis, as illustrated in Figure 2.

(0.1, 0.5, 3.5) (0.1, 0.5, 4) (0.1, 0.5, 5) (0.4, 0.5, 3.5) (0.7, 0.5, 3.5) (0.4, 0.7, 3.5) (0.4, 1.5, 3.5)

E(X) 0.6026522 0.6486755 0.64963498 0.49863823 0.425084887 0.6168918 0.11154194

E(X2) 0.4460229 0.4712642 0.44305775 0.27142858 0.197252155 0.4435175 0.09078230

E(X3) 0.3468944 0.3584487 0.31363699 0.15785282 0.097806623 0.3362790 0.07649048

E(X4) 0.2798668 0.2824809 0.22898408 0.09680572 0.051153266 0.2653076 0.06606055

E(X5) 0.2322340 0.2289977 0.17162989 0.06205734 0.027975064 0.2158695 0.05811839

E(X6) 0.1970410 0.1899718 0.13160518 0.04132305 0.015899286 0.1800124 0.05187149

SD 0.1702112 0.1606417 0.10295618 0.02844640 0.009347271 0.1531403 0.04683102

CV 0.1492225 0.1380442 0.08199076 0.02016803 0.005664119 0.1324482 0.04267927

CS 0.1324445 0.1202609 0.06634507 0.01468140 0.003527533 0.1161469 0.03920086

CK 0.1187838 0.1060074 0.05446345 0.01094513 0.002252559 0.1030520 0.03624470

Table 1: Moments for selected parameters for S-EP distribution

From Table 1 observe that:

1) when we fix the parameters σ ,µ , and parameter k increase leads to increase in mean and decrease in standard
deviation, coefficient of variation, skewness, and kurtosis.

2) when we fix the parameters µ and k, and parameter σ increase leads to decrease in mean, standard deviation,
coefficient of variation, skewness, and kurtosis.

3) when we fix the parameters σ and k, and parameter µ increase leads to increase and decrease in mean, standard
deviation, coefficient of variation, skewness, and kurtosis.
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Fig. 3: Kurtosis and Skewness for the S-EP distribution for some selected parameter values

3.3 Quantile function

The quantile function theorem of the S-EP distribution is stated as follow;
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Theorem 3.Let X be a random variable from the S-EP distribution with parameters, σ ,µ ,k > 0. Then the quantile function

of X is given by

Q(u) = µ

[
−ln(− 2

π sin−1 (u)+ 1)

σ

] 1
k

where u is a uniform random variable on (0, 1).

Proof.To compute the quantile function of the S-EP distribution, we substitute F(x) by u where 0 < u < 1 in (5) to get the
equation

u = sin

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

]
(11)

Then, we solve the equation (11)

sin−1(u) =

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

]
(12)

Then,

− 2

π
sin−1(u)+ 1 = e

(
−σ
(

x
µ

)k
)

(13)

Take Logarithm to both sides to get

ln(1− 2

π
sin−1(u)) =−σ

(
x

µ

)k

Then, we get the equation

− ln(1− 2
π sin−1(u))

σ
=

(
x

µ

)k

then,

µ(
− ln(1− 2

π sin−1(u))

σ
)

1
k = x

which finally gives the quantile function of S-EP the distributions as

x = F−1(u) = Q(u) = µ(
− ln(1− 2

π sin−1(u))

σ
)

1
k

and by setting u = 0.5, we get the median as

Q(0.5) = µ

[
−ln(− 2

π sin−1 (0.5)+ 1)

σ

] 1
k

The equivalent Bowley skewness[16] and Moors kurtosis can also be expressed in a similar manner ([22]).
The Bowley skewness based on quartiles is given by

B =
Q
(

3
4

)
+Q

(
1
4

)
− 2Q

(
2
4

)

Q
(

3
4

)
−Q

(
1
4

)

The Moors kurtosis based on octiles is given by

M =
Q
(

3
8

)
−Q

(
1
8

)
+Q

(
7
8

)
−Q

(
5
8

)

Q
(

6
8

)
−Q

(
2
8

)

as Table2 indicates the values of the first quartile, median, third quartile, Bowley skewness and Moors kurtosis of the
S-EP distribution for the following selected parameters values in order (σ ,µ , k): (0.5, 0.75, 2), (0.8, 0.75, 2) (0.4, 0.55,
3), (0.1, 0.5, 3.5), and (0.7, 0.8, 4). We observe that the Bowley skewness is minus if k > 2 and Bowley skewness and
Moors kurtosis depend on the all parameter (σ ,µ ,k) .
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Q(1/4) median Q(3/4) B M

(0.5, 0.75, 2) 0.4442 0.6754 0.9345 0.05690 1.204568

(0.8, 1.5, 2) 0.7023 1.0679 1.4776 0.05688 1.204566

(0.4, 0.55, 3) 0.4178 0.5525 0.6860 -0.0045 1.2133

(0.1, 0.5, 3.5) 0.5871 0.7459 0.8980 -0.0216 1.2193

(0.7, 0.8, 4) 0.5660 0.6979 0.8210 -0.0345 1.2249

Table 2: First quartile, median, third quartile, Bowley skewness and Moors kurtosis of the S-EP distribution

4 Entropy

In investigations of dependability and risk, measurement of entropy is important.It is widely used in a variety of biological,
medical and physical applications.

