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Abstract: A univariate generalized family of continuous distributions, tentatively called the odd moment exponential-G Poisson family

of distribution, has been introduced in this article. Among various techniques, the framework of compounding has been employed to

devise the odd moment exponential-G distribution with the truncated Poisson distribution. With exponential distribution as a key model

of the new family, the resultant model has been studied in lieu with theoretical and applied way. The theoretical foundation has been set

up including definite mathematical expressions for shapes of density and hazard function, moments and related generating functions,

process of residual life and its regeneration, ordered statistics, mechanics of material expressed in stress-strength expressions, Rnyi

entropy and mean deviation among others. The estimation of the model parameters is performed by the maximum likelihood method

for complete and censored scenario. A simulation study (for un-censored and censored case) is carried out under varying sample sizes

to assess the efficacy of the model parameters. Three applications to the failure time data sets related to system reliability are used to

showcase the extensibility of the proposed family. The postulated distribution is anticipated to be adaptable enough to model data sets

in circumstances where both entire (un-censored) and partial information (censored) is accessible.
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1 Introduction

The functional efficacy of a system is undoubtedly impacted by the way its components are conceived and constructed.
The model that the system engineer uses to assess the system’s natural uncertainty levels, nevertheless, has an equal
impact on the system’s productivity. As the systems are becoming more and more complex to changing global scenarios,
there still exists a need to define new models that capture the inherent uncertainties associated with failure of components.
While a vacuum may be despised by nature, it is not prevalent in science.

Clearly the preceding assertion holds as we have lately noticed a huge increase in generalised families in modelling
phenomena connected to many different scientific disciplines in modern literature. The exponential distribution (ED) has
served as the foundation for the development, extension, and investigation of majority of these families of distributions
in various scientific domains. The primary reason may be that the lifetime of a continuous process changing state is
best characterized by the ED as it plays a pivotal role in estimating the potential timing of occurrence of a significant
event. Additionally, it is the only distribution that holds the characteristic of bearing no after-effect, a feature commonly
known as memory-less property. By expanding the traditional ED, numerous extended families of continuous distributions
have lately been devised and employed to simulate a variety of phenomena. In the reference [1], Khan et al. provided a
concise review of countless families which are developed due to ED with odd ratio as the fundamental functional form.
Some of the prominent classes of distribution include: generalized exponential, odd generalized exponential; generalized
odd generalized exponential, exponentiated extended-G distribution, modified odd Weibull family of distributions ; odd
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flexibleWeibull-H family of distributions ; new generalized odd log-logistic family of distributions ; generalized odd
Lindley-G family ; extended Weibull - G family ; exponential Lindley odd log-logistic - G family, the Hjorth’s IDB
generator of distributions, amidst others. Interestingly, the author did propose an alternate generalised odd generalized
exponential family and studied its usefulness in evaluating risk associated with financial data.

Iqbal et al. [2] emphasized the importance of moment distributions in the perspective of reliability theory among
others, which are mainly the weights given to ED in particular ratio. They established a generalization of moment
exponential distribution (MEx), due to Dara and Ahmed [3], employing the technique termed as Lehmann Alternative-2
and highlighted its significance using an environmental data.

Similarly, Hasnain [4] proposed exponentiated moment exponential distribution based on Lehmann Alternative-1.
Hashmi et al. [5] constituted a special model, i.e. Weibull-MEx family based on famous odd Weibull-G family, initially
proposed by Bourguinon et al.[6], in relation to strength data. Bhatti et al. [7] studied the BurrXII-MEx distribution by
providing its utility to tax revenue and adherence limit data.

Reliability engineers frequently have to quantify the sustainability of systems with units linked in series, parallel or
mix configurations as per system design. System reliability is most associated using the framework termed as
compounding. For details related to compounding, the avid readers are referred to Tahir and Cordiero [8]. In the context
of mix configuration (continuous- discrete) structure, Mustapha in [9] studied the Poisson odd generalized exponential
(P-OGE) family. For t > 0, the distribution function of P-OGE is as

Fpoisson−OGE =

1− exp

(
−λ

(
1− e

−α
(

G(x;ζ )
1−G(x;ζ )

))β
)

1− e−λ
, where α,λ ,β > 0

The author derived essential mathematical and structural properties of the proposed family, studied two special cases
and applied them on two real life data set associated with component failure time data. In system reliability analysis, a
standard approach for dealing with engineering data is to plot the instantaneous failure rate as a function of time. However,
the failure rate behaviour of the postulated family was not addressed by the author, which somehow limited the family’s
potential applicability.

Ahsan-ul-Haq [10] proposed a discrete distribution viz. z viz. the Poisson-MEx distribution for over dispersed count
data using the similar compounding technique. Given the significance of MEx distribution in structural analysis, this
prompted us to postulate a family that is premised on MEx distribution that can account for continuous-discrete structures
with sufficient flexibility to model conventional (increasing, decreasing, constant) as well as un-convential (bathtub, upside
down bathtub and so forth) hazard rate function. This is achieved by introducing an extended class of distribution that
contains the Poisson-G (GP) and OMEx-G distribution by adding one additional parameter, so called Odd moment

exponential-G Poisson (OMEx-GP), which covers some important distributions as special and related cases. The OMEx-
GP family of distribution appears to be more flexible as compared to OMEx-G, which can only model an increasing failure
time data when exponential distribution is chosen as baseline distribution.

Often incomplete or missing data are observed in lifetime analysis of components in system reliability analysis.
Different censoring scheme are employed to observe the behavior of random events with feasible solutions. Right
censoring scheme are ususally encoutured with progressive, hybrid and random a special types. In progressive

censoring, data is observed at multiple stages indicating that the components are under observation and the exact
time (if it occur) is unknown ; in hybrid censoring, data can be observed simultaeously or in a sequential manner ;
in random censoring, the subjects are random in a sense that they are not systematically related to survivor time.
The present study is unique due to the fact that OMEx-GP has the ability to model complete as well as censored
data. An explanation of the paper’s structure is provided herewith: in section 1, we layout the basis of OMEx-GP family,
provide its physical interpretation and define the OMEx-Exponential Poisson (OMEx-EP) distribution by illustrating the
behavior of density and hazard rate function; section 2 establishes the theoretical foundation of OMEX-EP with various
mathematical and structural properties; section 3 comprises of inference related to complete and censored set of estimated
parameters; The convergence for model parameters are validated via a simulation study for complete and censored data in
section 4; section 5 provide the empirical findings when the proposed model is fitted on a failure time data for complete
and right-censored set of observation in comparison with eight well-established models in literature; the whole article is
summarized in section 6 with some conclusive remarks.

