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1 Introduction

Let G be a Lie group and H be a closed subgroup of G. The connected pseudo-Riemannian manifold (M,g) is named to be
homogeneous, when the group of isometries of (M,g) acts transitively on M. In this case, assume G is a Lie transformation

group of G
H

and consider the left coset space G
H

as a smooth manifold. So the subgroup H is the isotropy subgroup of Lie
group G and g is an invariant pseudo-Riemannian metric.

If the homogeneous pseudo-Riemannian manifold (M,g) can be realized as a coset space M = G
H

, it is reductive.
Assume that g and h are the Lie algebra of G and H and m is Ad(H) (that Ad(H) refers to the adjoint representation of
the Lie group H on its Lie algebra g) invariant the subspace of g. When there is a subspace m of g such that g = m⊕ h
and Ad(h)(m) ⊂ m for all h ∈ H, it is reductive. Except for some homogeneous pseudo-Riemannian manifolds that do
not accept any kind of reductive decomposition, all homogeneous Riemannian manifolds are reductive. In [26], Fels
and Renner classified these spaces, up to isometry classes, and showed that one of the eight classes, A1, ...,A5,B1,B2,
and B3, that contain both neutral signature examples and Lorentzian is isometric to the four-dimensional non-reductive
homogeneous pseudo-Riemannian manifold.

The Ricci soliton studied in Lorentzian manifolds was introduced by Hamilton [28]. One of the most important and
attractive topics in physics and geometry is study of the Ricci solitons which are natural generalization of Einstein metrics.
On a pseudo-Riemannian manifold (M,g), it is defined by

LX g+ S = λ g.

In this equation we consider X as a smooth vector field on M, the Lie derivative of g in the direction of X is expressed by
LX g, the Ricci tensor is shown by S and λ is a real number [11].

Wilhelm Kal Joseph Killing, a German mathematician, made important research on the theories of Lie algebras and
non-Euclidean geometry [21]. So, a Killing vector field, named after Wilhelm Killing, is a vector field on a pseudo-
Riemannian manifold that preserves the metric. Killing vector fields were considered in [19].

A vector field X on a Riemannian manifold (M,g) is said to be a Killing field if the Lie derivative of the metric g with
respect to X vanishes, that is

LX g = 0,
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or equivalently

g(∇Y X ,Z)+ g(Y,∇ZX) = 0,

for all vector fields X , Y and in local coordinates:

∇iX j +∇ jXi = 0,

where ∇ is the Levi-civita connection.

A vector field X on a Riemannian manifold (M,g) is called conformal vector field if there is a smooth function f

on M that named a potential function, such that LXg = 2 f g. If the potential function f = 0 , X is a Killing vector field.
X is a gradient conformal vector field if X = ∇ρ for some smooth functions ρ on a Riemannian manifold (M,g). If
X = ∇ρ then equations LX g = 2 f g reduces to ∇2ρ = f g and this implies that △ρ = n f . Thus there is a relation between
Poisson equation on the Riemannian manifold and gradient conformal vector fields on it. Conformal vector fields have
been intensely studied over the past 150 years, specially in Riemannian and pseudo-Riemaninan geometry of dimension
n ≥ 3. As well, this is a special case from a mathematical point of view because a conformal vector field, given at every
point, always has a gradient within the light cone. The importance of conformal vector fields or insignificant conformal
transformations in differential geometry has been classified by the work of Lie, Schouten,Yano, and others. Essential
conformal vector fields in Riemannian spacec were studied by Obata, Lelony-Freund, and Alekseeskii. A conformal
vector field was studied in [23] completely. According to [23], the geometry of conformal vector field is separated into two
classes, the first is the geometry of gradient conformal vector fields, the second is the geometry of conformal vector fields
that are not closed. So, there is a relation between conformal vector fields and gradient or the geometry of closed conformal
vector fields. Riemannian manifolds having gradient or closed conformal vector fields, have been researched in [24] and
[25]. In [15], Fino and Calvaruso have studied Killing vector fields on non-reductive four-dimensional homogeneous
spaces.

Benroummane studied about semi-symmetric curvature algebraic tensors on the vector space with metric of signature
(2,n) where n ≥ 2 and a categorization of four-dimensional simply-connected semi-symmetric homogeneous neutral
manifolds that are not locally symmetric, [10].