4.1 Rényi Entropy

If X is a non-negative continuous random variable with PDF f (x), then the Rényi entropy of order δ [26] of X is defined
as

Hδ (x) =
1

1− δ
log

∫ ∞

0
[ f (x)]δ dx,∀δ > 0,(δ 6= 1) (14)

We had the representation supplied by[32] for a power series raised to the power of a positive integer as the last
significant result that was known, and we referred to it in the following lemma.

Lemma 1.Established by[32]. For a given power series of the form (∑∞
k=0 akxk) and a positive integer n, we had:

(
∞

∑
k=0

akxk

)n

=
∞

∑
k=0

ckxk, (15)

where c0 = an
0, cm = [1/(ma0)]∑

m
k=1(kn−m+ k)akcm−k for m ≥ 1.

Theorem 4.The Rényi entropy of a random variable X ∼ S-EP distribution (µ ,σ ,k), with, µ ,σ , k > 0is given by

Hδ (x) =
1

1− δ
log


b(σ ,µ ,k, j, i,δ ,ci)×

(σ( j+ δ )( 1
µ )

k
)
−1+δ−kδ

k
Γ[ 1−δ+kδ

k
]

k




Where b(σ , µ , k, j, i ,δ , ci) = πδ σ δ kδ

2δ µ
δ k ∑∞

i=0 ∑2i
j=0 ci

(
2i
j

)
(−1) j and

c0 = aδ
0 , cm = [1/(ma0)]∑

m
i=1(iδ −m+ i)aicm−i for m ≥ 1.

Proof.Suppose X has the PDF in Eq.(6) Then, one can calculate

[ f (x)]δ =
πδ σδ kδ xδ (k−1)

2δ µδk
e

(
−δσ

(
x
µ

)k
)(

cos

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

])δ

By inserting the expansion cos[z(x)], we have

[ f (x)]δ=
πδ σδ kδ xδ (k−1)

2δ µ
δk

e

(
−−−δσ

(
x
µ

)k
) 


∞

∑
i=0

(−1)i

(2i)!

(π

2

)2i
[

1− e

(
−σ
(

x
µ

)k
)]2i




δ
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let an =
(−1)i

(2i)!

(
π
2

)2i
, G(x;ξ ) =

[
1− e

(
−σ
(

x
µ

)k
)]

and Eq.(15) we obtained:

(
∞

∑
i=0

aiG(x;ξ )2i

)δ

=
∞

∑
i=0

ciG(x;ξ )2i =
∞

∑
i=0

ci

[
1− e

(
−σ
(

x
µ

)k
)]2i

(16)

where c0 = aδ
0 , cm = [1/(ma0)]∑

m
i=1(iδ −m+ i)aicm−i for m ≥ 1.

Then by Eq.(16) and Eq.(10), we have

[ f (x)]δ=
πδ σδ kδ xδ (k−1)

2δ µ
δk

e

(
−−−δσ

(
x
µ

)k
) (

∞

∑
i=0

ci

2i

∑
j=0

(
2i

j

)
(−1) je

(
−σ j

(
x
µ

)k
))

=
πδ σδ kδ xδ (k−1)

2δ µ
δk

e

(
−−−δσ

(
x
µ

)k
) (

∞

∑
i=0

2i

∑
j=0

ci

(
2i

j

)
(−1) je

(
−σ j

(
x
µ

)k
))

Let b(σ , µ , k, j, i ,δ , ci) = πδ σ δ kδ

2δ µ
δ k ∑∞

i=0 ∑2i
j=0 ci

(
2i
j

)
(−1) j, then

[ f (x)]δ = b(σ ,µ ,k, j, i,δ ,ci)x
δ (k−1)e

(
−σ(δ+ j)

(
x
µ

)k
)

(17)

To find Hδ (x), we substitute from (17) in (14)

Hδ (x) =
1

1− δ
log

[
b(σ ,µ ,k, j, i,δ ,ci)×

∫ ∞

0
xδ (k−1)e

(
−σ(δ+ j)

(
x
µ

)k
)

dx

]

We obtain the R’enyi entropy of the S-EP distribution after solving the integral.

Hδ (x) =
1

1− δ
log


b(σ ,µ ,k, j, i,δ ,ci)×

(σ( j+ δ )( 1
µ )

k
)
−1+δ−kδ

k
Γ[ 1−δ+kδ

k
]

k




4.2 q-Entropy

The q-entropy was introduced by[13]. It is the one-parameter generalization of the Shannon entropy[30] defined the
q-entropy as

IH (q)=
1

1− q

[
1−

∫ ∞

0
f (x)q

dx

]
,where q> 0,and q 6= 1 (18)

Theorem 5.The q-entropy of a random variable X ∼S-EP distribution (µ ,σ ,k), with µ ,σ ,k > 0 is given by

IH(q) =
1

1− q


1− b(σ ,µ ,k, j, i,q,ci)×

(σ( j+ q)( 1
µ )

k
)
−1+q−kq

k
Γ[ 1−q+kq

k
]

k




Proof.To find IH(q), we substitute(17) in (18).
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4.3 Shannon’s Entropy

The Shannon’s entropy[27] of a non-negative continuous random variable X with PDF f (x) is defined as

H( f ) = E[− log f (x)] =−
∫ ∞

0
f (x) log( f (x))dx (19)

Below, we are going to use the expansion of the logarithm function (Taylor series at 1),

log(x) =
∞

∑
m=0

(−1)m−1 (x− 1)m

m
, |x|< 1 (20)

The Shannon entropy of a random variable X ∼ S-EP distribution (µ ,σ ,k), with µ ,σ ,k > 0 is given by

