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Abstract: This article explores solutions for boundary value problems of nonlinear fractional differential equations with fractional inte-
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1 Introduction and Preliminaries

In the early 21st century, the exploration of nonlinear fractional differential equations (NLFDE) with fractional integral
boundary conditions (FBC) has become a prominent focus within the mathematical community. This burgeoning field,
characterized by its nuanced investigation of complex mathematical structures, has captured widespread attention due to
its versatile applications across various scientific disciplines.

The study of NLFDE with FBC has gained significance for its intrinsic relevance in modeling systems characterized by
profound nonlinearity, with notable applications in chaotic processes [2], [4], [1], [6], [11], [14], and [16]. Its implications
extend to diverse areas, including neuronal networks, epidemiological models, and meteorological systems, highlighting
its far-reaching impact.

Beyond pure mathematics, the importance of NLFDE with FBC resonates across mathematical physics, engineering
sciences, and computational mathematics [5], [7], [8], [12], and [17]. The involvement of derivatives of nonlinear orders
beyond unity equips these equations with a robust framework, offering a sophisticated approach to elucidate intricate
phenomena in various scientific disciplines. For further details, refer to [3], [5], [7], [12], [13], [17], and the references
therein.

Central to the efficacy of NLFDE with FBC are fractional integral boundary conditions [9], [12], [16], [17], and [19].
These unique conditions, involving integration with respect to fractional order on the boundary region, play a pivotal role
in describing systems characterized by memory, relaxation, diffusion phenomena, and other complex dynamics. Their
applications span a broad spectrum, addressing scenarios where conventional boundary conditions fall short.

In the following, we synthesize recent contributions, providing a succinct yet comprehensive summary of pertinent
research articles. This endeavor aims to contribute to the ongoing discourse on solutions to diverse nonlinear fractional
boundary value problems.
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Zhang [19] studied the existence and multiplicity of positive solutions for the nonlinear fractional boundary value
problem with Caputo’s fractional derivative:

Dα
0+

y(ζ )+ f (ζ ,y(ζ )) = 0, ζ ∈ (0,1) ,1 < α < 2,
y(0)+ y′(0) = 0, y(1)+ y′(1) = 0,

where Dα
0+

is the standard Riemman fractional derivative operator of fractional order α , and f : J×R → R is a continuous
function.

Maamar et al. [16] studied the sufficient conditions for the existence of solutions for the following boundary value
problem involving a nonlinear fractional differential equation:

Dα
0+

y(ζ ) = f (ζ ,y(ζ )) = 0, ζ ∈ [0,1] , 2 < α ≤ 3,

Dα−1
0+

y(0) = 0, Dα−2
0+

y(1) = 0, y(1) = 0,

where Dα
0+

is the standard Riemman fractional derivative operator of fractional order α , and f : J×R → R is a continuous
function.

In [17], the authors investigate the existence of solutions for the Caputo fractional differential inclusion with nonlocal
integral boundary value conditions

cDα
0+

y(ζ ) ∈ f (ζ ,y(ζ ), cD
β
0+

y(ζ ) ,y′ (ζ )), ζ ∈ [0,1] ,

y(0)+ y′ (0)+ cD
β
0+

y(0) =
∫ η

0 y(υ)dυ ,

y(1)+ y′ (1)+ cD
β
0+

y(1) =
∫ ν

0 y(υ)dυ ,

where cDα
0+

and cD
β
0+

are Caputo fractional derivatives of fractional orders α and β respectively, and f : [0,1]×R3 → 2R

is a compact valued multifunction.
Motivated by the above-mentioned works, the present paper aims to study the existence and uniqueness of solutions

for the following nonlinear implicit fractional differential equations (NLIFDE) with integral boundary conditions:

Dα
0+y(ζ ) = f (ζ ,y(ζ ),D

β
0+

y(ζ ),

∫ ζ

0
k(ζ ,υ)Dα

0+y(υ)dυ), ζ ∈ [0,1] ,0 < β ≤ 1,2 < α ≤ 3, (1)

subjected to the following three integral boundary conditions with fractional derivatives:

y(0)+Dα−1
0+

y(1) = σ1

∫ 1
0 h1 (υ ,y(υ))dυ ,

Dα−1
0+

y(0)+Dα−2
0+

y(1) = σ2

∫ 1
0 h2 (υ ,y(υ))dυ ,

Dα−2
0+

y(0)+Dα−3
0+

y(1) = σ3

∫ 1
0 h3 (υ ,y(υ))dυ ,

where ζ ∈ J = [0,1], Dα
0+

and D
β
0+

denote the standard Riemann-Liouville fractional derivative of orders α ∈ (2,3] and

β ∈ (0,1], f : J ×R3 → R, and hi : J×R → R (i = 1,2,3) are continuous functions.
The given boundary value problem (BVP) involves a system of three coupled equations, with Equation (1) being a

fractional differential equation incorporating Riemann-Liouville fractional derivatives of orders α and β . The equation
describes the rate of change of the function y(ζ ) over the interval [0,1] and involves a function f that depends on ζ , y(ζ ),

D
β
0+

y(ζ ), and an integral term with a memory kernel function k(ζ ,υ) affecting past values of y(ζ ). The BVP also consists
of three integral boundary conditions involving the functions h1, h2, and h3 at the endpoints of the interval. Solving this
complex BVP requires understanding the fractional derivatives, the nonlinear function f , and the memory kernel k, along
with analyzing the behavior of y(ζ ) and its derivatives at the boundary points based on the functions h1, h2, and h3. This
problem is challenging and likely necessitates specialized techniques for fractional calculus to study the solutions that
satisfy both the differential equation and the integral boundary conditions.

In our study, the integral boundary conditions are interpreted as constraints on the behavior of the solution function at
the boundary points. The terms involving fractional derivatives capture the rate of change of the solution, while the integral
terms with continuous functions h1, h2, and h3 encapsulate the influence of the solution’s past values. This interpretation
aligns with the dynamic nature of the nonlinear system under consideration, emphasizing the intricate interplay between
the solution and the integral kernel functions.