Also, Batat and Onda, [9], studied algebraic on non-symmetric simply-connected four-dimensional
pseudo-Riemannian. It turns out that those of Cerny-Kowalski’s types A,C and D are algebraic Ricci solitons, where as
those of type B are not, and they give new examples of algebraic Ricci solitons.

Garcia-Parrado and Senovilla [27] introduced bi-conformal vector fields, then De et al. [22] defined Ricci bi-conformal
vector fields. A Ricci bi-conformal vector field is a vector field X on a Riemannian manifold (M,g) if the following
equations hold for some non-zero smooth functions α and β and any vector fields Y,Z:

(LX g)(Y,Z) = αg(Y,Z)+β S(Y,Z), (1)

and

(LX S)(Y,Z) = αS(Y,Z)+β g(Y,Z), (2)

where S is the Ricci tensor of M and LX is the Lie derivation in the direction of X .

In [4], [5] and [6] have been studied Ricci bi-conformal vector fields on Lorentzian five-dimensional two-step nilpotent
Lie groups, Siklos spacetimes, and homogeneous Gödel-type spacetimes, respectively. Motivated by [22], we study the
Ricci bi-conformal vector fields on non-symmetric simply-connected four dimensional pseudo-Riemannian generalized
symmetric spaces up to isometry.

Now in Section 2, the classification of non reductive four-dimensional homogeneous pseudo-Riemannian manifolds
recalled, with the Ricci tensor, expressly explain the relation pseudo-Riemannian metrics and the Lie derivative of the
metrics with reference to a vector field. In Section 3, we calculate the Lie derivative LXg of the metric g with respect to
the vector field X = Xiui ∈m, and the Lie derivative LX S of the Ricci tensor in direction X , then we show which of vectir
fields is a Ricci bi-conformal vector field, and we discuss about Killing vector fields on them.

2 Non-reductive four-dimensional homogeneous spaces

The non-reductive four-dimensional homogeneous manifolds were categorized [26] corresponding to the similar non-
reductive Lie algebras. We recall this categorization and, furthermore, we explicitly explain the corresponding pseudo-
Riemannian metrics based on references [15], and [17] the according pseudo-Riemannian metrics, the Ricci tensor, and
the Lie derivative LX g of the metric tensor along a vector field X = Xiui ∈m.
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2.1 Lorentzian case

(A1) We know s(2) can solve the 2-dimensional algebra, g= a1 is the separated 5-dimensional Lie algebra sl(2,R)⊕s(2).
A basis of a1 is {e1, · · · ,e5}, so that the non-vanishing brackets are:

[e1,e2] = 2e2, [e1,e3] =−2e2, [e2,e3] = e1, [e4,e5] = e4,

and h= span{h1 = e3 + e4} is the isotropy subalgebra. Therefore, we suppose that

m= span{u1 = e1, u2 = e2,u3 = e5,u4 = e3 − e4}

and the isotropy description for h1

H1 =







0 −1 0 0
0 0 0 0
0 0 0 0

1 0 − 1
2

0






.

The metric g with respect to the basis {ui} are obtained as follows

g =







a 0 − a
2

0
0 b c a

− a
2

c d 0
0 a 0 0






, (3)

and they are non-degenerate whenever a(a−4d) 6= 0. As well, the Ricci tensor S with respect to the basis {ui} is described
by

S =









−2 0 1 0

0
2b(a+12d)

a(a−4d) − 2c
a
−2

1 − 2c
a

− 1
2

0

0 −2 0 0









. (4)

(A2) The one-parameter family of 5-dimensional Lie algebras A5,30 is g = a2 . A basis of a2 is {e1, · · · ,e5} thus for
any e ∈R the non-vanishing brackets are as follows

[e1,e5] = (e+ 1)e1, [e2,e4] = e1, [e2,e5] = ee2,

[e3,e4] = e2, [e3,e5] = (e− 1)e3, [e4,e5] = e4,

and the isotropy subalgebra is h= span{h1 = e4}. Hence, we consider

m= span{u1 = e1, u2 = e2,u3 = e3,u4 = e5}

and the isotropy description for h1 is as follows

H1 =







0 −1 0 0
0 0 −1 0
0 0 0 0
0 0 0 0






.