H( f ) =
∞

∑
m=1

m

∑
n=0

(−1)n

(
m

n

)
1

m
c(σ , µ ,k, j, i ,n+ 1) (21)

×
((1+ j)(1+ n)( 1

µ )
k
σ)

−1+(−1+ 1
k
)n

Γ[1+ n− n
k
]

k

Proof.By the Expansion of the Logarithm function (20)

log( f (x)) =
∞

∑
m=1

(−1)m−1 ( f (x)− 1)m

m
,

and by Binomial theorem,

=
∞

∑
m=1

(−1)m−1 1

m

{
m

∑
n=0

(−1)m−n

(
m

n

)
f n(x)

}

log( f (x)) =
∞

∑
m=1

m

∑
n=0

(−1)n+1

(
m

n

)
1

m
f n(x) (22)

For calculating the Shannon’s entropy of X, substitute from Eq.(22) in Eq.(19)

H ( f )=−
∫ ∞

0
f (x) log( f (x)) dx=−

∫ ∞

0
f (x)

∞

∑
m=1

m

∑
n=0

(−1)n+1

(
m

n

)
1

m
f n(x)dx

H( f ) =

∫ ∞

0

∞

∑
m=1

m

∑
n=0

(−1)n

(
m

n

)
1

m
f n+1(x)dx (23)

substituting from Eq.(17) in Eq.(23), to get

H( f ) =

∫ ∞

0

∞

∑
m=1

m

∑
n=0

(−1)n

(
m

n

)
1

m
b(σ ,µ ,k, j, i,n+ 1,ci)x

(n+1)(k−1)e

(
−σ(n+ j+1)

(
x
µ

)k
)

dx

Then,

H( f ) =
∞

∑
m=1

m

∑
n=0

(−1)n

(
m

n

)
1

m
b(σ ,µ ,k, j, i,n+ 1,ci)

(
σ(1+ j+ n)( 1

µ )
k
)−1+(−1+ 1

k )n

Γ[1+ n− n
k
]

k

5 Order Statistics

Let X1,X2, ...,Xn be a random sample of size n from the S-EP distribution with parameters µ > 0, σ > 0, and k > 0, the
PDF of the rth order statistics is obtain by

fX(r)
(x) =n

(
n− 1
r− 1

)
f (x)[F(x)]r−1[1−F(x)]n−r. (24)
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Let Xr be the rth order statistic of X ∼ S-EP distribution (µ ,σ ,k) with µ 6= 0, σ 6= 0 and k 6=0 Then the PDF of the rth
order statistic is given by

fX(r)
(x) =n

(
n− 1
r− 1

)
πσkxk−1

2µk
e

(
−−−σ
(

x
µ

)k
)

cos

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

]
×

(
sin

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

] )r−1(
1− sin

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

] )n−r

,

Then, the PDF of first-order statistic X1 of S-EP distribution is given as

fX(1)
(x) =n

πσkxk−1

2µk
e

(
−σ
(

x
µ

)k
)

cos

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

]
×
(

1− sin

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

] )n−1

.

Therefore, of the largest order statistic X(n) of S-EP distribution is given by

fX(n)
(x) =n

πσkxk−1

2µk
e

(
−−−σ
(

x
µ

)k
)

cos

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

]
×
(

sin

[
π

2
[1− e

(
−σ
(

x
µ

)k
)

]

] )n−1

.

6 Maximum Likelihood Estimation (MLE)

Assume X1,X2, ...,Xn be a random sample of size n from S-EP distribution and
∆ = (µ ,σ ,k)T be the parameter vector, then the likelihood function can be written as

L(∆)=
n

∏
i=1

f (xi)=
πnσnkn

2nµnk

n

∏
i=1

xi
k−1 e

(
−∑n

i=1 σ
(

xi
µ

)k
)

n

∏
i=1

cos

[
π

2
[1− e

(
−σ
(

xi
µ

)k
)

]

]
.

The log-likelihood function is given by
l (∆) = logL(∆) ,

= nlog
(π

2

)
+ nlog(σ)+ nlog(k)− nklog(µ)+ (k− 1)

n

∑
i=1

log(xi)−
n

∑
i=1

σ

(
xi

µ

)k

+
n

∑
i=1

log

(
cos

[
π

2
[1− e

(
−σ
(

xi
µ

)k
)

]

] )
. (25)

Equation (25) can be directly maximized using the R (optim function), SAS (PROC NLMIXED), Ox program
(sub-routine MaxBFGS), or by solving the nonlinear likelihood equations derived by differentiating Eq.(25). The
log-likelihood function in Eq.(25) is differentiated with respect to each parameter to obtain the score function,

U(∆) = (
∂ l(∆)

∂σ
,

∂ l(∆)

∂ µ
,

∂ l(∆)

∂k
)T .