The article is structured as follows: In the first section, a summary of recent research articles relevant to the study
is presented, alongside the research’s objective. Moving on to the second section, the necessary background information
and prerequisites for the work are introduced. Section three delves into the examination of solutions for boundary value
problems of nonlinear fractional differential equations with fractional integral boundary conditions. This investigation
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involves the application of Banach’s and Krasnoselskii’s fixed point theorems to establish the existence and uniqueness of
solutions. Additionally, the fourth section includes a practical numerical example to illustrate the practical application of
the acquired findings. Finally, the fifth section serves as a conclusive summary of the research’s outcomes.

In the subsequent text, we present certain symbols, definitions, lemmas, and theorems that serve as foundational
elements for our study. These essential concepts can be referenced in [10], [15], [18], and related sources.

Definition 1.[18] Let α > 0, J = [a,b] be an interval such that −∞ < a < ζ < b <+∞, x ∈ L1 (J,R). Then, the Riemann-

Liouville fractional integral of x(ζ ) with order α is defined as:

Iα
a+x(ζ ) =

1

Γ (α)

∫ ζ

a
(ζ −υ)α−1x(υ)dυ ,

where Γ is the Euler gamma function defined by Γ (α) =
∫+∞

0 ζ α−1e−ζ dζ .

Definition 2.[18] Let n ∈ N, J = [a,b] be an interval such that −∞ < a < ζ < b <+∞, x ∈Cn (J,R). Then, the Riemann-

Liouville fractional derivative of order α , where n = [α]+ 1 such that [α] denotes the integer part of α is defined by

Dα
a+x(ζ ) =

1

Γ (n−α)

(

d

dζ

)n ∫ ζ

a
(ζ −υ)n−α−1x(υ)dυ .

It is important to note that in order to investigate the existence of solutions for a fractional differential equation, it is
necessary to convert it into an equivalent integral equation utilizing the essential properties of Iα

a+
and Dα

a+
, see [18].

Lemma 1. [15] If n− 1 < α < n and u ∈C(J,R), then

I α
0+D

α
0+u(ζ ) = u(ζ )− c1ζ α−1 + c2ζ α−2 + c3ζ α−3 + · · ·+ cnζ α−n, ζ ∈ J.

Theorem 1. [15] (Banach’s Fixed Point Theorem) If (X ,‖.‖) represents a Banach space and ℘ : X → X is a contraction

mapping on X, then there exists a unique fixed point x ∈ X satisfying ℘(x) = x.

Theorem 2. [10] (Krasnselskii’s fixed point theorem) Let S be a closed, convex, and non-empty subset of a Banach space

X. Assume that ℘1 and ℘2 are mappings from S to X with the following properties:

1. For all u,v ∈ S , ℘1u+℘2v ∈ S .

2. ℘1 is a contraction mapping.

3. ℘2 is continuous, and the image ℘2 (S ) is contained within a compact set.

Under these conditions, there exists at least one element u ∈ S such that ℘1u+℘2u = u.

2 Main Results

Our exploration of solutions for nonlinear fractional differential equations with fractional integral boundary conditions
has yielded significant findings. Applying Banach’s and Krasnoselskii’s fixed point theorems in this section, we establish
both the existence and uniqueness of solutions.

Definition 3. A function u∈C(J,R) is considered a solution to the fractional differential equation (NIFDE) (1) if it fulfills

the following fractional differential equation:

Dα
0+y(ζ ) = f (ζ ,y(ζ ),D

β
0+

y(ζ ),

∫ ζ

0
k(ζ ,υ)Dα

0+y(υ)dυ), ζ ∈ [0,1] ,0 < β ≤ 1,2 < α ≤ 3,

with the following boundary conditions:

y(0)+Dα−1
0+

y(1) = σ1

∫ 1
0 h1 (υ ,y(υ))dυ ,

Dα−1
0+

y(0)+Dα−2
0+

y(1) = σ2

∫ 1
0 h2 (υ ,y(υ))dυ ,

Dα−2
0+

y(0)+Dα−3
0+

y(1) = σ3

∫ 1
0 h3 (υ ,y(υ))dυ ,
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Lemma 2. Assume that 2 < α ≤ 3, and let f : J ×R
3 → R be a continuous function. A function y(ζ ) defined on J is

considered a solution to the nonlinear implicit fractional differential equation (NIFDE) given by (1) if and only if it

satisfies the conditions specified by the following fractional integral equation:

y(ζ ) =

ζ α−3

(

7σ1

∫ 1
0 h1 (υ ,y(υ)) dυ − 4σ2

∫ 1
0 h2 (υ ,y(υ)) dυ + 2σ3

∫ 1
0 h3 (υ ,y(υ)) dυ

−7
∫ 1

0 u(υ)dυ + 4
∫ 1

0 (1−υ)u(υ)dυ − ∫ 1
0 (1−υ)2u(υ)dυ

)

2Γ (α − 2)
(2)

+
ζ α−2

(

−2σ1

∫ 1
0 h1 (υ ,y(υ)) dυ +σ2

∫ 1
0 h2 (υ ,y(υ)) dυ + 2

∫ 1
0 u(υ)dυ − ∫ 1

0 (1−υ)u(υ)dυ
)

Γ (α − 1)

+
ζ α−1

(

σ1

∫ 1
0 h1 (υ ,y(υ)) dυ − ∫ 1

0 u(υ)dυ
)

Γ (α)

+

∫ ζ
0 (ζ −υ)α−1u(υ)dυ

Γ (α)
.

Proof. Let y(ζ ) be a solution to the Nonlinear Implicit Fractional Differential Equation (NIFDE) (1). Define u(ζ ) =

f (ζ ,y(ζ ),I
α−β
0+

y(ζ ),
∫ ζ

0 k(ζ ,υ)Dα
0+

y(υ)dυ). Utilizing Lemma 1, we derive the expression:

y(ζ ) = c1ζ α−1 + c2ζ α−2 + c3ζ α−3 +
1

Γ (α)

∫ ζ

0
(ζ −υ)α−1u(υ)dυ . (3)

Applying the boundary conditions, we obtain the following equations:

c1Γ (α) = σ1

∫ 1

0
h1 (υ ,y(υ))dυ −

∫ 1

0
u(υ)dυ . (4)

2c1Γ (α)+ c2Γ (α − 1) = σ2

∫ 1

0
h2 (υ ,y(υ))dυ −

∫ 1

0
(1−υ)u(υ)dυ . (5)