Therefore, the invariant metrics are obtained as follows

g =







0 0 −a 0
0 a 0 0
−a 0 b c

0 0 c d






(5)

as well as are non-degenerate whenever ad 6= 0. Furthermore, the Ricci tensor S is represented by

S =











0 0 3e2a
d

0

0 − 3e2a
d

0 0
3e2a

d
0 − b(3e2−3e+2)

d
− 3e2c

d

0 0 − 3e2c
d

−3e2











. (6)
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(A3) g = a3 is the one of 5-dimensional Lie algebras A5,36 or A5,37 in [29]. A basis of a3 is so the non-vanishing
brackets are

[e1,e4] = 2e1, [e2,e3] = e1, [e2,e4] = e2,

[e2,e5] =−εe3, [e3,e4] = e3, [e3,e5] = e2,

we have ε = 1 for A5,37 and we have ε =−1 for A5,36 and the isotropy subalgebra is given by h = span{h1 = e3}. Thus,
we consider

m= span{u1 = e1, u2 = e2,u3 = e4,u4 = e5},

and the isotropy description for h1

H1 =







0 −1 0 0
0 0 0 1
0 0 0 0
0 0 0 0






.

Hence, the invariant metrics are non-degenerate whenever ab 6= 0, calculated as follows

g =







0 0 0 a

0 a 0 0
0 0 b c

a 0 c d






, (7)

The Ricci tensor S is computed by

S =









0 0 0 − 3a
b

0 − 3a
b

0 0

0 0 −3 − 3c
b

− 3a
b

0 − 3c
b

εb−2d
b









. (8)

(A4) The 6-dimensional Schrodinger Lie algebra sl(2,R)⋉n(3) is g= a4, where n(3) is the 3-dimensional Heisenberg
algebra. A basis of a4 is {e1, · · · ,e6} so the non-vanishing brackets are

[e1,e2] = 2e2, [e1,e3] =−2e3, [e2,e3] = e1, [e1,e4] = e4,

[e1,e5] =−e5, [e2,e5] = e4, [e3,e4] = e5, [e4,e5] = e6,

and the isotropy subalgebra is given by h= span{h1 = e3 + e6,h2 = e5}. Next, taking

m= span{u1 = e1, u2 = e2,u3 = e3 − e6,u4 = e4},

and the following isotropy description for h1,h2 are

H1 =







0 −1 0 0
0 0 0 0
1 0 0 0
0 0 0 0






, H2 =







0 0 0 0
0 0 0 0

0 0 0 1
2

0 −1 0 0






.

The invariant metrics are obtained of the following form

g =







a 0 0 0
0 b a 0
0 a 0 0
0 0 0 a

2






, (9)

they are non-degenerate whenever a 6= 0. Hence, the Ricci tensor is calculated as follows

S =









−3 0 0 0

0 − 8b
a
−3 0

0 −3 0 0

0 0 0 − 3
2









. (10)
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(A5) The 7-dimensional Lie algebra sl(2,R)⋉A1
4,9 is g = a5 , with A1

4,9 of [29]. A basis of a5 is {e1, · · · ,e7} so the
non-vanishing brackets are

[e1,e2] = 2e2, [e1,e3] =−2e3, [e1,e5] =−e5, [e1,e6] = e6,

[e2,e3] = e1, [e2,e5] = e6, [e3,e6] = e5, [e4,e7] = 2e4,

[e5,e6] = e4, [e5,e7] = e5, [e6,e7] = e6.

The isotropy subalgebra is given by h= span{h1 = e1 + e7,h2 = e3 − e4,h3 = e5}. Hence, we take

m= span{u1 = e1 − e7, u2 = e2,u3 = e3 + e4,u4 = e6}.

For the isotropy description of h1,h2, and h3, we get

H1 =







0 0 0 0
0 2 0 0
0 0 −2 0
0 0 0 0






, H2 =







0 − 1
2

0 0
0 0 0 0
2 0 0 0
0 0 0 0






, H3 =







0 0 0 0
0 0 0 0

0 0 0 1
2

0 −1 0 0






.

The invariant metrics are figured as follows

g =







a 0 0 0
0 0 a

4
0

0 a
4

0 0
0 0 0 a

8






, (11)

and they are non-degenerate whenever a 6= 0. The Ricci tensor S with respect to {ui} is computed by

S =







−12 0 0 0
0 0 −3 0
0 −3 0 0

0 0 0 − 3
2






. (12)

2.2 Signature (2,2) case

Besides cases A1,A2,A3, when we admit invariant metrics of neutral signature (2,2), the remaining are the following.