2 The model’s inception

Let k(t) be the probability density function (pd f ) of a random variable, say T , where T ∈ [m0,n1] for −∞ ≤ m0 <
m1 < +∞. Let W [K (z;∇)] be a function of cumulative distribution function (CdF) K (z;ζ ) of a random variable, say Z
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,depending on the vector parameter ∇ so that W [K (z;∇)] is a non-decreasing differentiable function belonging to [m0,n1]
ascribed interval such that W [K (z;∇)]→ m0 asz →−∞ and W [K (z;∇)]→ m1 asz →+∞ Alzaatreh et al. [4], defined the
CdF of the T −X family of distributions by

K (z;∇) =

∫ W [K(z;∇)]

m0

k(t)dt, z ∈ R (1)

Where W [K (z;∇)] satisfies the stated conditions mentioned above. The PdF corresponding to (2) is given by

k (z;∇) =

{
∂

∂ z
W [K (z;∇)]

}
k{W [K (z;∇)]} z ∈ R. (2)

Based on the T −X family, Haq et al., [32] proposed the odd moment exponential generalized family in short OMEx−
G by taking W [K (z;∇)] = K(z;∇)

1−K(z;∇)
and k(t) be the PdF of MEx distribution. The CdF of OMEx−G family of distribution

is defined by

GOMExG (z,β ,∇) =

K(z;∇)
1−K(z;∇)∫

0

t

β 2
e−t/β dt = 1−

{
1+

1

β

K (z;∇)

1−K (z;∇)

}
exp

{
− 1

β

K (z;∇)

1−K (z;∇)

}
(3)

The PdF corresponding to equation (3) is

gOMExG (z,β ,∇) =
k (z;∇)K (z;∇)

β 2 [1−K (z;∇)]3
exp

{
− 1

β

K (z;∇)

1−K (z;∇)

}
(4)

where k (z;∇) and K (z;∇) be the PdF and CdF of any baseline distribution, and ∇ is the feasible set of parameter
vector in a baseline distribution.

In the perspective of a mixed configuration of systems, the physical interpretation of the suggested model is quite
intriguing. Consider a structure typically consisting of N independent modules, where N is a truncated Poisson random
variable with a probability mass function (pm f )

pn = Pr(N = n) =
µn

n!(eµ − 1)
, µ > 0; n = 1,2, ....

The conditional Poisson distribution has it mean E (N) = µ (1− e−µ)
−1

with absolute squared deviation

V (N) =
(
µ + µ2

)
(1− e−µ)

−1 −µ2 (1− e−µ)
−2

, correspondingly. Assume that each interdependent component’s failure
time conforms to the CdF specified in equation (3). Let Ti denote the time of collapse of the iˆth subsystem and Z is the
period until the first of the N working subsystems malfunctions that is X = min{T1,T2, ...,Tn}. Then the conditional CdF

of Z|Nis

F(z/N) = 1−Pr(Z > z/N) = 1−P(Ti > z)N = 1−
[
1−KOMExG (z,β ,∇)

]N

So, the unconditional CdF of X (for z > 0) can be expressed as

F(x) =
1

eλ − 1

∞

∑
n=1

λ n
(
1−
[
1−KOMExG (z,β ,∇)

]n)

n!
(5)

=
1− exp

[
−λ KOMExG (z,β ,∇)

]

1− e−λ

It is worth mentioning here that if we take X = max{Z1,Z2, ...,Zn} and complying as explained previously, the
resultant CdF is

F(x) =
eλ KOMExG(z,β ,∇)− 1

eλ−1
(6)

In view of (5) and (6),the emergence of the new family of distributions unfolds as

FOMEx−GP (z;λ ,β ,∇) =
1− exp

[
−λ KOMExG (z,β ,∇)

]

1− e−λ
, λ ∈ R−{0} ;n = 1,2....... (7)
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Equation (7) is termed as the distribution function of odd moment exponential generalized Poisson family (“OMEx-
GP” for brevity) of distribution. The associated PdF and hazard rate function (hrf) of OMEx−GP family is given by

f OMExGP (z;λ ,β ,∇) =
(

1− e−λ
)−1

λ kOMExG (z;β ,∇)exp
[
−λ KOMExG (z;β ,∇)

]
,λ ∈ R−{0} ;β > 0, −∞ < z <+∞(8)

and

hOMEx−GP (z;λ ,β ,∇) =
λ kOMExG (z,β ,∇)exp

[
−λ KOMExG (z,β ,∇)

]

exp [−λ KOMEG (z,β ,∇)]− e−λ
(9)

respectively.

2.1 The OME- exponential Poisson (OME-EP) distribution

In this segment, we provide a distinctive case of the OMEx − GP family of distributions by choosing exponential
distribution as baseline and study their main distributional characteristics. For a positive real random variable x having

CdF K(z) = 1− e−δ z, such that δ > 0, the PdF and hrf of the OMEx−EP model, respectively, is given as

f OMEx−EP(z,λ ,β ,δ ) =
λ δe−δ z(1− e−δ z)

(1− e−λ)β 2e−3δ z
exp

{
− 1

β

1− e−δ z

e−δ z

}

exp

{
−λ

[
1−
(

1+
1

β

1− e−δ z

e−δ z

)
exp

(
− 1

β

1− e−δ z

e−δ z

)]}

And

hOMEx−EP(z,λ ,β ,δ ) =

λ δe−δ z(1−e−δ z)

β 2e−3δ z exp
{
− 1

β
1−e−δ z

e−δ z

}
exp
{
−λ
[
1−
(

1+ 1
β

1−e−δ z

e−δ z

)
exp
(
− 1

β
1−e−δ z

e−δ z

)]}

exp
{
−λ
[
1−
(

1+ 1
β

1−e−δ z

e−δ z

)
exp
(
− 1

β
1−e−δ z

e−δ z

)]}
− e−λ

2.2 Shape of the pdf’s and hrf’s

In order to investigate the range of shapes the family can exhibit, we have shown the PdF and hrf of the OMEx−EP with
specific parameter values.

From the plots in Figure 1 and Figure 2 it can be seen that the proposed family is very flexible and can offer many
different types of density shapes like strictly right-skewed, J-shaped or symmetric with increasing, upside down-bathtub
and increasing-decreasing-increasing shape of hazard rate function. This flexibility in hrf of the proposed model makes
it useful to model not just reliability data but data from distinct scientific field. For example, increasing-decreasing-
increasing shape can be used to model the business cycle in economics, nomadic migration in demography, nutrient
cycles in environmental studies etc.

3 Mathematical Properties

In this portion, the computational properties of the OMEx−GP are explored both theoretically and empirically in order
to demonstrate the appropriateness of the proposed family with exponential distribution as baseline model.
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Fig. 1: Density plots of the OMEx-EP distribution for random parameter values.