1

2
c1Γ (α)+ 2c2Γ (α − 1)+ c3Γ (α − 2) = σ2

∫ 1

0
h2 (υ ,y(υ))dυ − 1

2

∫ 1

0
(1−υ)2

u(υ)dυ . (6)

Solving equations (4), (5), and (6) for c1, c2, and c3, we obtain:

c1 =
1

Γ (α)

(

σ1

∫ 1

0
h1 (υ ,y(υ))dυ −

∫ 1

0
u(υ)dυ

)

,

c2 =
1

Γ (α − 1)

(

−2σ1

∫ 1
0 h1 (υ ,y(υ))dυ +σ2

∫ 1
0 h2 (υ ,y(υ))dυ + 2

∫ 1
0 u(υ)dυ

−∫ 1
0 (1−υ)u(υ)dυ

)

,

and

c3 =
1

2Γ (α − 2)

(

7σ1

∫ 1
0 h1 (υ ,y(υ))dυ − 4σ2

∫ 1
0 h2 (υ ,y(υ))dυ + 2σ3

∫ 1
0 h3 (υ ,y(υ))dυ

−7
∫ 1

0 u(υ)dυ + 4
∫ 1

0 (1−υ)u(υ)dυ − ∫ 1
0 (1−υ)2u(υ)dυ

)

.

Substituting these into (3), we obtain:

y(ζ ) =

ζ α−3

(

7σ1

∫ 1
0 h1 (υ ,y(υ)) dυ − 4σ2

∫ 1
0 h2 (υ ,y(υ)) dυ + 2σ3

∫ 1
0 h3 (υ ,y(υ)) dυ

−7
∫ 1

0 u(υ)dυ + 4
∫ 1

0 (1−υ)u(υ)dυ − ∫ 1
0 (1−υ)2u(υ)dυ

)

2Γ (α − 2)

+
ζ α−2

(

−2σ1

∫ 1
0 h1 (υ ,y(υ)) dυ +σ2

∫ 1
0 h2 (υ ,y(υ)) dυ + 2

∫ 1
0 u(υ)dυ − ∫ 1

0 (1−υ)u(υ)dυ
)

Γ (α − 1)

+
ζ α−1

(

σ1

∫ 1
0 h1 (υ ,y(υ)) dυ − ∫ 1

0 u(υ)dυ
)

Γ (α)

+

∫ ζ
0 u(υ)(ζ −υ)α−1 dυ

Γ (α)
.
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On the contrary, assume that y(ζ ) constitutes a solution to the Nonlinear Implicit Fractional Differential Equation (NIFDE)
(2), and this solution can be expressed in the subsequent manner:

y(ζ ) =
ζ α−3

2Γ (α − 2)

(

7σ1

∫ 1
0 h1 (υ ,y(υ)) dυ − 4σ2

∫ 1
0 h2 (υ ,y(υ)) dυ + 2σ3

∫ 1
0 h3 (υ ,y(υ)) dυ

−7
∫ 1

0 u(υ)dυ + 4I2
0+

u(1)− 2I3
0+

u(1)

)

+
ζ α−2

2Γ (α − 1)

(

−2σ1

∫ 1

0
h1 (υ ,y(υ)) dυ +σ2

∫ 1

0
h2 (υ ,y(υ)) dυ + 2

∫ 1

0
u(υ)dυ −I2

0+u(1)

)

+
ζ α−1

Γ (α)

(

σ1

∫ 1

0
h1 (υ ,y(υ)) dυ −

∫ 1

0
u(υ)dυ

)

+I α
0+u(ζ ) .

Thus, we can infer that: Dα
0+

y(ζ ) = u(ζ ), with y(0) +Dα−1
0+

y(1) = σ1

∫ 1
0 h1 (υ ,y(υ))dυ , Dα−1

0+
y(0) +Dα−2

0+
y(1) =

σ2

∫ 1
0 h2 (υ ,y(υ))dυ , and Dα−2

0+
y(0) +Dα−3

0+
y(1) = σ3

∫ 1
0 h3 (υ ,y(υ))dυ . This implies that u(ζ ) indeed satisfies the

conditions of problem (2). This concludes the proof.

Lemma 3. Consider (NIFDE) (1) under the following assumptions:

(H1) The nonlinear function f : J ×R3 → R is continuous and there exist λ ∈C(J,R+) with norm ‖λ‖ such that:

| f (ζ ,u1,u2,u3)− f (ζ ,v1,v2,v3)| ≤ λ (ζ )(|u1 − v1|+ |u2 − v2|+ |u3 − v3|) , ∀ ζ ∈ J, ui,vi ∈ R, and i = 1,2,3.

(H2) The function k(ζ ,υ) is continuous for all (ζ ,υ) ∈ J× J, and there is a positive constant K such that:

max
ζ ,υ∈[0,1]

|k(ζ ,υ)| = K.

(H3) The nonlinear function hi : J ×R → R is continuous and there exist µi ∈C(J,R+) with norm ‖µ‖ such that:

|hi(ζ ,u)−hi(ζ ,v)| ≤ µi(ζ ) |u− v|, ∀ ζ ∈ J,and i = 1,2,3.

Remark 1. From Lemma (3), we deduce the following:

1. From assumption (H1), we have

| f (ζ ,u1,u2,u3)|− | f (ζ ,0,0,0)| ≤ | f (ζ ,u1,u2,u3)− f (ζ ,0,0,0)| ≤ λ (ζ )(|u1|+ |u2|+ |u3|).

Thus, if F = supζ∈J | f (ζ ,0,0,0)|, then | f (ζ ,u1,u2,u3)| ≤ F +λ (ζ ) (|u1|+ |u2|+ |u3|).

2. From assumption (H3), we have for i = 1,2,3 that

|hi(ζ ,u)|− |hi(ζ ,0)| ≤ |hi(ζ ,u)−hi(ζ ,0)| ≤ µi(ζ )|u|.

Thus, if Hi = supζ∈J |hi(ζ ,0)|, then |hi(ζ ,u)| ≤ Hi + µi(ζ )|u|.