(B1) The 5-dimensional Lie algebra sl(2,R)⋉R
2 is g= b1. A basis of b1 is so the non-vanishing brackets are

[e1,e2] = 2e2, [e1,e3] =−2e3, [e2,e3] = e1, [e1,e4] = e4,

[e1,e5] =−e5, [e2,e5] = e4, [e3,e4] = e5,

and the isotropy subalgebra is h= span{h1 = e3}. Therefore, we assume

m= span{u1 = e1, u2 = e2,u3 = e4,u4 = e5},

and the following isotropy description for h1

H1 =







0 −1 0 0
0 0 0 0
0 0 0 0
0 0 1 0






.

The invariant metrics are computed as

g =







0 0 a 0
0 b c a

a c d 0
0 a 0 0






, (13)

so whenever a 6= 0 they are non-degenerate. The Ricci tensor is explained by

S =











0 0 3d
2a

0

0
3(6bd−5c2)

2a2
3cd
2a2

3d
2a

3d
2a

3cd
2a2

3d2

2a2 0

0 3d
2a

0 0











. (14)
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(B2) The 6-dimensional Schrodinger Lie algebras sl(2,R) ⋉ n(3) is g = b2 is with the isotropy subalgebra
h= span{h1 = e3 − e6,h2 = e5}. Therefore, we compute that

m= span{u1 = e1, u2 = e2,u3 = e3 + e6,u4 = e4},

and the following isotropy description for h1,h2 are

H1 =







0 −1 0 0
0 0 0 0
1 0 0 0
0 0 0 0






, H2 =







0 0 0 0
0 0 0 0

0 0 0 − 1
2

0 −1 0 0






.

The invariant metrics are represented by

g =







a 0 0 0
0 b a 0
0 a 0 0
0 0 0 − a

2






, (15)

so they are non-degenerate whenever a 6= 0. The Ricci tensor is described by

S =









−3 0 0 0

0 − 8b
a
−3 0

0 −3 0 0

0 0 0 3
2









. (16)

(B3) The 6-dimensional Lie algebra (sl(2,R)⋉R
2)×R is g= b3 . A basis of b3 is {e1, · · · ,e6} so the non-vanishing

brackets are

[e5,e2] = e1, [e5,e3] =−e4, [e6,e2] =−2e6,

[e6,e3] =−e2, [e6,e4] = e1, [e1,e2] =−e1,

[e1,e3] = e4, [e2,e3] =−2e3, [e2,e4] =−e4,

and the isotropy subalgebra is given by h= span{h1 = e5,h2 = e6}. Thus, we consider

m= span{u1 = e1, u2 = e2,u3 = e3,u4 = e4},

and the following isotropy description for h1,h2 are

H1 =







0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0






, H2 =







0 0 0 1
0 0 −1 0
0 0 0 0
0 0 0 0






.

The invariant metrics are described as follows

g =







0 0 a 0
0 0 0 a

a 0 b 0
0 a 0 0






, (17)

so they are non-degenerate whenever a 6= 0. The Ricci tensor is calculated by

S =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






. (18)

3 The main results and their proofs

In this section, we calculate the Lie derivative of the metric g and the Lie derivative of the Ricci tensor. Also, we give the
classification of homogeneous generalized Ricci solitons of these spaces.
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Case (A1)

We consider Lie algebra of type (A1). For any vector field X = Xiui ∈ m, where Xi ∈ R by
(LX g)(ei,e j) = g(∇ei

X ,e j)+ g(ei,∇e j
X) the Lie derivative of the metric g with respect to the vector field X , (see [30]),

is given by

LX g =







0 2bX2 2cX2 aX2

2bX2 −4bX1 −2cX1 − aX4 −aX1 +
1
2
aX3

2cX2 −2cX1 − aX4 0 a
2
X2

aX2 −aX1 +
a
2
X3

a
2
X2 0






. (19)

Further, using the formula (LX S)(ei,e j) = X(S(ei,e j))− S(LXei,e j)− S(ei,LX e j) the Lie derivative of the Ricci tensor
in direction X , (see [30]), is determined by