Fig. 2: Plots of hazard rate function of the OMEx-EP distribution for arbitrary .

3.1 Linear representation of density

We express (7) and (8) as infinite series expansion to show that the OMEx−GP can be written as a linear combination of
OMEx−G as well as a linear combination of exponentiated-G distributions. These expressions will be helpful to study
the mathematical characteristics of the OMEx-GP family.

Using the power series for the exponential function, we can write (8) as

f OMEx−GP (z;λ ,β ,∇) = kOMEG (z,β ,∇)
∞

∑
i=0

γi

[
KOMExG (z,β ,∇)

]i
(10)

f OMEx−GP (z;λ ,β ,∇) =
∞

∑
i=0

γ
′
i

d

dz

[
KOMExG (z,β ,∇)

]i+1
(11)

Where

γ
′
i =

(−1)iλ i+1

(1− e−λ)(i+ 1)i!
and γi = γ

′
i (i+ 1)

By means of Taylor series expansion, the CdF in (7) can be written as

FOMEx−GP (z;λ ,β ,∇) =
∞

∑
j=0

t j

[
KOMExG (z,β ,∇)

] j
(12)

Where

t j =
(−1) j+1λ j

(1− e−λ) j!
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3.2 Moment Generating Function

Using the findings of Section 3.1, it is straightforward to characterize the moment generating function (MgF) of the
OMEx−GP family in terms of those of the exponentiated OMExG distribution. Employing the results of equation (10) it
is evident that

MZ(S) = E
[
esZ
]
=

+∞∫

−∞

eszkOMEx−GP (z;λ ,β ,∇)dz

=

+∞∫

−∞

esz
∞

∑
i=0

γ
′
i

d

dz

[
KOMExG (z,β ,∇)

]i+1
dz

=
∞

∑
i=0

γ
′
i

+∞∫

−∞

esz d

dz

[
KOMExG (z,β ,∇)

]i+1
dz

=
∞

∑
i=0

γiMZ(S)

where MZ(s) is the mgf of a exponentiated OMExG distribution.
In Table 1 & 2, some empirical findings of OMEx−EP model pertaining to the practical implications of the results due

to well-known relationships of MgF have been reported. Particularly in Table 1, the numerical evaluations of descriptive
statistics are scripted while in Table 2, the relative measures such as coefficient of variation (Cvar), coefficient of skewness
(Cskw) and coefficient of kurtosis (Ckur) are placed. In quantitative research analysis, these descriptive measures are

used to summarize the main characteristics such as the central value and dispersion around the central value in a
dataset. Some visualization showing the flexibility of the proposed OMEx−EP in the overall shape and tail behavior are
also provided in Figure 3.

Parameter Combinations Descriptive Statistics

λ β δ µ σ2 Bsk Mkur

0.5 0.5 0.5 1.1871 0.3973 0.5819 63.2375

1.5 0.5 0.5 1.0184 0.3429 0.8168 57.0930

2.0 0.5 0.5 0.9427 0.3109 0.9278 56.9108

3.0 0.5 0.5 0.8122 0.2470 1.1167 60.9978

5.0 0.5 0.5 0.6296 0.1492 1.2906 82.4686

0.5 1.0 0.5 1.8758 0.7515 0.3185 59.6596

0.5 2.0 0.5 2.7671 1.1953 0.0719 66.9887

0.5 3.0 0.5 3.3710 1.4622 -0.0586 77.2882

0.5 5.0 0.5 4.2020 1.7739 -0.2053 98.6797

1.5 5.0 0.5 3.8380 1.7339 -0.0354 77.8294

3.0 5.0 0.5 3.3631 1.5224 0.1359 69.9930

5.0 5.0 0.5 2.9006 1.2000 0.1959 77.1263

0.5 0.5 2.0 0.2967 0.0248 0.5819 307.8143

0.5 1.0 2.0 0.4689 0.0469 03185 314.9609

0.5 2.0 2.0 0.6917 0.0747 0.0719 375.6020

2.0 2.0 2.0 0.5826 0.0661 0.3497 296.2607

3.0 3.0 2.0 0.6533 0.0739 0.3189 327.1315

5.0 5.0 2.0 0.7251 0.0750 0.1959 425.6953

Table 1: Numerical values of Mean (µ) , variance (σ2) , Bowleyskewness (Bsk) and Moorskurtosis of the OMEx-EP
distribution with different values of λ ,β and δ
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Fig. 3: dimensional plots of Bowley skewness (top row) and Moors kurtosis (bottom row) of the OMEx-EP distribution
for some arbitrary parameter combinations .

Random parameter Combinations Moments related measures

λ β δ µ σ2 Bsk Mkur

0.5 0.5 0.5 1.1871 0.3973 0.5819 63.2375

1.5 0.5 0.5 1.0184 0.3429 0.8168 57.0930

2.0 0.5 0.5 0.9427 0.3109 0.9278 56.9108

3.0 0.5 0.5 0.8122 0.2470 1.1167 60.9978

5.0 0.5 0.5 0.6296 0.1492 1.2906 82.4686

0.5 1.0 0.5 1.8758 0.7515 0.3185 59.6596

0.5 2.0 0.5 2.7671 1.1953 0.0719 66.9887

0.5 3.0 0.5 3.3710 1.4622 -0.0586 77.2882

0.5 5.0 0.5 4.2020 1.7739 -0.2053 98.6797

1.5 5.0 0.5 3.8380 1.7339 -0.0354 77.8294

3.0 5.0 0.5 3.3631 1.5224 0.1359 69.9930

5.0 5.0 0.5 2.9006 1.2000 0.1959 77.1263

0.5 0.5 2.0 0.2967 0.0248 0.5819 307.8143

0.5 1.0 2.0 0.4689 0.0469 03185 314.9609

0.5 2.0 2.0 0.6917 0.0747 0.0719 375.6020

2.0 2.0 2.0 0.5826 0.0661 0.3497 296.2607

3.0 3.0 2.0 0.6533 0.0739 0.3189 327.1315

5.0 5.0 2.0 0.7251 0.0750 0.1959 425.6953

Table 2: Moments related relative measures results of Cvar,Cskw and Ckur for OMEx-EP model with random combinations
of λ ,β and δ
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3.3 Residual Life and Reversed Residual Life