∂ l (∆)

∂ µ
=
−nk

µ
+

kσ

µ

n

∑
i=1

(
xi

µ

)k

+
πkσ

2µ

n

∑
i=1

(
xi

µ

)k

e

(
−σ
(

xi
µ

)k
)

tan[
π

2
(1− e

(
−σ
(

xi
µ

)k
)

)],

∂ l (∆)

∂σ
=

n

σ
−

n

∑
i=1

(
xi

µ

)k

− π

2

n

∑
i=1

(
xi

µ

)k

e

(
−σ
(

xi
µ

)k
)

tan[
π

2
(1− e

(
−σ
(

xi
µ

)k
)

)],

∂ l (∆)

∂k
= n(

1

k
−log(µ ))+

n

∑
i=1

log(xi) −
n

∑
i=1

σ

(
xi

µ

)k

log

(
xi

µ

)
−−− πσ

2

n

∑
i=1

(
xi

µ

)k

e

(
−σ
(

xi
µ

)k
)

×log

(
xi

µ

)
tan[

π

2
(1− e

(
−σ
(

xi
µ

)k
)

].
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The maximum likelihood estimators (MLEs) are the solution of the nonlinear equations denoted by ∆̂ is obtained by

solving the nonlinear equation (
∂ l(∆)

∂σ
,

∂ l(∆)

∂ µ
,

∂ l(∆)

∂k
)T = 0, using a numerical method such as Newton-Raphson

procedure. The Fisher information matrix is given by I(∆) = [Iθi,θ j
]3×3 = E(− ∂ 2l

∂θi∂θ j
), i, j = 1,2,3. The total Fisher

information matrix nI(∆ ) can be approximated by

Jn(∆̂ )≈
[
− ∂ 2l

∂θi∂θ j

|∆=∆̂

]

3×3

, i, j = 1,2,3. (26)

The matrix given in Eq.(26) is obtained after the Newton-Raphson process has converged for a given set of observations.

Expectations of Fisher’s information matrix (FIM) can be obtained numerically. Let ∆̂ = (σ̂ , µ̂ , k̂) be the maximum
likelihood estimate of ∆ = (σ ,µ ,k). Under the normal regularity conditions and that the parameters are in the interior of

the parameter space, but not on the boundary, we have:
√

n(∆̂ −∆) d−→ N3(0, I
−1(∆)), where I(∆ ) is the expected Fisher

information matrix. The asymptotic behavior is still valid if I(∆ ) is replaced by the observed information matrix

evaluated at ∆̂ , that is J(∆̂). The multivariate normal distribution N3(0,J
−1(∆)), where the mean vector 0 = (0,0,0)T ,

and J−1(∆̂) is the observed Fisher information matrix evaluated at ∆̂ , can be used to construct confidence intervals and
confidence regions for the individual model parameters and for the survival and hazard rate functions. That is, the

approximate 100(1−ϕ)% two-sided confidence intervals for σ , µ and k are σ̂ ± Z ϕ
2

√
I−1
σσ (∆̂ ), µ̂ ±Z ϕ

2

√
I−1
µµ(∆̂ ), and

k̂±Z ϕ
2

√
I−1
kk (∆̂ ), respectively, where I−1

σσ (∆̂), I−1
µµ(∆̂ ) and I−1

kk (∆̂ ), are the diagonal elements of I−1
n (∆̂ ) = (nI(∆̂))−1, and

Z ϕ
2

is the upper (ϕ
2
)th percentile of a standard normal distribution.

7 Simulation Study

This section will present simulation results for n = 30, 50, 100, 300, 400, 600, and 800 samples to assess the accuracy and
consistency of MLEs for each parameter of the distribution of S-EP using Monte Carlo simulation. The R programming
language with the argument method “L-BFGS-B” is used to run simulations. The actual values of the parameters as
follows: (σ ,µ ,k) = (0.2, 0.5, 3), (0.7, 0.5, 4),(0.1,3.5,0.5) and (1.5, 3, 0.5). Repeated simulations of N = 1000 times
were performed, evaluating the mean estimates, average bias (Abias) and root mean squared error (RMSE). For consistent
MLEs, it is expected that as the sample size n increases, the mean estimates gets closer to the true parameters and, the
RSMEs and Abias also decay to zero. Tables 3 and 4 show the mean estimates together with their respective RSMEs and

Abias. The Abias and RMSEs for the estimated parameter, say, θ̂ are respectively given as:

Abias
(

θ̂
)

=
∑N

i=1 θ̂i

N
−θ and RMSE

(
θ̂
)

=

√
∑N

i=1 (θ̂i−θ )
2

N

From the results in Table 3 and 4 we conclude that estimation method is adequate as the simulated estimates are closed
to the true values of parameters. We also observed that estimated root mean square errors (RMSEs) consistently decreases
with increasing sample size and the average bias decreases as the sample size n increases.

8 Applications

Four real data applications are shown in this section to demonstrate the flexibility of S-EP distribution compared with other
existing distributions.The new S-EP distribution was compared to Exponential Pareto (EP) distribution, New Weibull-
Pareto (NWP) distribution, sine Exponential (S-E) distribution, Exponential (E) distribution, Sine Half-Logistic Inverse
Rayleigh (S-HLIR) distribution, Sine Lindley (S-L) distribution and Sine Modified Lindley (S-ML) distribution. With the
following PDF
The Exponential Pareto (EP) distribution

f (x;σ ,µ) =
σkxk−1

µk
e

(
−−−σ
(

x
µ

)k
)

The new Weibull-Pareto (NWP) distribution [24]
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(0.2,0.5,3) (0.7,0.5,4)