LX S =











0
4b(a+12d)
a(a−4d) X1 − 2X4 0

4(a−c)−2a

a
X2 − 4( a−c

a
)X4

4b(a+12d)
a(a−4d) X1 − 2X4

−8b(a+12d)
a(a−4d) X1 −2X4 S24

0 −2X4 0 0
4(a−c)−2a

a
X2 − 4( a−c

a
)X4 S24 0 2X1 +X2











, (20)

where S24 = (−4b(a+12d)+4(c+a)(a−4d)
a(a−4d) )X1 − 2X3+X4. Applying (3), (4), and ( 19) into (1) and (2), we obtain















































a
2
X2 = 0,

− a
2
α +β = 2cX2,

aα − 2β = 0,

bα + 2b(a+12d)
a(a−4d)

β =−4bX1,

cα − 2c
a

β =−2cX1− aX4,

aα − 2β =−aX1 +
a
2
X3,

dα − 1
2
β = 0.

(21)

Also, substituting (3), (4), and (20) into (1) and (2), we get


































































2b(a+12d)
a(a−4d) α + bβ = −8b(a+12d)

a(a−4d) X1,

− 1
2
α + dβ = 0,

−8( a−c
a
)X1 + 2X2 = 0,

−2α + aβ = 0,

−2α + aβ = S24,

α − a
2
β = 0,

− 2c
a

α + cβ =−2X4,

−2X4 +
4b(a+12d)
a(a−4d) X2 = 0,

2( 2(a−c)−a

a
)X2 − 4( a−c

a
)X4 = 0.

(22)

By solving the above systems, we get α = β = 0 and X1 = X2 = X3 = X4 = 0. Thus, we have the following theorem:

Theorem 1.Suppose that (M,g) is a non-reductive four-dimensional homogeneous space of type g1. Then (M,g) has a

Ricci bi-conformal vector fields X = Xi∂i if and only if X1 = X2 = X3 = X4 = 0 and α = β = 0.

Since α = β = 0, according to the defination of Killing vector fields LX g = 0, we have the following corollary:

Corollary 1.Any Ricci bi-conformal vector field X on space of type g= a1 is a Killing vector field.

Case (A2)

We consider Lie algebra of type (A2). For any vector field X = Xiui ∈ m, where r = e+ 1 and s = e− 1, the Lie
derivative of the metric g with respect to the vector field X , is given by

LX g =







0 0 −2eaX4 asX3

0 2eaX4 0 −eaX2

−2eaX4 0 2bsX4 arX1 − s(bX3 − cX4)
asX3 −eaX2 arX1 − s(bX3 − cX4) −2csX3






, (23)
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Further, the Lie derivative of the Ricci tensor is calculated as follows

LX S =











0 0 6e3a
d

X4 − 3re2a
d

X3

0 − 6e3a
d

X4 0 3e3a
d

X2

6e3a
d

X4 0 − 2bs(e−1)(3e3−3e+2)
d

X4 − 3re2a
d

X1 +
bs(3e2−3e+2)

d
X3

− 3re2a
d

X3
3e3a

d
X2 − 3re2a

d
X1 +

bs(3e2−3e+2)
d

X3 0











, (24)

Substituting (5), (6), and (23) into (1) and (2), we get







































aα − 3e2a
d

β = 2eaX4,

a(e− 1)X3 = 0,

−eaX2 = 0,

bα − b(3e2−3e+2)
d

β = 2b(e− 1)X4,

cα − 3e2c
d

β = a(e+ 1)X1− (e− 1)(bX3− cX4),

dα − 3e2β =−2(e− 1)cX3,

(25)

Now, by applying (5), (6), and (24) into (1) and (2), we have











































− 3e2a
d

α + aβ =−6 e3a
d

X4,

− b(3e2−3e+2)
d

α + bβ =− 2b(e−1)(3e2−3e+2)
d

X4,

−3(e−1)e2a

d
X3 = 0,

3e3a
d

X2 = 0,

− 3e2c
d

α + cβ =− 3(e+1)e2a

d
X1 +

b(e−1)(3e2−3e+2)
d

X3,

−3e2α + dβ = 0.

(26)

By solving the above systems, we have the following theorem:

Theorem 2.Assume that (M,g) is a non-reductive four-dimensional homogeneous space of type g2. Then (M,g) has a

Ricci bi-conformal vector fields X = Xi∂i if and only if the following cases are true:

(1)e = 0,α = β = 0,ad 6= 0,X1 =
c
a
X4,X3 = 0 and for any X2,

(2)e = 1,α = 3
d

β ,X1 = X2 = X4 = 0 and for any X3, such that (d2 − 9)β = 0 and bβ = 0,

(3)e =−1,X2 = X3 = X4 = 0 and for any X1, such that (−9+ d2)β = 0, bd = 0, and α = 3
d

β ,

(4)e 6= 0,1,−1,X1 = X2 = X3 = X4 = 0, such that (−9e4 + d2)β = 0, b(−3e+ 1)β = 0, and α = 3e2

d
β .