For gauging a unit’s ageing trait, the well-known reliability metrics mean residual life (MRL) and mean average reversed
residual life (ARRL) functions are frequently employed. They are indispensable to reliability studies and survival studies.
The MRL is a crucial factor to consider when assessing an item’s optimum burn-in period while ARRL is the period of
time from the failure time Z ∼ OMExEP(λ ,β ,δ ) to the observed time t, presuming that the failure took place sooner than
anticipated time. The waiting times, for instance, can be interesting when discussing various maintenance tactics. The pth

moment of the residual life, say mp(t) = E
[
(Z− t)P /Z > t

]
, p = 1,2, ...uniquely determines F(z).The pth moment of

the residual life of X is given by

mp(t) =
1

1−F(t)

∫ ∞

t
(z− t)pdF(z)

mp(t) =
1

1−F(t)

∞

∑
i=0

γ∗i

∫ ∞

t
zr
[
KOMExG (z,β ,∇)

]i
kOMExG (z,β ,∇)dz

where

γ∗i = γi (−1)p
p

∑
r=0

(
p

r

)
t p−r

By setting p = 1 in equation (12), the MRL of Z can be obtained which represents the expected additional life length
for a unit which is alive at age t. Following similar pattern by setting p =1in equation (13), the ARRL can easily be
obtained which represents the waiting time elapsed since the failure of an item on the condition that this failure had
occurred in (0, t).

3.4 Distribution of Order Statistics

Consider a random sample Z1,Z2, ...,Zn from any OMEx−GP distribution. Let Zr:n denote the rth order statistic. The PdF
of Zr:n can be expressed as

fr;n(z) =
n!

(r− 1)!(n− r)!
f OMExGP(z)FOMExGP(z)r−1

{
1−FOMExGP(z)

}n−r

=
n!

(r− 1)!(n− r)!

n−r

∑
m=0

(−1)m

(
n− r

m

)
f OMExGP(z)

{
1−FOMExGP(z)

}m+r−1

The PdF of the rth th order statistic for of the OMEx−GP can be derived by using the expansion of the PdF and CdF
as

fr;n(z) =
n!

(r− 1)!(n− r)!

n−r

∑
m=0

(−1)m

(
n− r

m

) ∞

∑
i=0

γi

[
KOMExG(z;β ,∇)

]i
kOMExG(z;β ,∇)

×
{

∞

∑
j=0

t j

[
KOMExG(z;β ,∇)

] j

}m+r−1

where γi and t j are de f ined above.

Using power series raised for positive power integer n(≥ 1) (see Gradshteyn and Ryzhik, [25])(
∑∞

i=0 aiu
i
)n

= ∑∞
i=0 cn,iu

i, where the for i = 1,2, ... are easily obtained from the recurrence equation

cn,i = (ia0)
−1

1

∑
m=0

[m(n+ 1)− i]amcn,i−m with cn,0 = an
0

Now

{
∞

∑
j=0

t j

[
KOMExG(z;β ,∇)

] j

}m+r−1

=
∞

∑
j=0

dm+r−1, j

[
KOMExG(z;β ,∇)

] j

Therefore, the density function of the rth order statistics of OMEx−GP distribution can be expressed as
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fr;n(z) =
n!

(r− 1)!(n− r)!

n−r

∑
m=0

(−1)m

(
n− r

m

) ∞

∑
i=0

∞

∑
j=0

γidm+r−1, j

[
KOMExG(z;β ,∇)

]i+ j
kOMExG(z;β ,∇) (13)

=
∞

∑
i, j

µi, j

[
KOMExG(z;β ,∇)

]i+ j
kOMExG(z;β ,∇)

=
∞

∑
i, j

µi, j

(i+ j+ 1)

d

dz

[
KOMExG(z;β ,∇)

]i+ j+1

where

µi, j =
n!

(r− 1)!(n− r)!

n−r

∑
m=0

(−1)m

(
n− r

m

)
γidm+r−1, j

3.5 Probability Weighted Moments

The (p,q,r)th probability weighted moments (PWMs) of Z is defined by Γp,q,r =
∫ +∞
−∞ zp [F(z)]q [1−F(z)]r f ′z)dz

(Greenwood et al., [24]). From equation (9), the sth moment of X can instantly be articulated as

E(Zs) =

∫ +∞

−∞
zs f OMEx−GP(z;λ ,β ,∇)dz

=
∞

∑
i=0

γi

∫ +∞

−∞
zs
[
KOMExG(z;β ,∇)

]i
kOMExG(z;β ,∇)dz

=
∞

∑
i=0

γiΓs,i,0

where γi is defined in section 3.1. As a result, the PWMs of the weighted sum of the OMExG distributions can be used
to describe the moments of the OMEx-GP.

Performing alike actions, we are able to define sth moment of the rth order statistic Z(r:n) in a random sample of size n

from OMEx-GP on using equation (14) as E(X s
r;n) = ∑∞

i=0 µi jΓs,i+ j,0, where µi j defined as above.

3.6 Mean Deviation

Let Z be the OMEx-GP chance variable with mean µ = E(Z and median M = ”Median”(Z)) = QOMEx−EP(0.5). The
mean deviation from the mean [δµ(Z) = E(|Z − µ |)] and that from the median [δM(Z) = E(|Z −M|)] can be stated as

δµ(Z) =

∫ ∞

−∞
|Z − µ | f (z)dz =

∫ µ

−∞
(µ −Z) f (z)dz+

∫ ∞

µ
(Z− µ) f (z)dz = 2µF(µ)− 2Ψ(µ) (14)

and

δM(Z) =

∫ ∞

−∞
|Z −M| f (z)dz =

∫ M

−∞
(M−Z) f (z)dz+

∫ ∞

M
(Z −M) f (z)dz = M− 2Ψ(M) (15)

apiece, where F(.) is the CdF of the OMEx-GP distribution, and Ψ(t) =
∫ t
−∞ z f (z)dz. By computing Ψ(t) as follows:

Ψ(t) =
∞

∑
i=0

γi

∫ t

−∞
z
[
KOMExG(z;β ,∇)

]i
kOMExG(z;β ,∇)dz

where γi defined in Section 3.
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3.7 Stress-Strength System Reliability

The likelihood that the component can withstand the stress is known as stress strength system reliability (SSSR). SSSR has
become a distinctive tool primarily in civil, automotive, and aviation sector. In stress-strength modeling R = P(Z1 < Z2)
is a measure of component reliability of the system with random stress Z1and strength Z2. It measures the probability
that the systems strength X2 is greater than environmental stress X1,applied on that system. The probability of failure of
a system is based on the probability of stress exceeding strength, whereas, the reliability of the system is the reversed
probability. the system reliability is given by

R = P(Z1 < Z2) == P(Strengt > Stress) =
∫ ∞

0
fstrengt(z)Fstress(z)dz

Let Z1 and Z2 be two independent arbitrary variables such that OMEx − GP(z;λ1,β1) and
OMEx−GP(z;λ2,β2)distributions, respectively. Then SSSR is defined as

R =

∫ ∞

0
f2(z;λ2,β2)F1(z;λ1,β1)dz

where f2(.) and F1(.) are the PdF and CdF of the OMEx−GP random variables Z1and Z2 respectively.