Parameter Size Mean RMSE Abias Mean RMSE Abias

σ 30 0.2450911 0.07167169 0.045091062 1.0340214 0.6055962 0.3340215

50 0.2361332 0.05872181 0.036133179 0.9583074 0.4510855 0.2583074

100 0.2261253 0.04010630 0.026125342 0.8888830 0.3319789 0.1888830

300 0.2163265 0.02614697 0.016326468 0.8153148 0.1982788 0.1153148

400 0.2157181 0.02350279 0.015718108 0.8005841 0.1716874 0.1005841

600 0.2122519 0.01881200 0.012251862 0.7817111 0.1429706 0.0817111

800 0.2115609 0.01710020 0.011560870 0.7761191 0.1351243 0.0761191

µ 30 0.5343876 0.05558445 0.034387641 0.5357069 0.0520179 0.0357069

50 0.5272853 0.04390810 0.027285319 0.5311114 0.0460026 0.0311114

100 0.5212184 0.03302626 0.021218416 0.5249413 0.0367815 0.0249413

300 0.5141166 0.02297605 0.014116641 0.5174863 0.0261347 0.0174863

400 0.5127097 0.02049589 0.012709730 0.5154899 0.0233200 0.0154899

600 0.5095906 0.01631827 0.009590613 0.5126437 0.0198133 0.0126437

800 0.5091206 0.01495196 0.009120570 0.5121953 0.0191907 0.0121953

k 30 3.1496487 0.49504710 0.149648700 4.1879039 0.6708503 0.1879039

50 3.0796932 0.35328182 0.079693187 4.0983997 0.5024887 0.0983997

100 3.0527250 0.24778273 0.052725000 4.0599054 0.3258629 0.0599054

300 3.0200105 0.14097969 0.020010546 4.0233247 0.1849521 0.0233247

400 3.0126430 0.12143441 0.012642977 4.0051984 0.1609323 0.0051984

600 3.0052480 0.09701817 0.005247959 4.0111684 0.1314587 0.0111684

800 3.0051492 0.08891517 0.005149168 4.0016558 0.1199355 0.0016558

Table 3: simulation results from the S-EP distribution

(0.1,3.5,0.5) (1.5, 3, 0.5)

Parameter Size Mean RMSE Abias Mean RMSE Abias

σ 30 0.1045513 0.03777537 0.00455127 1.6286118 0.3552606 0.1286118

50 0.1051240 0.03051245 0.00512396 1.5847376 0.2446279 0.0847376

100 0.1026655 0.01978007 0.00266553 1.5540661 0.1700121 0.0540660

300 0.1022413 0.01279401 0.00224129 1.5181415 0.0882373 0.0181415

400 0.1022445 0.01071934 0.00224449 1.5252732 0.0783169 0.0252732

600 0.1017690 0.00850948 0.00176901 1.5140017 0.0634229 0.0140017

800 0.1015443 0.00786234 0.00154429 1.5088827 0.0641809 0.0088827

µ 30 3.4982486 0.06700761 -0.0017514 2.9812699 0.1333470 -0.018730

50 3.4954476 0.08147722 -0.0045524 2.9928362 0.1011073 -0.007164

100 3.5004942 0.08877552 0.0004942 3.0010284 0.0858786 0.0010284

300 3.4990742 0.07276937 -0.0009258 3.0037909 0.0487038 0.0037909

400 3.5052354 0.08164894 0.00523539 3.0018513 0.0355535 0.0018513

600 3.5063684 0.07444357 0.00636839 3.0102425 0.0604417 0.0102425

800 3.5071606 0.07377153 0.00716059 3.0029058 0.0261768 0.0029058

k 30 0.5213434 0.07914699 0.02134342 0.5396932 0.087118 0.0396932

50 0.5075420 0.05780914 0.00754201 0.5268334 0.065129 0.0268334

100 0.5015904 0.03759643 0.00159044 0.5196839 0.043301 0.0196839

300 0.4955081 0.02049841 0.00449191 0.5142159 0.025631 0.0142159

400 0.4943441 0.01783521 -0.00565594 0.5100009 0.022199 0.0100009

600 0.4958552 0.01391259 -0.00414477 0.5108516 0.0201986 0.0108517

800 0.4954825 0.01297103 -0.00451749 0.5124547 0.0172848 0.0124547

Table 4: simulation results from the S-EP distribution

f (x;β ,µ ,α) =
β µ

α
(

x

α
)β−1exp(−µ(

x

α
)β

The Sine Exponential (S-E) distribution

f (x;σ) =
π

2
σ e−σxsin

[π

2
e−σx

]
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The Exponential (E) distribution
f (x;σ) = σe

−σx

Sine Half-Logistic Inverse Rayleigh (S-HLIR) distribution[28]

f (x; µ ,α) =
2πµα2x−3e−( α

x )
2

[1− e−(
α
x )

2

]
µ−1

(
1+

[
1− e−(

α
x )

2
]µ)2

cos




π

2




1−
[

1− e−(
α
x )

2
]µ

1+

[
1− e−(

α
x )

2
]µ





 , x,µ ,α > 0

Sine Lindley (S-L) distribution [19]

f (x;δ ) =
π

2

δ 2

1+ δ
(1+ x)e−δxsin

(
π

2

(
1+

xδ

1+ δ

)
e−δx

)
, x,δ > 0

Sine Modified Lindley (S-ML) distribution [29]