Definition 4. Define the operator ℘ : C (J,R)→C (J,R) as follows:

℘(y(ζ )) =

ζ α−3

(

7σ1

∫ 1
0 h1 (υ ,y(υ)) dυ − 4σ2

∫ 1
0 h2 (υ ,y(υ)) dυ + 2σ3

∫ 1
0 h3 (υ ,y(υ)) dυ

−7
∫ 1

0 u(υ)dυ + 4
∫ 1

0 (1−υ)u(υ)dυ − ∫ 1
0 (1−υ)2u(υ)dυ

)

2Γ (α − 2)

+
ζ α−2

(

−2σ1

∫ 1
0 h1 (υ ,y(υ)) dυ +σ2

∫ 1
0 h2 (υ ,y(υ)) dυ + 2

∫ 1
0 u(υ)dυ −

∫ 1
0 (1−υ)u(υ)dυ

)

Γ (α − 1)

+
ζ α−1

(

σ1

∫ 1
0 h1 (υ ,y(υ)) dυ − ∫ 1

0 u(υ)dυ
)

Γ (α)

+

∫ ζ
0 (ζ −υ)α−1u(υ)dυ

Γ (α)
,

where u(υ) ∈C (J,R) satisfies the following implicit fractional equation:

u(ζ ) = f (ζ ,y(ζ ) ,D
β

0+
y(ζ ),

∫ ζ

0
k(ζ ,υ)y(υ)dυ).
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2.1 Existence of Solutions

In the following, we establish the existence of solutions for the Nonlinear Fractional Differential Equation (NIFDE)
defined by (1). Our approach centers on the application of Krasnoselskii’s fixed point theorem.

Theorem 3. Suppose that assumptions (H1)− (H3) hold. If

ℵ1 +ℵ2 < 1, (7)

where

ℵ1 =
σ1(H1 + ‖µ1‖)

|Γ (α)| +
2σ1(H1 + ‖µ1‖)+σ2(H2 + ‖µ2‖)

|Γ (α − 1)| +
7σ1(H1 + ‖µ1‖)+ 4σ2(H2 + ‖µ2‖)+ 2σ3(H3 + ‖µ3‖)

2 |Γ (α − 2)| ,

and

ℵ2 =
14‖λ‖

(

1
Γ (1−β ) +K+ 1

)

3 |Γ (α − 2)| +
5‖λ‖

(

1
Γ (1−β ) +K + 1

)

2 |Γ (α − 1)| +
‖λ‖

(

1
Γ (1−β ) +K + 1

)

|Γ (α)| +
‖λ‖

(

1
Γ (1−β ) +K + 1

)

|Γ (α + 1)| .

Then, (NIFDE) (1) has at least one solution in C [0,1].

Proof. By converting (NIFDE) (1) into a fixed point problem. Define the operator℘ : C(J,R)→C(J,R) by:

℘(y(ζ )) =℘1 (y(ζ ))+℘2 (y(ζ )) , ζ ∈ [0,1] ,

where

℘1 (y(ζ )) =

ζ α−3

(

7σ1

∫ 1
0 h1 (υ ,y(υ)) dυ − 4σ2

∫ 1
0 h2 (υ ,y(υ)) dυ + 2σ3

∫ 1
0 h3 (υ ,y(υ)) dυ

−7
∫ 1

0 u(υ)dυ + 4
∫ 1

0 (1−υ)u(υ)dυ − ∫ 1
0 (1−υ)2u(υ)dυ

)

2Γ (α − 2)

+
ζ α−2

(

−2σ1

∫ 1
0 h1 (υ ,y(υ)) dυ +σ2

∫ 1
0 h2 (υ ,y(υ)) dυ + 2

∫ 1
0 u(υ)dυ − ∫ 1

0 (1−υ)u(υ)dυ
)

Γ (α − 1)

+
ζ α−1

(

σ1

∫ 1
0 h1 (υ ,y(υ)) dυ −

∫ 1
0 u(υ)dυ

)

Γ (α)
,

and

℘2 (y(ζ )) =

∫ ζ
0 (ζ −υ)α−1u(υ)dυ

Γ (α)
,

with

u(ζ ) = f (ζ , y(ζ ), D
β

0+
y(ζ ) ,

∫ ζ

0
k(ζ ,υ)y(υ)dυ).

Let Bρ = {y ∈ C(J,R) : ‖y‖ ≤ ρ} be a closed subset of C [0,1], where ρ is a positive constant satisfying ρ ≥ ℜF
1−(ℵ1+ℵ2)

,

where

ℜ =
14F

3Γ (α − 2)
+

5F

2Γ (α − 1)
+

F

Γ (α)
+

1

Γ (α + 1)
,

ℵ1 =
σ1(H1 + ‖µ1‖)

Γ (α)
+

2σ1(H1 + ‖µ1‖)+σ2(H2 + ‖µ2‖)
Γ (α − 1)

+
7σ1(H1 + ‖µ1‖)+ 4σ2(H2 + ‖µ2‖)+ 2σ3(H3 + ‖µ3‖)

2Γ (α − 2)
,

and

ℵ2 =
14‖λ‖

(

1
Γ (1−β ) +K+ 1

)

3Γ (α − 2)
+

5‖λ‖
(

1
Γ (1−β ) +K+ 1

)

2Γ (α − 1)
+

‖λ‖
(

1
Γ (1−β ) +K+ 1

)

Γ (α)
+

‖λ‖
(

1
Γ (1−β ) +K+ 1

)

Γ (α + 1)
.

Clearly, the space Bρ forms a Banach space equipped with a metric in C [0,1]. The proof can be delineated into three
distinct steps.