Note that the PdF and CdF of Z1 and Z2 are given by

f OMEx−GP(z;λ1,β1) = kOMExG(z;β1)
∞

∑
i=0

γ1
i

[
KOMExG(z;β1)

]i

and

FOMEx−GP(z;λ2,β2) =
∞

∑
j=0

t2
j

[
KOMExG(z;β2)

] j

Thus

R =
∞

∑
i=0

∞

∑
j=0

γ1
i t2

j

∫ ∞

0
kOMExG(z;β1)

[
KOMExG(z;β1)

]i [
KOMExG(z;β2)

] j
dz

where

γ1
i =

(−1)i λ i+1
1

(1− e−λ1)i!
and t2

j =
(−1) j+1 λ

j
2

(1− e−λ2) j!

3.8 Rényi entropy

After taking into consideration a system’s observable macroscopic elements like design, structure, or temperature etc.,
the entropy is a measure of volatility and instability associated with the system. Entropy, which is sometimes viewed as
a measure of ”disorder,” is a statistical mechanics term that describes the number of possible arrangements of a structure.
The higher the entropy, the greater the level of uncertainty it is with increased risk portfolio. Entropy is precisely a
logarithmic measurement of the number of system states with a significant chance of being occupied. Entropy approach
provides profound insight into the direction of spontaneous change for many banal processes. Rényi entropy is the most
frequently utilized approach to measure information while maintaining additivity for independent incidents. It is defined
as follows

IR(∆) = (1−∆)−1 log

(∫ ∞

−∞
f (z)∆ dz

)
, ∆ > 0 and ∆ 6= 1

Using power series exponential function in equation (9) we can write

f OMEx−GP(z;λ ,β ,∇)∆ = kOMExG(z;β ,∇)∆
∞

∑
m=0

ηm

[
KOMExG(z;β ,∇)

]m∆

Thus
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IR(∆) = (1−∆)−1 log

(∫ ∞

0
kOMExG(z;β ,∇)∆

∞

∑
m=0

ηm

[
KOMExG(z;β ,∇)

]m∆
dz

)

= (1−∆)−1 log

(
∞

∑
m=0

ηm

∫ ∞

0
kOMExG(z;β ,∇)∆

[
KOMExG(z;β ,∇)

]m∆
dz

)

where

ηm =
(−1)m λ ∆ (m+1)

(1− e−λ)∆ m!

Parameter ∆
λ β δ 0.1 0.6 1.5 2 3 5

0.5 0.5 0.5 1.4199 1.0024 0.8292 0.7824 0.7233 0.6605

1.5 0.5 0.5 1.3917 0.9174 0.7105 0.6550 0.5858 0.5139

2.5 0.5 0.5 1.3566 0.8091 0.5657 0.5028 0.4264 0.3493

5.0 0.5 0.5 1.2481 0.5098 0.2253 0.1600 0.0831 0.0069

0.5 1.5 0.5 1.8153 1.4937 1.3409 1.2969 0.2401 1.1786

0.5 5.0 0.5 2.1199 1.7995 1.61774 1.5655 1.4992 1.4296

2.0 5.0 0.5 2.1050 1.7773 1.5933 1.5398 1.4716 1.3996

5.0 5.0 0.5 2.0400 1.6239 1.4150 1.3585 1.2881 1.2151

2.0 2.0 2.0 0.4863 0.1381 −0.0347 −0.0843 −0.1477 −0.2155

5.0 5.0 2.0 0.6537 0.2376 0.0284 −0.0277 −0.0981 −0.1711

Table 3: Numericalcomputation of Rényi entropy of OMEx-EP distribution for arbitrary combinations of model
parameters λ ,β andδ

4 Estimation Method

This section is devoted to the estimation of the OMEx-GP model parameters via the maximum likelihood estimation
(MLE) method. The complete data and censored data cases are investigated separately. Also devised is the criteria test for
right censored data with estimated matrices for complete and censored data.

4.1 vvML estimation for complete data

Let z = (z1,z2, ...,zn) be a random sample of size n from OMEx−GP with parameter vector ρ = (λ ,β ,∇) where ∇ =
(∇1,∇2, ...∇n) is the parameter vector of K. The log-likelihood function is written as

l(ρ) = n logλ − n log
(

1− e−λ
)
+

n

∑
i=1

log(k(zi,∇))+
n

∑
i=1

log(K(zi,∇))− 2n logβ − 3
n

∑
i=1

log(1−K(zi,∇))

− 1

β

n

∑
i=1

K(zi,∇)

1−K(zi,∇)
−λ

n

∑
i=1

[
1−
{

1+
K(zi,∇)

[1−K(zi,∇)]β

}
exp

{
− K(zi,∇)

[1−K(zi,∇)]β

}]

Due to its complex nature, this log-likelihood function cannot be solved analytically, but it can be computationally
optimized by using R’s global optimization techniques. By taking the partial derivatives of the log-likelihood function
with respect to λ and β , we can acquire the components of the score vector Uρ = (Uλ ,Uβ ,U∇)

The asymptotic dispersion matrix of the ML estimation of parameters can be attained by flipping the Fisher
information matrix which can be derived, empirically, using the second partial derivatives of the log-likelihood function
with respect to each parameter. The i jth elements of In(ρ) are given by
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Ii j =−E
[
∂ 2l(ρ)/∂ρiρ j

]
, i, j = 1,2,q

It could be challenging to assess the aforementioned expectations precisely. In practice, one can estimate In(ρ) by the
observed Fisher’s information matrix În(ρ̂) =

(
Îi, j

)
defined as

Îi, j ≈
(
−∂ 2l(ρ)/∂ρiρ j

)
η=η̂

, i, j = 1,2+ q.