f (x;δ ) =
π

2

δ

1+ δ
e−2δx[(1+ δ )eδx + 2xδ − 1]sin

(
π

2

(
1+ e−δx xδ

1+ δ

)
e−δx

)
, x,δ > 0

R software was used to execute model parameter estimations and goodness-of-fit measures, and the results were used
to compare the S-EP distribution with other existing models. Tables 5, 7, 9 and 11 provide an overview of descriptive
statistics measures, and Figures 4, 9, 14 and 19 show box and TTT plots.The box plot gives a visual representation of the
descriptive measures of the data and the TTT plot, proved useful for gaining information about the hazard form of the
data. In many real-world situations, there is qualitative information about the shape of the failure rate function that might
help in the selection of a particular distribution. The TTT plot has a convex shape for decreasing HRF and a concave
shape for increasing HRF. Fitted densities and empirical CDF plots in Figures 5, 10, 15 and 20. Figures 6, 11, 16 and 21
show Kaplan-Meier and HRF plot. And probability plot in Figures 8, 13, 18 and 23. The estimated values of the model
parameters along with the corresponding standard errors (SE) and the goodness of fit (GOF) of the S-E, EP, E, S-HLIR, S-
PL and S-ML, have been introduced using different comparison measures as we consider some criteria including Bayesian
information criterion (BIC), Akaike Information criterion (AIC), along with Anderson Darling statistic (A∗), Cramér-von
Mises statistic (w∗) and Kolmgrov–Smirnov statistic (Dn) with its correspondig p-value for the blood cancer, 1.5 cm glass
fibres dataset , Bladder cancer dataset and the polyester fibers dataset in tables 6, 8, 10 and 12.

Data Set 1: Blood cancer dataset
The life time (in years) of 40 patients with blood cancer (leukemia) from one of the Saudi Arabian Ministry of Health
institutions is what makes up this data.[17]. This actual data are: 0.315, 0.496, 0.616, 1.145,1.208, 1.263, 1.414, 2.025,
2.036, 2.162, 2.211, 2.370, 2.532, 2.693, 2.805, 2.910, 2.912, 3.192, 3.263, 3.348, 3.348, 3.427, 3.499, 3.534, 3.767,
3.751, 3.858, 3.986, 4.049, 4.244, 4.323, 4.381, 4.392, 4.397, 4.647, 4.753, 4.929, 4.973, 5.074, 5.381.

Figures 5, 6 and 8 illustrates how best the S-EP distribution fits the blood cancer data and Figure 7(a), 7(b) and 7(c)
illustrates profile plots of the MLEs of σ , µ and k. It can be observed that the parameters for the blood cancer data
attained their absolute maximum. The fitted density shows that S-EP distribution can accommodate skewed data. The
estimated variance-covariance matrix for S-EP model in blood cancer data is given by




6.51× 10−4 −0.0076 −7.53× 10−5

−7.61× 10−3 0.10692 8.79× 10−4

−7.53× 10−5 0.00088 8.71× 10−6




and the 95% confidence intervals for the model parameters are given by σ ∈ [ 0.0718∓ 0.050], µ ∈ [ 1.491∓ 0.00578]
and k ∈ [2.398∓ 0.64089]

mean Median Skewness kurtosis

3.141 3.348 -0.4331 2.586

Table 5: Descriptive statistics of the blood cancer dataset.
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Fig. 4: Box plot and TTT plot for the blood cancer dataset.
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Fig. 6: Kaplan-Meierand and hrf plot for the blood cancer data set.
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Fig. 7: Profile log-likelihood functions for the blood cancer data (a–c).
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Fig. 8: Probability plot for the blood cancer dataset.
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Distribution Parameter Estimate SE -2logl AIC BIC A* W* Dn P-Value

S-EP σ 0.07187 0.02552 138.37 144.4 149.43 0.705 0.1072 0.1107 0.7112

k 2.39819 0.32699

µ 1.49089 0.00295

S-E σ 0.18156 0.02652 167.89 169.9 171.58 1.407 0.2276 0.2897 0.0024

EP σ 0.42244 0.08103 139.12 145.1 150.2 0.773 0.1187 0.1184 0.629

k 2.49949 0.33706

µ 2.49246 0.03433

E σ 0.31839 0.05034 171.56 173.56 175.25 1.496 0.2434 0.3002 .00148

NWP β 2.4994896 0.3370598 139.12 145.12 150.18 0.7729 0.1187 0.1184 0.6291

µ 0.0791531 0.0323587

α 1.2754098 0.0050198

S-HLIR µ 0.40112 0.06296 183.73 187.7 191.1 4.227 0.7629 0.3138 0.0008

α 0.91847 0.13216

S-L δ 0.359289 0.035991 155.165 157.17 158.85 1.1451 0.18193 0.2198 0.04199

S-ML δ 0.2428 0.0253 152.63 154.6 156.32 1.249 0.1998 0.1938 0.0993

Table 6: MLE’s of the parameters, SE and GOF metrics of the blood cancer dataset.

The TTT plot of the blood cancer dataset is displayed in Figure 4. It shows an increasing HRF plot. Moreover, analysis
of the data set implies that the (S-EP) distribution is the best model among the other competitive models, when statistical
GOF criteria and the increasing HRF are considered. From the results in Table 6, S-EP model performed better than any
other model. It had the lowest values for -2logl, AIC, BIC, A∗,W ∗ and Dn, as well as the highest p-value when compared
to competing models across for the blood cancer data.

Data Set 2: 1.5 cm glass fibres dataset
The 1.5 cm glass fibre strength data obtained by the workers of the National Physical Laboratory of the United Kingdom
are now being used. They were previously analyzed by [20]. The data are: 0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04,
1.11, 1.13, 1.30,1.25, 1.27, 1.28, 1.29, 1.48, 1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53,
1.54,1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68,1.68, 1.69,
1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84, 2.00, 2.01, 2.24.