Step 1: ℘1y1 +℘2y2 ∈ Bρ for every y1,y2 ∈ Bρ .
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Let y1,y2 ∈ Bρ and ζ ∈ J, we have

|℘1y1 (ζ )+℘2y2 (ζ ) |
≤ |℘1y1 (ζ ) |+ |℘2y2 (ζ ) |

≤
∣

∣ζ α−3
∣

∣

2Γ (α − 2)











7σ1

∫ 1
0 |h1 (υ ,y1 (υ))| dυ + 4σ2

∫ 1
0 |h2 (υ ,y1 (υ))| dυ + 2σ3

∫ 1
0 |h3 (υ ,y1 (υ))| dυ

+7
∫ 1

0 | f (ζ ,y1(ζ ),D
β

0+
y1(ζ ),

∫ ζ
0 k(ζ ,υ)y1(υ)dυ)|dυ

+4
∫ 1

0 |1−υ | | f (ζ ,y1(ζ ),D
β

0+
y1(ζ ),

∫ ζ
0 k(ζ ,υ)y1(υ)dυ)|dυ

+
∫ 1

0 |1−υ |2 | f (ζ ,y1(ζ ),D
β

0+
y1(ζ ),

∫ ζ
0 k(ζ ,υ)y1(υ)dυ)|dυ











+

∣

∣ζ α−2
∣

∣

Γ (α − 1)







+2σ1

∫ 1
0 |h1 (υ ,y(υ)) |dυ +σ2

∫ 1
0 |h2 (υ ,y(υ)) |dυ

+2
∫ 1

0 | f (ζ ,y1(ζ ),D
β

0+
y1(ζ ),

∫ ζ
0 k(ζ ,υ)y1(υ)dυ)|dυ

+
∫ 1

0 |1−υ | | f (ζ ,y1(ζ ),D
β

0+
y1(ζ ),

∫ ζ
0 k(ζ ,υ)y1(υ)dυ)|dυ







+

∣

∣ζ α−1
∣

∣

Γ (α)

(

σ1

∫ 1

0
|h1 (υ ,y(υ))| dυ +

∫ 1

0
| f (ζ ,y1(ζ ),D

β
0+

y1(ζ ),

∫ ζ

0
k(ζ ,υ)y1(υ)dυ)|dυ

)

+
1

Γ (α)

∫ ζ

0
(ζ −υ)α−1| f (ζ ,y2(ζ ),D

β
0+

y2(ζ ),

∫ ζ

0
k(ζ ,υ)y2(υ)dυ)|dυ .

Using Lemma (3) and the aforementioned remark, if we consider the supremum for ζ ∈ [0,1], then

| f (ζ ,y(ζ ),Iα−β y(ζ ),

∫ ζ

0
k(ζ ,υ)y(υ)dυ)| ≤ ‖λ‖(|y(ζ ) |+ |Dβ

0+
y(ζ ))|+ |

∫ ζ

0
k(ζ ,υ)y(υ)dυ)|)+F,

≤ ‖λ‖
(

1+
1

|Γ (1−β )| +K

)

‖y‖+F,

where F = supζ∈J | f (ζ ,0,0,0)|. Thus, for each ζ ∈ [0,1] we have

|℘1y1 (ζ )+℘2y2 (ζ ) |

≤ 1

2 |Γ (α − 2)|
(

(7σ1 (H1 + µ1(ζ ))+ 4σ2 (H2 + µ2(ζ ))+ 2σ3 (H3 + µ3(ζ )))‖y1‖+ 28
3

(

‖λ‖
(

1+ 1
|Γ (1−β )| +K

)

‖y1‖+F

))

+
1

|Γ (α − 1)|
(

+(2σ1 (H1 + µ1(ζ ))+σ2 (H2 + µ2(ζ )))‖y1‖+ 5
2

(

‖λ‖
(

1+ 1
|Γ (1−β )| +K

)

‖y1‖+F
))

+
1

|Γ (α)|

(

σ1 (H1 + µ1(ζ ))‖y1‖+
(

‖λ‖
(

1+
1

|Γ (1−β )|+K

)

‖y1‖+F

))

+
1

|Γ (α + 1)|

(

‖λ‖
(

1+
1

|Γ (1−β )|+K

)

‖y2‖+F

)

,

≤
(

7

2 |Γ (α − 2)| +
2

|Γ (α − 1)| +
1

|Γ (α)|

)

σ1 (H1 + µ1(ζ ))‖y1‖

+

(

2

|Γ (α − 2)| +
1

|Γ (α − 1)|

)

σ2 (H2 + µ2(ζ ))‖y1‖+
1

|Γ (α − 2)|σ3 (H3 + µ3(ζ ))‖y1‖

+

(

14

3 |Γ (α − 2)| +
5

2 |Γ (α − 1)| +
1

|Γ (α)|

)(

‖λ‖
(

1+
1

|Γ (1−β )|+K

)

‖y1‖+F

)

+
1

|Γ (α + 1)|

(

‖λ‖
(

1+
1

|Γ (1−β )|+K

)

‖y2‖+F

)

.

Taking supremum over ζ ∈ [0,1], we have

‖℘1y1 (ζ )+℘2y2 (ζ )‖ ≤ ρ ,

for ρ ≥ ℜF
1−(ℵ1+ℵ2)

, where

ℜ =
14F

3Γ (α − 2)
+

5F

2Γ (α − 1)
+

F

Γ (α)
+

1

Γ (α + 1)
,
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ℵ1 =
σ1(H1 + ‖µ1‖)

Γ (α)
+

2σ1(H1 + ‖µ1‖)+σ2(H2 + ‖µ2‖)
Γ (α − 1)

+
7σ1(H1 + ‖µ1‖)+ 4σ2(H2 + ‖µ2‖)+ 2σ3(H3 + ‖µ3‖)

2Γ (α − 2)
,

and

ℵ2 =
14‖λ‖

(

1
Γ (1−β ) +K+ 1

)

3Γ (α − 2)
+

5‖λ‖
(

1
Γ (1−β ) +K + 1

)

2Γ (α − 1)
+

‖λ‖
(

1
Γ (1−β ) +K + 1

)

Γ (α)
+

‖λ‖
(

1
Γ (1−β ) +K+ 1

)

Γ (α + 1)
.

This proves that ℘1y1 (ζ )+℘2y2 (ζ ) ∈ Bρ for every y1,y2 ∈ Bρ .
Step 2: The operator ℘1 serves as a contraction mapping on Bρ . It is clear that in step 1, ℘1 acts as a contraction

mapping with a contraction coefficient of c < 1, where c =C1 +C2 with

C1 =
σ1(H1 + ‖µ1‖)

Γ (α)
+

2σ1(H1 + ‖µ1‖)+σ2(H2 + ‖µ2‖)
Γ (α − 1)

+
7σ1(H1 + ‖µ1‖)+ 4σ2(H2 + ‖µ2‖)+ 2σ3(H3 + ‖µ3‖)

2Γ (α − 2)
,

and

C2 =
14‖λ‖

(

1
Γ (1−β ) +K + 1

)

3Γ (α − 2)
+

5‖λ‖
(

1
Γ (1−β ) +K + 1

)

2Γ (α − 1)
+

‖λ‖
(

1
Γ (1−β ) +K + 1

)

Γ (α)
.