Using the general theory of MLEs under some regularity conditions on the parameters as n → ∞ the asymptotic
distribution of

√
n(ρ̂ − ρ) is Nk(0,Vn) where Vn = (v j j) = I−1

n (ρ). The asymptotic behavior remains valid if Vn is

substituted by V̂n = I−1
n (ρ). Using this result, large sample standard errors of jth parameter ρ j is given by

√
v̂ j j

4.2 ML estimation for partial data

Let us consider Z = (Z1,Z2, ...,Zn)
T to be a subset from the OMEx− EP distribution with the parameter vector ρ =

(λ ,β ,δ )T
which can contain right censored data with stable censoring time τ . Each Zi can be written as Zi = (zi,di)

where

The right censoring is anticipated to be non-informative, so the log-likelihood function can be written as:

Ln(ρ) =
n

∑
i=1

di ln f (zi,ρ)+
n

∑
i=1

(1− di) lnS(zi,ρ)

we obtain

Ln(ρ) =
n

∑
i=1

di

[
ln(λ δ )+ 2δxi − ln(ωi)− ln

(
1− e−λ

)

−2ln(β )− ui−λ ϕi

]
+

n

∑
i=1

(1− di)
[
ln
(

e−λ ϕi − e−λ
)
− ln(1− e−λ)

]

We suppose ui =
1−e−δ zi

β e−δ zi
, ϕi = 1− (1+ ui)e−ui , ωi = 1− e−δ zi

The ML estimatorsλ̂ , β̂ and δ̂ of the unknown parameters λ̂ , β̂ and δ̂ are derived from the nonlinear following score
equations

∂L

∂λ
=

n

∑
i=1

di

[
1

λ
− e−λ

1− e−λ
−ϕi

]
− δ

n

∑
i=1

(1− di)

[
e−λ −ϕie

−λ ϕi

e−λ ϕi − e−λ
− e−λ

1− e−λ

]

∂L

∂β
=

n

∑
i=1

di

[−2

β
+

ωi

β 2e−δ zi
+

λ uie
−ui

β

]
+

n

∑
i=1

(1− di)
λ uie

−uie−λ ϕi

β
(
e−λ ϕi − e−λ

)

∂L

∂δ
=

n

∑
i=1

di

[
1

δ
+ 2zi −

zi

β
+

zie
−δ zi

ωi

− ziωi

β e−2δ zi
− λ ziωie

−ui

β 2e−2δ zi

]
−

n

∑
i=1

(1− di)
λ ziωie

−uie−λ ϕi

β 2e−2δ zi
(
e−λ ϕi − e−λ

)

Since the precise form of λ̂ , β̂ and δ̂ cannot be obtained, so we avail numerical methods.
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5 Test statistic for right censored data

Let Z = (Z1,Z2, ...,Zn)
T be n i.i.d. chance variables assembled into r classes I j. To determine whether a parametric model

is acceptable F0

H0 : P(z ≥ Zi | H0) = F0(z,ρ), z ≥ 0 and ρ = (ρ1, ...,ρs)
T ,

When data are right censored and the parameter vector p is unknown, Bagdonavicius and Nikulin [5,6] proposed a
statistic test Y2 based on the vector

Z j =
1√
n
(ϖ j − e j) , j = 1,2, ...,r , with r ≻ s,

This one embodies the deviations between observed and probable numbers of failures ( ϖ j and e j) to fall into these
grouping intervals I j = (a j−1,a j] with a0 = 0, ar = τ where τ is a predetermined time. The authors considered ρ j as
random data functions such as the r intervals chosen have equal expected numbers of failures .

The statistic test Y 2 is defined by

Y 2 = MT Σ̂−M =
r

∑
j=1

(ϖ j − e j)
2

ϖ j

+Q

where M = (M1, ...,M2)T and Σ̂− is a generalized inverse of the covariance matrix Σ̂ and

Q = W T Ĝ−W Â j = ϖ j/n, ϖ j = ∑
i:Zi∈I j

δi,

Ĝ = [ĝll′ ]sxs , ĝll′ = îll′ −
r

∑
j=1

Ĉl jĈl′ jÂ
−1
j , Ĉl j =

1

n
∑

i:xi∈I j

di

∂

∂ ρ̂
lnh(zi, ρ̂),

îll′ =
1

n

n

∑
i=1

di
∂ lnh(zi, ρ̂)

∂ ρ̂l

∂ lnh(zi, ρ̂)

∂ ρ̂l′
, Ŵl =

r

∑
j=1

Ĉl jÂ
−1
j Z j, l, l′ = 1, ...,s.

ρ̂ is the maximum likelihood estimator of ρ on initial non-grouped data.

Under the H0, the limit distribution of the statistic Y 2 is a chi-square with r = rank(Σ) degrees of independence.
Modified chi-square tests are outlined and their usefulness is addressed in Voinov et al. [29].

The interval limits a j for grouping data into j classes I j are considered as data functions and defined by

â j = H−1

(
E j −∑i−1

l=1 H (zl , ρ̂)

n− i+ 1
, ẑ

)
, âr = max

(
Z(n),τ

)

such as the expected failure times e j to fall into these intervals are e j =
Er
r

for any j, with Er = ∑n
i=1 H(zi,ρ) . The

distribution of this statistic test Y 2
n is chi-square (see Voinov et al., []).

5.1 Criteria test for OMEx-EP distribution

n order to validate via the null hypothesis (H0 ) that the data belong to the OMEx−EP, a modified chi-squared type
goodness-of-fit test based on the statistic Y 2 has been conceptualized. Assume that τ is a finite time, and observed data
are grouped into r > s sub-intervals I j = (a j−1,a j] of [0,τ]. The limit intervals a j are considered as random variables such
that the expected numbers of failures in each interval I j are the same, so the expected numbers of failures e j are obtained
as

E j =
− j

r− 1

n

∑
i=1

ln
(

e−λ ϕi − e−λ
)
− ln

(
1− e−λ

)
, j = 1, ..r− 1
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5.2 Estimated matrix Ŵ

The modules of the estimated matrix Ŵ are derived from the estimated matrix Ĉ which is given by:

Ĉ1 j =
1

n

n

∑
i:zi∈I j

di

[
1

λ
−ϕi −

e−λ −ϕie
−λ ϕi

e−λ ϕi − e−λ

]

Ĉ2 j =
1

n

n

∑
i:zi∈I j

di

[
−2

β
+

ωi

β 2e−δ zi
+

λ uie
−ui

β
− λ uie

−uie−λ ϕi

β
(
e−λ ϕi − e−λ

)
]

Ĉ3 j =
1

n

n

∑
i:zi∈I j

di

[
1

δ
+ 2zi−

zi

β
+

zie
−δ zi

ωi

− ziωi

β e−2δ zi
− λ ziωie

−ui

β 2e−2δ zi
+

λ ziωie
−uie−λ ϕi

β 2e−2δ zi
(
e−λ ϕi − e−λ

)
]

and

Ŵl =
r

∑
j=1

Ĉl jÂ
−1
j Z j, l, l′ = 1,2,3 j = 1, ...,r

5.3 Estimated Matrix Ĝ

The estimated matrix Ĝ = [ĝll′ ]sxsis defined by

ĝll′ = îll′ −
r

∑
j=1

Ĉl jĈl′ jÂ
−1
j

where

îll′ =
1

n

n

∑
i=1

di
∂ lnh(zi, ρ̂)

∂ ρ̂l

∂ lnh(zi, ρ̂)

∂ ρ̂l′
, l, l′ = 1,2,3

Therefore the quadratic form of the test statistic can be obtained easily:

Y 2
n (ρ̂) =

r

∑
j=1

(ϖ j − e j)
2

ϖ j

+ŴT

[
ı̂ll′ −

r

∑
j=1

Ĉl jĈl′ jÂ
−1
j

]−1

Ŵ

6 Simulation study

Multiple probability simulation, commonly known as Monte Carlo simulation (MCs) technique, is a mathematical
technique which is used to estimate the possible outcomes of an uncertain event. Using the result defined in section 4.1
and 4.2, the precision of the method of estimations is appraised using the MLEs of OMEX-EP distribution parameters
via MCs, both empirically and graphically, in this subsection.