Figures 10, 11 and 13 illustrates how best the S-EP distribution fits the 1.5 cm glass fibres data and Figure 12(a), 12(b) and
12(c) illustrates profile plots of the MLEs of σ , µ and k. It can be observed that the parameters for 1.5 cm glass fibres data
reached absolute maximum. The fitted density shows that S-EP distribution can accommodate skewed data. The estimated
variance-covariance matrix for S-EP model in 1.5 cm glass fibres data is given by




4.499 ∗ 10−5 0.003389 −0.000935

3.389 ∗ 10−3 0.310236 −0.070431

−9.35 ∗ 10−4 −0.070431 0.0194345




and the 95% confidence intervals for the model parameters are given by σ ∈ [10.34 ∓0.01315], µ ∈ [2.75 ∓0.27324]and
k ∈ [5.53∓ 1.091698]

mean Median Skewness kurtosis

1.507 1.59 -0.89993 0.92376

Table 7: Descriptive statistics of 1.5 cm glass fibres dataset.
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Fig. 9: Box plot and TTT plot for the 1.5 cm glass fibers dataset.
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Fig. 10: Fitted densities and empirical CDF plots for the 1.5 cm glass fibres dataset.
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Fig. 11: Kaplan-Meier and hrf plot for the 1.5 cm glass fibres dataset.
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Fig. 12: Profile log-likelihood functions for the 1.5 cm glass fibres data (a–c).
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Fig. 13: Probability plot for the 1.5 cm glass fibres dataset.
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Distribution Parameter Estimate SE -2logl AIC BIC A* W* Dn P-Value

S-EP σ 10.34147 0.006708 29.404 35.40 41.834 1.197 0.2175 0.1473 0.1301

k 5.529111 0.556989

µ 2.751241 0.139408

S-E σ 0.38293 0.04427 169.96 171.9 174.10 3.047 0.5555 0.4166 6.3∗10−10

EP σ 2.01165 0.00636 30.414 36.41 42.84 1.304 0.2372 0.1522 0.1078

k 5.78070 0.576094

µ 1.837368 0.040255

E σ 0.663657 0.083612 177.66 179.7 181.80 3.127 0.5702 0.418 5.5*10−10

NWP β 5.780701 0.576094 30.414 36.41 42.84 1.3037 0.2372 0.15224 0.1078

µ 0.296058 0.022440

α 1.318981 0.029116

S-HLIR µ 4.17499 1.03164 55.035 59.03 63.321 3.576 0.6569 0.2406 0.00136

α 1.99707 0.14092

S-L δ 0.678144 0.055365 151.21 153.21 155.36 2.837 0.5169 0.38305 1.9*10−8

S-ML δ 0.49009 0.04122 139.61 141.6 143.8 2.897 0.5276 0.3586 1.8*10−7

Table 8: MLE’s of the parameters, SE and GOF metrics measures of the 1.5 cm glass fibres dataset.

The TTT plot of the 1.5 cm glass fibres data set is displayed in Figure 9. It shows an increasing HRF plot. In
addition, analysis of the data set shows that the evaluated model (S-EP) is the best model throughout all elements of the
model selection criteria, such as the increasing hazard function. We can observe from Table 8, that the S-EP distribution
has minimum values for the test statistics with a higher p-value and least values for GOF metrics.

Data Set 3: Bladder cancer dataset

In 36 cases of bladder cancer, a series of data on the duration (months) of remission was reported in [14] given by:
0.08, 0.2, 0.4, 0.5, 0.51, 0.81, 0.87, 0.9, 1.05, 1.19, 1.26, 1.35, 1.4, 1.46, 1.76, 2.02, 2.02,2.07, 2.09, 2.23, 2.26, 2.46, 2.54,
2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.02, 3.25, 3.31, 3.36, 3.36.

Figures 15, 16 and 18 illustrates how best the S-EP distribution fits the blood cancer dataand Figure 17(a), 17(b) and 17(c)
illustrates profile plots of the MLEs of σ , µ and k. It is clear that the parameters have reached their absolute maximum
for the bladder cancer data. The fitted density shows that S-EP distribution can accommodate skewed data. The estimated
variance-covariance matrix for S-EP model in blood cancer data is given by




0.0032542 −0.010226 −0.001212
−0.010226 0.0753008 0.0038089
−0.001212 0.0038089 0.0004514




and the 95% confidence intervals for the model parameters are given by σ ∈ [0.3151 ∓ 0.1118091],
µ ∈ [1.5912∓ 0.0416439]and k ∈ [1.8808∓ 0.5378436]

mean Median Skewness kurtosis

1.94 2.08 -0.309 2.147

Table 9: Descriptive statistics of the bladder cancer dataset.
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Fig. 14: Box plot and TTT plot for the bladder cancer dataset.
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Fig. 15: Fitted densities and empirical CDF plots for the bladder cancer dataset.
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Fig. 16: Kaplan-Meier and hrf plot for the bladder cancer dataset.
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Fig. 17: Profile log-likelihood functions for the bladder cancer data (a–c).
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Fig. 18: Probability plot of the bladder cancer dataset.
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Distribution Parameter Estimate SE -2logl AIC BIC A* W* Dn P-Value

S-EP σ 0.315112 0.0571 102.09 108.09 112.84 0.915 0.1508 0.1578 0.332

k 1.88087 0.2744

µ 1.591223 0.021247

S-E σ 0.29213 0.0451 116.98 118.98 120.56 1.301 0.2151 0.2277 0.0479

EP σ 0.86694 0.0913 102.77 108.99 113.74 0.937 0.1545 0.1864 0.1637

k 1.95698 0.2816

µ 2.01217 0.0769

E σ 0.51546 0.0859 119.71 121.71 123.29 1.371 0.2268 0.2303 0.0439

NWP β 1.95698 0.281594 102.77 108.77 113.52 0.966 0.1592 0.1659 0.2752

µ 0.19627 0.055135

α 0.941901 0.022483

S-HLIR µ 0.22064 0.04024 153.77 157.77 160.93 4.189 0.7492 0.3213 0.0012

α 0.23836 0.03558

S-L δ 0.537571 0.057979 109.64 111.64 113.22 1.1135 0.1842 0.20116 0.1086

S-ML δ 0.37974 0.04267 107.83 109.83 111.14 1.161 0.1928 0.1909 0.1448

Table 10: MLE’s of the parameters, SE and GOF metrics measures of the of the bladder cancer dataset.