Step 3: To establish the compactness and continuity of operator℘2 on Bρ , we first demonstrate its continuity. Consider
a sequence {yn}n∈N in Bρ that converges to y ∈ Bρ as n → ∞. We must show that ‖℘2yn −℘1y‖→ 0 as n → ∞. Then, for
ζ ∈ [0,1], we have

|℘2yn −℘2y| ≤ 1

Γ (α)

∫ ζ

0
|ζ −υ |α−1|un(υ)− u(υ)|dυ ,

where un(ζ ) = f (ζ ,yn(ζ ),D
β

0+
yn(ζ ),

∫ ζ
0 k(ζ ,υ)yn(υ)dυ) and u(ζ ) = f (ζ ,y(ζ ),D

β
0+

y(ζ ),
∫ ζ

0 k(ζ ,υ)y(υ)dυ) are two

continuous functions defined over [0,1] such that

|un(ζ )− u(ζ )|= | f (ζ ,yn(ζ ),D
β

0+
yn(ζ ),

∫ ζ

0
k(ζ ,υ)yn(υ)dυ)− f (ζ ,y(ζ ),D

β
0+

y(ζ ),
∫ ζ

0
k(ζ ,υ)y(υ)dυ)|,

≤ |λ (ζ )|(|yn(ζ )− y(ζ )|+ |D β
0+

yn (ζ )−D
β

0+
y(ζ ) |+

∫ ζ

0
|k(ζ ,υ)| |yn(υ)− y(υ)|dυ)|),

≤ ‖λ‖
(

1+
1

|Γ (1−β )| +K

)

‖yn − y‖.

Since yn → y, then we get un(ζ )→ u(ζ ) as n → ∞ for each ζ ∈ [0,1]. And let ε > 0 be such that, for each ζ ∈ [0,T1], we
have |un(ζ )| ≤ ε/2 and |u(ζ )| ≤ ε/2 which implies that |un(υ)− u(υ)| ≤ (|un(υ)|+ |u(υ)|)≤ ε for each ζ ∈ [0,1]. Ap-
plying Lebesgue Dominated Convergence Theorem, it implies that ‖℘2yn −℘2y‖ → 0 as n → ∞. Consequently, operator
℘2 is continuous. In addition, we have

‖℘2y‖ ≤ 1

|Γ (α + 1)|

[

‖λ‖
(

1+
1

|Γ (1−β )| +K

)

‖y‖+F

]

≤ ρ

due to definitions of ρ . This proves that ℘2 is uniformly bounded on Bρ .
Ultimately, we demonstrate that the mapping ℘2 transforms bounded sets into equicontinuous sets within C(J,R),

specifically ensuring the equicontinuity of Bρ .
Let ∀ ε > 0, ∃ δ > 0 and ζ1,ζ2 ∈ J, ζ1 < ζ2, |ζ2 − ζ1|< δ . Then we have

|℘2y(ζ2)−℘2y(ζ1)| ≤
∫ ζ

0

(ζ2 −υ)α−1 − (ζ1 −υ)α−1

Γ (α)
|u(υ)| dυ ,

≤ ‖λ‖
(

1+
1

|Γ (1−β )| +K

)

(ζ α
2 − ζ α

1 )

Γ (α + 1)
.

As ζ1 approaches ζ2, the expression on the right-hand side of the aforementioned inequality becomes independent of y

and approaches zero. Thus,
|℘2y(ζ2)−℘2y(ζ1)| → 0, ∀ |ζ2 − ζ1| → 0.

Thus, if ℘ is uniformly continuous on Bρ , where ℘ represents a compact operator, the Arzela-Ascoli theorem guarantees
that ℘ : C([0,1] ,R) → C([0,1] ,R) is both continuous and compact. Consequently, all the conditions of Krasnoselskii’s
fixed point theorem are satisfied, and the operator ℘=℘1 +℘2 possesses a fixed point y(ζ ) ∈ C [0,1] on Bρ satisfying
the boundary conditions in (1). As a result, y(ζ ) serves as a solution of the (NIFDE) (1). This concludes the proof.
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2.2 Uniqueness of Solutions

Next, we ascertain the unique solutions to the Nonlinear Fractional Differential Equation (NIFDE) described by equation
(1). This exploration into uniqueness adds a valuable dimension to our understanding of the solutions in the context of our
studied equation.

Lemma 4. If assumptions (H1)-(H3) hold, and if







28
3 ‖λ‖

(

1
Γ (α−β+1)

+K+1
)

+7‖µ1‖σ1+4‖µ2‖σ2+2‖µ3‖σ3

2Γ (α−2) +
5
2 ‖λ‖

(

1
Γ (α−β+1)

+K+1
)

+2‖µ1‖σ1+‖µ2‖σ2

Γ (α−1)

+
‖λ‖

(

1
Γ (α−β+1)

+K+1
)

+‖µ1‖σ1

Γ (α) +
‖λ‖

(

1
Γ (α−β+1)

+K+1
)

Γ (α+1)






< 1,

then operator ℘ : C (J,R)→C (J,R) presented in Definition 4 is a contraction.