6.1 Simulations for complete data

In this section, both tabular and graphical Monte Carlo simulation study is conducted to compare the performance of
the different estimators of the unknown parameters for the OMEx−EP(λ ,β ,δ ) distribution. All the computations in
this section are done by R program. We generate N = 1000 samples of size n = 10 to 100 from OMEx−EP(λ ,β ,δ )
distribution with true parameters estimates. The initial parameter combinations (PCs) for each ρ =(λ ,β ,δ ) were selected
completely arbitrarily. The bias and MSE are calculated following the defined approach as

Biash =
1

N

N

∑
i=1

(ρ̂i −ρ) and MSEρ =
1

N
(ρ̂i −ρ)2

; ρ = λ ,β ,δ

The empirical findings of the bias and mean square error (MSE) by the MLEs are put forward in Table 4 and 5,
respectively. Additionally, a graphical simulation was also performed with results delivered in Figure 4 and Figure 5. We
perceive that when the sample size increases, the empirical biases and It is better to say that the MSE values decrease.
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skip

Sample

sizes

PC-I

λ =2.5,β =1.5,δ =2.1

PC-II

λ =1.5,β =0.5,δ =0.5

PC-III

λ =2.0,β =0.8,δ =1.8

PC-IV

λ =0.5,β =0.2,δ =1.0

n
Estimates
[
λ̂ , δ̂ , β̂

] Bias MSEs
Estimates
[
λ̂ , δ̂ , β̂

] Bias MSEs
Estimates
[
λ̂ , δ̂ , β̂

] Bias MSEs
Estimates
[
λ̂ , δ̂ , β̂

] Bias MSEs

10

2.822

1.985

1.991

0.256

0.183

-0.127

1.632

0.112

0.716

2.029

0.663

0.99

0.337

-0.201

-0.119

1.780

0.157

0.962

2.213

0.595

2.015

0.708

0.191

0.292

2.046

0.202

0.624

0.777

0.235

1.288

0.118

-0.051

0.132

2.16

0.442

0.789

20

2.794

1.893

2.164

0.182

0.118

0.113

1.093

0.092

0.499

1.702

0.525

0.87

0.314

-0.167

0.019

1.384

0.116

0.374

2.175

0.662

1.913

0.553

0.151

0.173

1.484

0.151

0.443

0.635

0.228

1.124

0.101

0.064

0.121

1.291

0.333

0.501

50

2.672

1.497

2.087

0.029

0.066

-0.002

0.701

0.073

0.335

1.636

0.513

0.994

0.220

-0.125

0.012

1.248

0.104

0.286

2.077

0.835

1.834

0.209

0.019

0.111

1.223

0.097

0.315

0.589

0.208

1.105

0.066

-0.004

0.078

1.205

0.275

0.367

100

2.592

1.495

2.043

0.010

0.059

0.005

0.414

0.069

0.331

1.502

0.509

1.994

0.117

-0.014

0.010

1.164

0.101

0.281

1.997

0.805

1.804

0.131

0.006

0.108

1.112

0.094

0.233

0.521

0.206

1.099

0.031

-0.001

0.042

1.201

0.243

0.232

Table 4: ML estimates, MSEs with average Bias of OMEx-EP distribution for arbitrary PCs
skip

Sample

sizes

PC-I

λ =1.6,β =0.72,δ =0.73

PC-II

λ =1.2,β =0.04,δ =0.14

PC-III

λ =1.7,β =0.2,δ =1.54

PC-IV

λ =0.12,β =1.17,δ=1.31

n
Estimates
[
λ̂ , δ̂ , β̂

] Bias MSEs
Estimates
[
λ̂ , δ̂ , β̂

] Bias MSEs
Estimates
[
λ̂ , δ̂ , β̂

] Bias MSEs
Estimates
[
λ̂ , δ̂ , β̂

] Bias MSEs

10

2.567

1.730

1.736

0.253

0.180

−0.130

4.295

0.137

1.229

2.037

0.672

0.999

0.332

−0.206

−0.124

4.060

0.814

2.424

2.222

0.604

2.024

0.706

0.189

0.290

3.546

1.702

2.124

0.238

1.291

1.291

0.115

−0.054

0.129

3.060

1.342

1.689

20

2.262

1.425

1.431

0.179

0.115

0.110

4.245

0.087

1.179

1.733

0.367

0.694

0.311

−0.170

0.016

3.910

0.664

2.274

2.217

0.599

2.019

0.550

0.148

0.170

3.446

1.602

2.024

0.238

1.291

1.276

0.098

0.061

0.118

2.960

1.242

1.589

50

1.757

0.920

0.926

0.026

0.063

−0.005

3.995

−0.163

0.929

1.428

0.062

0.389

0.217

−0.128

0.009

3.860

0.614

2.224

2.088

0.470

1.890

0.206

0.016

0.108

3.146

1.302

1.724

0.133

1.186

1.151

0.063

−0.007

0.075

2.660

0.942

1.289

100

1.557

0.720

0.726

0.016

0.053

−0.015

3.990

−0.008

0.874

1.178

0.037

0.139

0.067

0.027

0.008

3.850

0.604

2.214

1.735

0.117

1.537

0.193

0.003

0.095

2.796

0.952

1.374

0.118

1.171

1.306

0.040

−0.030

0.052

2.310

0.592

0.939

Table 5: ML estimates, MSEs with average Bias of OMEx-EP distribution for arbitrary PCs
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Fig. 4: The Biases (toprow) and MSEs (bottomrow)of the parameter values λ = 0.5,β = 0.3,δ = 0.4 for OMEx-EP
distribution.