The TTT plot of the bladder cancer data set in Figure 14 displays increasing HRF that indicates the appropriateness
of the S-EP distribution to fit the data sets. In Table 10, we compare the S-EP model with the S-E, EP,E, NWP, S-HLIR,
S-L and S-ML distributions. Its noted that the proposed model has the lowest values for the AIC, A∗,W ∗ and Dn statistics
among all fitted models (except BIC for the S-ML), as well as the highest p- value. So, the S-EP can be chosen as the
best model among the competing distributions studied in this article.

Data Set 4: polyester fibers
The fourth data set includes 30 tensile strength measurements of polyester fibers, which has been discussed by [21]. The
data are: 0.023, 0.032, 0.054, 0.069, 0.081, 0.094, 0.105, 0.127, 0.148, 0.169, 0.188, 0.216, 0.255, 0.277, 0.311, 0.361,
0.376, 0.395, 0.432, 0.463, 0.481, 0.519, 0.529, 0.567, 0.642, 0.674, 0.752, 0.823,0.887, and 0.926.

Figures 20, 21 and 23 illustrate how best the S-EP distribution fits the the polyester fibers datase data and Figure 22(a),
22(b) and 22(c) illustrates profile plots of the MLEs of σ , µ and k. It is clear that the parameters for polyester fibers
data attained the absolute maximum. The fitted density shows that S-EP distribution can accommodate skewed data. The
estimated variance-covariance matrix for S-EP model in the polyester fibers data is given by




0.02582 0.02548 −0.07127
0.02548 0.03663 −0.07033
−0.07127 −0.07033 0.196757




and the 95% confidence intervals for the model parameters are given by σ ∈ [4.512∓ 0.3149], µ ∈ [2.062∓ 0.8694]and
k ∈ [1.262∓ 0.3751]

mean Median Skewness kurtosis

0.3659 0.336 0.5756 2.651

Table 11: Descriptive statistics of the polyester fibers dataset.
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Fig. 19: Box plot and TTT plot of the polyester fibers dataset
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Fig. 20: Fitted densities and empirical CDF plots of the polyester fibers dataset.
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Fig. 21: Kaplan-Meier and hrf plot of the polyester fibers dataset.
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Fig. 22: Profile log-likelihood functions of the polyester fibers dataset (a–c).
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Fig. 23: Probability plot of the polyester fibers dataset.
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Distribution Parameter Estimate SE -2logl AIC BIC A* W* Dn P-Value

S-EP σ 4.51183 0.16068 -3.505 2.4955 6.6991 0.23056 0.03467 0.08011 0.9822

k 1.26153 0.19140

µ 2.06181 0.44357

S-E σ 1.52980 0.26149 -1.371 0.62899 2.03019 0.26984 0.04188 0.1183 0.7516

EP σ 7.707762 0.074957 -3.503 2.4969 6.7005 0.2358 0.03586 0.08619 0.965

k 1.32536 0.19747

µ 1.85236 0.41338

E σ 2.73324 0.49902 -0.3292 1.6708 3.0720 0.2873 0.04507 0.12719 0.6701

NWP β 1.32536 0.19747 -3.503 2.49685 6.7005 0.2358 0.03587 0.08619 0.965

µ 0.89579 0.01530

α 0.36515 0.04975

S-HLIR µ 0.26899 0.04441 13.528 17.528 20.330 1.5162 0.24495 0.20688 0.1327

α 0.04981 0.00943

S-L δ 2.0964 0.2828 -2.110 -0.1103 1.2909 0.24889 0.03813 0.10813 0.8376

S-ML δ 1.7535 0.24548 -2.723 -0.7231 0.67806 0.2504 0.03793 0.09309 0.9358

Table 12: MLE’s of the parameters ,SE and GOF metrics measures of the polyester fibers dataset.

Figure 19 shows the TTT plot of this data set. It illustrates an increasing HRF plot. In Table 12, we compare the S-EP
model with the S-E, EP,E, NWP, S-HLIR, S-L and S-ML distributions. Its noted that the proposed model has the lowest
values for the A∗,W ∗ and Dn statistics among all fitted models (except AIC and BIC for the S-ML), as well as the highest
p value. So, the S-EP can be chosen as the best model among the competing distributions studied in this article.

9 Concluding

In this paper, we proposed a new model, which is called the S-EP model. Some basic statistical properties of the S-EP
model are studided such as moments,moment generating function, quantile functions, entropies and order statistics. The
maximum likelihood method is used to estimate the distribution.The performance of the S-EP distribution was examined
by conducting Monte Carlo simulations for different sizes. Finally, The S-EP model surpasses other well-known
competitor models like the S-E, EP,NWP ,E, S-HLIR, S-L and S-ML models in terms of fit, according to applications to
four real datasets.
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