Since α = β = 0, and α is the coefficient of β , according to the defination of Killing vector fields LX g = 0, we have
the following corollary:

Corollary 2.Any Ricci bi-conformal vector field X on space of type g= a2 is a Killing vector field for β = 0.

Case (A3)

We consider Lie algebra of type (A3). For any arbitrary vector field X = Xiui ∈m, we compute

LX g =







0 0 0 2aX3

0 2aX3 −aX2 0
0 −aX2 0 −2aX1

2aX3 0 −2aX1 0






. (27)

As well, the Lie derivative of the Ricci tensor is obtained by

LX S =









0 0 −6a
b

X3 0

0 0 3εc
b

X4 0
−6a

b
X3

3εc
b

X4
12a
b

X1
−3εc

b
X2

0 0 −3εc
b

X2 0









. (28)
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Inserting (7), (8), and (27) into (1) and (2), we infer


























aα − 3a
b

β = 2aX3,

aX2 = 0,

bα − 3β = 0,

cα − 3c
b

β =−2aX1,

dα − εb−2d
b

β = 0.

(29)

So, by applying (7), (8), and (28) into (1) and (2), we have


































− 3a
b

α + aβ = 0,
3εc
b

X4 = 0,

−3α + bβ = 12a
b

X1,

− 3c
b

α + cβ = −3εc
b

X2,

−6a
b

X3 = 0,
εb−2d

b
α + dβ = 0.

(30)

By solving the above systems, we have the following theorem:

Theorem 3.Consider that (M,g) is a non-reductive four-dimensional homogeneous space of type g3. So (M,g) has a Ricci

bi-conformal vector fields X = Xi∂i if and only if X1 = X2 = X3 = 0,cX4 = 0,(−9+ b2)β = 0 and α = 3
b
β .

Since α is the coefficient of β , according to the defination of Killing vector fields LXg = 0, we obtain the following
corollary:

Corollary 3.Any Ricci bi-conformal vector field X on space of type g= a3 is a Killing vector field for β = 0.

Case (A4)
We consider Lie algebra of type (A4). For any arbitrary vector field X = Xiui ∈ m, the Lie derivative is computed as

follows

LXg =







0 2bX2 aX2
a
2
X4

2bX2 −4bX1 −aX1 0
aX2 −aX1 0 0
a
2
X4 0 0 −aX1






. (31)

Thus, the Lie derivative of the Ricci tensor is computed as

LX S =









0 9X3 −6X2
−3
2

X4

9X3 32 b
a
X1 12X1 0

−6X2 12X1 6X2 0
−3
2

X4 0 0 −3X1









. (32)

Substituting (9), (10), and (31) into (1) and (2), we get










































aα − 3β = 0,

2bX2 = 0,

aX2 = 0,
a
2
X4 = 0,

bα − 8b
a

β =−4bX1,

aα − 3β =−aX1,

a
2
α − 3

2
β =−aX1.

(33)

Also, by applying (9), (10), and (32) into (1) and (2), we deduce






















































−3α + aβ = 0,

9X3 = 0,

−6X2 = 0,

− 3
2
X4 = 0,

− 8b
a

α + bβ = 32b
a

X1,

−3α + aβ = 12X1,

6X2 = 0,

− 3
2
α + a

2
β =−3X1.

(34)
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By solving the above systems we have the following theorem:

Theorem 4.Suppose that (M,g) is a non-reductive four-dimensional homogeneous space of type g4. So (M,g) has a Ricci

bi-conformal vector fields X = Xi∂i if and only if the following cases hold:

(1)α = β = 0,X1 = X2 = X3 = X4 = 0,

(2)α =±β ,β 6= 0,a =±3,b = 0,X1 = X2 = X3 = X4 = 0.

Since X = 0, according to the defination of Killing vector fields LX g = 0, we have the following corollary:

Corollary 4.Any Ricci bi-conformal vector field X on space of type g= a4 is a Killing vector field.