Proof. Assuming that conditions (H1)-(H3) are satisfied, let’s examine the continuous functions x and y belonging to
C(J,R). In this context, for any ζ ∈ J, the following applies:

|℘(y1(ζ ))−℘(y2(ζ ))|

≤ ζ α−3

2Γ (α − 2)





7σ1

∫ 1
0 |h1 (υ ,y1 (υ))−h1 (υ ,y2 (υ))| dυ + 4σ2

∫ 1
0 |h2 (υ ,y1 (υ))−h2 (υ ,y2 (υ))| dυ

+2σ3

∫ 1
0 |h3 (υ ,y1 (υ))−h3 (υ ,y2 (υ))| dυ + 7

∫ 1
0 |u1(υ)− u2 (υ)| dυ

+4
∫ 1

0 (1−υ) |u1(υ)− u2 (υ)| dυ +
∫ 1

0 (1−υ)2 |u1(υ)− u2 (υ)| dυ





+
ζ α−2

Γ (α − 1)

(

2σ1

∫ 1
0 |h1 (υ ,y1 (υ))−h1 (υ ,y2 (υ))| dυ +σ2

∫ 1
0 |h2 (υ ,y1 (υ))−h2 (υ ,y2 (υ))| dυ

+2
∫ 1

0 |u1(υ)− u2 (υ)|dυ +
∫ 1

0 (1−υ) |u1(υ)− u2 (υ)|dυ

)

+
ζ α−1

Γ (α)

(

σ1

∫ 1

0
|h1 (υ ,y1 (υ))−h1 (υ ,y2 (υ))|dυ +

∫ 1

0
|u1(υ)− u2 (υ)|dυ

)

+
1

Γ (α)

∫ ζ

0
(ζ −υ)α−1 |u1(υ)− u2 (υ)|dυ

where u1,u2 ∈C(J,R) such that

u1(ζ ) = f (ζ ,y1(ζ ),I
α−β y1(ζ ),

∫ ζ

0
k(ζ ,υ)y1(υ)dυ), and u2(ζ ) = f (ζ ,y2(ζ ),I

α−β y2(ζ ),
∫ ζ

0
k(ζ ,υ)y2(υ)dυ).

By applying conditions (H1)-(H3), and taking supremum for all ζ ∈ J we have

|u1(ζ )− u2(ζ )| = | f (ζ ,y1(ζ ),I
α−β y1(ζ ),

∫ ζ

0
k(ζ ,υ)y1(υ)dυ)− f (ζ ,y2(ζ ),I

α−β y2(ζ ),

∫ ζ

0
k(ζ ,υ)y2(υ)dυ |,

≤ λ (ζ )

(

|y1(ζ )− y2(ζ )|+
∫ ζ

0

(ζ −υ)α−β−1

Γ (α −β )
|y1(υ)− y2(υ)| dυ +

∫ ζ

0
|k(ζ ,υ)| |y1(υ)− y2(υ)|dυ

)

,

≤ ‖λ‖
(

‖y1 − y2‖+
ζ α−β

Γ (α −β + 1)
‖y1 − y2‖+K‖y1− y2‖ζ

)

,

≤ ‖λ‖
(

1+
1

Γ (α −β + 1)
+K

)

‖y1 − y2‖.
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Hence,

|℘(y1(ζ ))−℘(y2(ζ ))|

≤ ζ α−3

2Γ (α − 2)

(

(7σ1‖µ1‖+ 4σ2‖µ2‖+ 2σ3‖µ3‖)‖y1 − y2‖
∫ 1

0 dυ

+‖λ‖
(

1+ 1
Γ (α−β+1) +K

)

‖y1 − y2‖
(

7
∫ 1

0 dυ + 4
∫ 1

0 (1−υ)dυ +
∫ 1

0 (1−υ)2dυ
)

)

+
ζ α−2

Γ (α − 1)

(

(2σ1 ‖µ1‖+σ2‖µ2‖)‖y1 − y2‖
∫ 1

0 dυ

+‖λ‖
(

1+ 1
Γ (α−β+1) +K

)

‖y1 − y2‖
(

2
∫ 1

0 dυ +
∫ 1

0 (1−υ)dυ
)

)

+
ζ α−1

Γ (α)

(

σ1 ‖µ1‖+ ‖λ‖
(

1+
1

Γ (α −β + 1)
+K

))

‖y1 − y2‖
∫ 1

0
dυ

+
ζ α

Γ (α + 1)
‖λ‖

(

1+
1

Γ (α −β + 1)
+K

)

‖y1 − y2‖,

≤ 1

2Γ (α − 2)

([

(7σ1 ‖µ1‖+ 4σ2‖µ2‖+ 2σ3‖µ3‖)+
28

3
‖λ‖

(

1+
1

Γ (α −β + 1)
+K

)])

‖y1 − y2‖

+
1

Γ (α − 1)

(

(2σ1 ‖µ1‖+σ2 ‖µ2‖)+
5

2
‖λ‖

(

1+
1

Γ (α −β + 1)
+K

))

‖y1 − y2‖

+
1

Γ (α)

(

σ1 ‖µ1‖+ ‖λ‖
(

1+
1

Γ (α −β + 1)
+K

))

‖y1 − y2‖

+
1

Γ (α + 1)
‖λ‖

(

1+
1

Γ (α −β + 1)
+K

)

‖y1 − y2‖.

Taking supremum for all ζ ∈ T , we have

‖℘(y1)−℘(y2)‖ ≤







28
3 ‖λ‖

(

1
Γ (α−β+1)

+K+1
)

+7‖µ1‖σ1+4‖µ2‖σ2+2‖µ3‖σ3

2Γ (α−2) +
5
2 ‖λ‖

(

1
Γ (α−β+1)

+K+1
)

+2‖µ1‖σ1+‖µ2‖σ2

Γ (α−1)

+
‖λ‖

(

1
Γ (α−β+1)

+K+1
)

+‖µ1‖σ1

Γ (α) +
‖λ‖

(

1
Γ (α−β+1)

+K+1
)

Γ (α+1)






‖y1 − y2‖.

Now, if







28
3 ‖λ‖

(

1
Γ (α−β+1)

+K+1
)

+7‖µ1‖σ1+4‖µ2‖σ2+2‖µ3‖σ3

2Γ (α−2) +
5
2 ‖λ‖

(

1
Γ (α−β+1)

+K+1
)

+2‖µ1‖σ1+‖µ2‖σ2

Γ (α−1)

+
‖λ‖

(

1
Γ (α−β+1)

+K+1
)

+‖µ1‖σ1

Γ (α)
+

‖λ‖
(

1
Γ (α−β+1)

+K+1
)

Γ (α+1)






< 1, then the operator

℘ is a contraction.

The first result is based on the existence of at least one solution for (NIFDE) (1) using Krasnselskii’s fixed point
theorem.