Case (A5)
We consider Lie algebra of type (A5). We have the Lie derivative for any arbitrary vector field X = Xiui ∈m as follows

LX g =







0 a
2
X3 0 a

4
X4

a
2
X3 0 − a

2
X1 0

0 − a
2
X1 0 0

a
4
X4 0 0 − a

2
X1






. (35)

So, the Lie derivative of the Ricci tensor is described by

LXS =







0 −6X3 −18X2+ 3X3 0
−6X3 −24X3 12X1 0

−18X2 + 3X3 12X1 −6X1 0
0 0 0 0






. (36)

Substituting (11), (12), and (35), into (1) and (2), we get


























aα − 12β = 0,
a
2
X3 = 0,

a
4
X4 = 0,

a
4
α − 3β =− a

2
X1,

a
8
α − 3

2
β =− a

2
X1,

(37)

So,by inserting (11), (12), and (36) into (1) and (2), we infer


































−12α + aβ = 0,

−6X3 = 0,

−18X2+ 3X3 = 0,

−24X3 = 0,

−3α + a
4
β = 12X1,

−6X1 = 0, − 3
2
α + a

8
β = 0.

(38)

By solving the above systems, we obtain:

Theorem 5.Let (M,g) is a non-reductive four-dimensional homogeneous space of type g5. So (M,g) has a Ricci bi-

conformal vector fields X = Xi∂i if and only if the following cases are true:

(1)a 6=±12, α = β = 0,a 6= 0,X1 = X2 = X3 = X4 = 0,

(2)α =±β ,β 6= 0,a =±12,X1 = X2 = X3 = X4 = 0.

Since X = 0, according to the defination of Killing vector fields LX g = 0, we have the following corollary:

Corollary 5.Any Ricci bi-conformal vector field X on space of type g= a5 is a Killing vector field.

Case (B1)
We consider Lie algebra of type (B1). For any vector field X = Xiui ∈m, we get

LX g =







2aX3 2bX2 + cX3 −aX1 + 2cX2 + dX3 aX2

2bX2 + cX3 −4bX1+ 2cX4 −3cX1 + dX4 −aX1 − cX2

−aX1 + 2cX2+ dX3 −3cX1 + dX4 −2dX1 −dX2

aX2 −aX1 − cX2 −dX2 0






. (39)
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Thus, the Lie derivative of the Ricci tensor is represented by

LX S =











0
3(6bd−5c2)

a2 X2 +
3d
2a

X3
3d
a

X2 0
3(6bd−5c2)

a2 X2 +
3d
2a

X3 −
6(6bd−5c2)

a2 X1 +
3d
2a

X4
−9d
2a

X1
−3d
2a

X2
3d
a

X2
−9d
2a

X1 0 0

0 −3d
2a

X2 0 0











. (40)

Substituting (13), (14), and (39), into (1) and (2), we get



































































2aX3 = 0,

2bX2 + cX3 = 0,

aα + 3d
2a

β =−aX1 + 2cX2+ dX3,

aX2 = 0,

bα + 3(6bd−5c2)
2a2 β =−4bX1 + 2cX4,

cα + 3cd
2a2 β =−3cX1 + dX4,

aα + 3d
2a

β =−aX1 − cX2,

dα + 3d2

2a2 β =−2dX1,

−dX2 = 0.

(41)

Also, by applying (13), (14), and (40) into (1) and (2), we have







































3(6bd−5c2)
a2 X2 +

3d
2a

X3 = 0,
3(6bd−5c2)

2a2 α + bβ =
−6(6bd−5c2)

a2 X1 +
3d
2a

X4,

3d
2a

α + aβ = 3d
a

X2,

3cd
2a2 α + cβ = −9d

2a
X1,

3d
2a

α + aβ = −3d
2a

X2,

3d2

2a2 α + dβ = 0.

(42)

By solving the above systems, we derive the following theorem:

Theorem 6.Suppose that (M,g) is a non-reductive four-dimensional homogeneous space of type b1. Then (M,g) has a

Ricci bi-conformal vector fields X = Xi∂i if and only if the following cases hold:

(1)α = β = 0,d 6= 0,X1 = X2 = X3 = X4 = 0,

(2)α = β = 0,d = 0,X1 = X2 = X3 = 0 and for all X4,a,b,c,

(3)α 6= 0,b = c = d = 0,X1 =−α,X2 = X3 = 0, and for any X4.

According to the defination of Killing vector fields, we have the following corollary:

Corollary 6.Any Ricci bi-conformal vector field X on space of type g= b1 satisfied in (1) and (2) is a Killing vector field.

Case (B2)

We consider Lie algebra of type (B2). We have the Lie derivative of the metric for any vector field X = Xiui ∈ m as
follows

LX g =







0 2bX2 aX2 − a
2
X4

2bX2 −4bX1 −aX1 0
aX2 −aX1 0 0
− a

2
X4 0 0 aX1






. (43)

Hence, the Lie derivative of the Ricci tensor is represented by

LX S =









0 −16b
a

X2 + 3X3 −9X2
3
2
X4

−16b
a

X2 + 3X3 32 b
a
X1 − 3X3 12X1 0

−9X2 12X1 0 0
3
2
X4 0 0 −3X1









. (44)

© 2024 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



580 Mahin Sohrabpour : Ricci bi-conformal vector fields

Substituting (15), (16), and (43), into (1) and (2), we get










































2bX2 = 0,

aX2 = 0,

aα − 3β = 0,

− a
2
X4 = 0,

bα − 8b
a

β =−4bX1,

aα − 3β =−aX1,

−a
2

α + 3
2
β = aX1,

(45)

Also, substituting (15), (16), and (44) into (1) and (2), we conclude










































−16b
a

X2 + 3X3 = 0,
3
2
X4 = 0,

−3α + aβ = 0,

− 8b
a

α + bβ = 32b
a

X1 − 3X3,

−3α + aβ = 12X1,

−9X2 = 0
3
2
α − a

2
β =−3X1.

(46)

By solving the above systems, we get the following theorem:

Theorem 7.Assume (M,g) is a non-reductive four-dimensional homogeneous space of type b2. Then (M,g) has a Ricci

bi-conformal vector fields X = Xi∂i if and only if the following cases are true:

(1)a 6=±3, α = β = 0,X1 = X2 = X3 = X4 = 0 for all b,

(2)α =±β ,β 6= 0,a =±3,b = 0,X1 = X2 = X3 = X4 = 0.

Since X = 0, according to the defination of Killing vector fields LX g = 0, we have the following corollary:

Corollary 7.Any Ricci bi-conformal vector field X on space of type g= b2 is a Killing vector field.

Case (B3)
We consider Lie algebra of type (B3). For any vector field X = Xiui ∈m, we infer

LX g =







0 −aX3 aX2 0
−aX3 −2aX4 −2bX3 aX2

aX2 −2bX3 4bX2 0
0 aX2 0 0






. (47)

As well, the Lie derivative of the Ricci tensor is obtained by

LX S =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






. (48)

Putting (17), (18), (47), and (48) into (1) and (2), we infer


























aX3 = 0,

α = X2,

aX4 = 0,

bX3 = 0,

bα = 4bX2.

(49)

By inserting (17), (18), and (48) into (1) and (2), we get

β = 0. (50)

By solving the above systems, the following theorem is obtained:

Theorem 8.Consider (M,g) is a non-reductive four-dimensional homogeneous space of type b3. Then (M,g) has a Ricci

bi-conformal vector fields X = Xi∂i if and only if X3 = X4 = 0,α = X2,β = 0 for all X1,b,c,d and α .

For α = 0, according to the defination of Killing vector fields LX g = 0, we have the following corollary:

Corollary 8.Any Ricci bi-conformal vector fields X on space of type g= b3 is a Killing vector field for α = 0.

© 2024 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JJMS 17, No. 4, 569-582 (2024 ) / 581

4 Conclusion

The main study of the paper is to classify Ricci bi-conformal vector fields on non-reductive four-dimensional
homogeneous spaces. The non-reductive four-dimensional homogeneous pseudo-Riemannian manifolds are classified
with the Ricci tensor, and expressly explain the relation pseudo-Riemannian metrics and the Lie derivative of the metrics
with reference to a vector field. Then we calculated the Lie derivative of the metric g with respect to the vector field X ,
and the Lie derivative of the Ricci tensor in direction X . Then we prove which of vector fields are Ricci bi-conformal
vector fields, also we show which of them are Killing vector fields. It is also suggested that the Ricci bi-conformal vector
fields can be studied on the non-reductive four-dimensional homogeneous spaces associated to the canonical
connections, Kobayashi-Nomizu connections, and Schouten Van-Kampen connections.
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