Theorem 4. If assumptions (H1) , (H2), and (H3) hold, and if







28
3 ‖λ‖

(

1
Γ (α−β+1)

+K+1
)

+7‖µ1‖σ1+4‖µ2‖σ2+2‖µ3‖σ3

2Γ (α−2)
+

5
2‖λ‖

(

1
Γ (α−β+1)

+K+1
)

+2‖µ1‖σ1+‖µ2‖σ2

Γ (α−1)

+
‖λ‖

(

1
Γ (α−β+1)

+K+1
)

+‖µ1‖σ1

Γ (α)
+

‖λ‖
(

1
Γ (α−β+1)

+K+1
)

Γ (α+1)






< 1, (8)

then (NIFDE) (1) has a unique solution on J = [0,1].

Proof. The existence of at least one solution for (NIFDE) (1) has been established in Theorem (3). Furthermore, Lemma
(4) demonstrates that the operator℘exhibits contraction properties. Consequently, through Banach’s fixed point theorem,
we conclude that the operator ℘ possesses a single fixed point, which corresponds to a unique solution of the (NIFDE)
(1) over the interval J = [0,1]. Thus, the proof is now fully accomplished.

3 Numerical Example

Consider the following nonlinear implicit fractional differential equation NLIFDE:
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













































D
11
5 y(ζ ) =

√
2ζ+1

69e2ζ+1

[

7+y(ζ )+D
3
5 y(ζ )+

∫ 1
0 e(ζ−υ) D

11
5 y(υ)dυ

1+y(ζ )+D
3
5 y(ζ )+2

∫ 1
0 e(ζ−υ) D

11
5 y(υ)dυ

]

for all ζ ∈ [0,1],

y(0)+D
6
5

0+
y(1) =

∫ 1
0

(

e−3ζ

699+
√

ζ
+ 1

533
|cos

√

y(ζ )|
)

dυ ,

D
6
5

0+
y(0)+D

1
5

0+
y(1) = 2

∫ 1
0

(

1√
699+ζ 2

+ e−3ζ

533+ζ 2 |y(ζ ) |
)

dυ ,

D
1
5

0+
y(0)+D

−4
5

0+
y(1) = 3

∫ 1
0

(

1

2(ζ 2+1)
+

2+
√

ζ

e3(ζ+1) |y(ζ ) |
)

dυ .

(9)

In this problem, we have α = 11
5

, β = 3
5
, K (ζ ,υ) = e(ζ−υ), σ1 = 1, σ2 = 2, σ3 = 3.

h1 (υ ,y(υ)) =

(

e−3ζ

699+
√

ζ
+ 1

533
|cos

√

y(ζ )|
)

with µ1 =
1

533
and H1 =

1
699

.

h2 (υ ,y(υ)) =

(

1√
699+ζ 2

+ e−3ζ

533+ζ 2 |y(ζ ) |
)

with µ2 =
1

533
and H2 =

1√
699

.

h3 (υ ,y(υ)) =

(

1

2(ζ 2+1)
+

2+
√

ζ

e3(ζ+1) |y(ζ ) |
)

with µ3 =
2
e3 and H3 =

1
2
.

It is clear that the assumptions (H1)-(H3) are satisfied, and f is a mutually continuous function such that for any u,v, w ∈
R, and ζ∈ [0,1] we have

| f (ζ ,u,v,w)|=
√

2ζ + 1

69e2ζ+1
(7+ |u|+ |v|+ |w|) with λ (ζ ) =

√

2ζ + 1

69e2ζ+1
, F =

7

69e
,‖λ‖= 1

69e
, and K = e.

In addition, it clear from Theorem (3) that the NLIFDE (9) has at least one solution on [0,1] since

ℵ1 +ℵ2 ≈ 0.534117< 1,

where

ℵ1 =
σ1(H1 + ‖µ1‖)

Γ (α)
+

2σ1(H1 + ‖µ1‖)+σ2(H2 + ‖µ2‖)
Γ (α − 1)

+
7σ1(H1 + ‖µ1‖)+ 4σ2(H2 + ‖µ2‖)+ 2σ3(H3 + ‖µ3‖)

2Γ (α − 2)

≈ 0.00300125+ 0.0936787+0.428918

≈ 0.525598,

and

ℵ2 =
14‖λ‖

(

1
Γ (1−β ) +K+ 1

)

3Γ (α − 2)
+

5‖λ‖
(

1
Γ (1−β ) +K + 1

)

2Γ (α − 1)
+

‖λ‖
(

1
Γ (1−β ) +K + 1

)

Γ (α)
+

‖λ‖
(

1
Γ (1−β ) +K + 1

)

Γ (α + 1)

≈ 0.001559+ 0.004176+0.001392+0.001392

≈ 0.008519.

Furthermore, the uniqueness of the solution to the nonlinear implicit fractional differential equation (NLIFDE) given by
equation (9) exists since the following condition is satisfied:

28
3
‖λ‖

(

1
Γ (α−β+1)

+K+ 1
)

+ 7‖µ1‖σ1 + 4‖µ2‖σ2 + 2‖µ3‖σ3

2Γ (α − 2)
+

5
2
‖λ‖

(

1
Γ (α−β+1)

+K+ 1
)

+ 2‖µ1‖σ1 + ‖µ2‖σ2

Γ (α − 1)

+
‖λ‖

(

1
Γ (α−β+1) +K+ 1

)

+ ‖µ1‖σ1

Γ (α)
+

‖λ‖
(

1
Γ (α−β+1) +K + 1

)

Γ (α + 1)

≈ 0.5757+ 0.2535+ 0.0608+0.0097

≈ 0.899873< 1.

Remark 2. Equation (1) cannot be commented upon by any of the solutions obtained in the literature. This observation
emphasizes the uniqueness and specificity of the problem at hand. Importantly, the current results significantly improve
upon existing results in the literature, underscoring the advancement in our understanding of nonlinear fractional differ-
ential equations with integral boundary conditions.
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4 Conclusion

This study has made significant contributions to comprehending the existence and uniqueness of solutions concerning a
nonlinear implicit fractional differential equation (NLIFDE) under integral boundary conditions. The utilization of Ba-
nach’s and Krasnoselskii’s fixed point theorems has verified the theoretical outcomes, which were further supported by the
numerical example provided. Future research endeavors will be directed towards exploring the existence and uniqueness
of solutions for an implicit singular fractional differential equation with integral boundary conditions. The implications of
these findings span across multiple domains, including physics, engineering, and finance.
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