Fig. 5: The Biases and MSEs of the parameter values λ = 1.5,β = 1.8,δ = 0.5 for OMEx-EP distribution .
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6.2 Simulations for censored data

We generated N = 10,000 right censored samples with different sizes (n = 25,50,150,350,500) from the OMEx−EP

model with parameters λ = 2, δ = 0.6 and β = 0.5. Using R statistical software and the Barzilai-Borwein (BB) algorithm
(Ravi, [36]), we calculate the ML estimators of the unknown parameters and MSE. The empirical findings are reported in
Table 6.

N = 10,000 Sample sizes (ni)

n1 = 25 n2 = 50 n3 = 150 n4 = 350 n5 = 500

λ̂ 1.9856 1.9896 2.9905 2.9953 2.9989

M.E.S 0.0119 0.0092 0.0076 0.0048 0.0035

δ̂ 07186 0.7086 0.6925 0.6925 0.6053

M.E.S 0.0196 0.0172 0.0136 0.0096 0.0083

β̂ 0.5962 0.5784 0.5458 0.5263 0.5023

M.E.S 0.0162 0.0143 0.0103 0.0086 0.0076

Table 6: Mean simulated values of MLEs p̂their corresponding square mean errors

The ML estimated parameter values, presented in Table 6, tend to align with the real parameter values.

6.3 Criteria test Y2
n

For testing the H0 that right censored data become from OMEx−EP model, we take into account the qualifying statistic
Y 2

n (ρ) as defined above for 10,000 simulated samples from the hypothezised distribution with different sizes (30, 50,150,
350, 500).Then, we evaluate empirical levels of statistical significance, when Y2 > χ2

ε , analogous to theoretical echelons
of significance (ε = 0.10,ε = 0.05,ε = 0.01), We choose r = 5. The outcomes are reported in Table 7.

N = 10,000 Sample sizes (ni)

n1 = 25 n2 = 50 n3 = 150 n4 = 350 n5 = 500

λ̂ 1.9856 1.9896 2.9905 2.9953 2.9989

M.E.S 0.0119 0.0092 0.0076 0.0048 0.0035

δ̂ 07186 0.7086 0.6925 0.6925 0.6053

M.E.S 0.0196 0.0172 0.0136 0.0096 0.0083

β̂ 0.5962 0.5784 0.5458 0.5263 0.5023

M.E.S 0.0162 0.0143 0.0103 0.0086 0.0076

Table 7: Mean simulated values of MLEs p their corresponding square mean errors

The H0 for which simulated samples are fitted by OMEx − EP distribution is broadly validated for the different
significance levels. Consequently, the test proposed in this work, can be used to fit data from this new distribution.

7 Applications

This section comprises of three real life data sets being employed to authenticate the expediency of the proposed OMEx-
EP. In the first sub-section, two complete failure time data sets (FD1 & FD2) have been applied befitting the OMEx-EP
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distribution using standard well known criterions while a censored data has been employed in the second part of this
section with relevant inference.

7.1 The Co-rival models

The considered well-established models which have been compared with the proposed OMEx-EP include exponential
(Exp), moment exponential (MEx), Marshall-Olkin exponential (MO-E) (Marshall and Olkin, [34]), generalized Marshall-
Olkin exponential (GMO-E) (Jayakumar and Mathew, [33]), Kumaraswamy exponential (Kw-E) (Cordeiro and de Castro,
[12]), Beta exponential (BE) (Eugene et al., [21]), Marshall-Olkin Kumaraswamy exponential (MOKw-E) (Handique et
al., [30]) and Kumaraswamy Marshall-Olkin exponential (KwMO-E) (Alizadeh et al., [11]) and Kumaraswamy Poisson
exponential (KwP-E) (Chakraborty et al., [18]) distribution. At this point, we consider adapting the failure time data sets in
view of clinical data (s), to show that the distributions from the proposed OMEx-GP family provide exceedingly superior
results than the corresponding distributions.

7.2 Complete failure time data sets: An outline

A period that has transpired cumulatively since a failure commenced is generally termed as failure time data. Failure time
may include period of time between the spread of a virus and the emergence of a symptom in an individual, duration
of a diagnostic trial’s death from detection, component malfunctioning in a configuration system etc. Failure analysis
seeks to discover the root cause of a failure (i.e., its most fundamental cause), presumably with the goal of eradicating
it and acquiring solutions that will avoid future occurrences. The first data (denoted as FD1), extracted from Klein and
Moschberger [38], represents the time of exposure period for those who are confirmed to be carriers of sexually transmitted
virus (STV). The data was recorded in months and is given as:

129,103,129,125,103,111,149,115,131,106,102,138,141,140,155,149,106,132,137,118,136,127,166,179,171,
178,166,164,144,148,145,145,166,153,153,173,184,203,170,177,124,157,207,168,192,182,191,193,195,194,
156,267,180,145,207,159,149,172
Recently, Khosa et al applied the data understudy (termed as FD2) on the newly proposed family of distributions

defined as the New Extended-F (NE-F). The data concerns the failure time of guinea pigs infected with virulent tubercle
bacilli, initially observed and reported by Bjerkedal [15]. The descriptive statistics related to FD1 & FD2 are summarized
in Table 8.

Data Sets n Zmin µZ̄ µZ SD β1 β2 Q1 Q2 Zmax

FD1 58 102 155.261 153 31.899 0.607 1.069 122.915 221.0674 267

FD2 72 0.100 1.851 1.560 1.200 1.788 4.157 1.080 2.303 7

Table 8: Descriptive Statistics to FD1 and FD2

Both FD1 & FD2 show the tendency of right skewed distributions with heavier tails making it suitable to fit OMEx-
EP model to the data. Supplementarily, the behaviour of the total time on test (TTT) plot (see Aarset, [39]) was also
considered in order to observe the associated failure of the datasets being considered. The TTT plot is a method for
obtaining details about the hazard function’s shape. A convex (concave) curvature denotes decreasing (increasing) hazard,
whilst a straight linear line signifies constant hazard for the data set. The TTT and estimated hrf plots for FD1 & FD2 in
Figure 6 and Figure 7 indicate that the data set also has an increasing and a slight increasing-decreasing-increasing hazard
rate, equivalent to the hrf shapes of the anticipated model.

7.3 Complete failure time data sets: The output

We use the MLE approach to estimate the distribution parameters for each dataset. We also evaluate the following model
validation measures (MVMs), which are based on parameter estimates such as Akaike’s information criterion (MVM-
I), Bayesian information criterion (MVM-III), Corrected Akaike’s information criterion (MVM-II) and Hannan-Quinn
information criterion (MVM-IV). The Anderson-Darling (MVM-V), Cramér-Von Mises (MVM-VI), and Kolmogorov
Smirnov (K-S) statistics (MVM-VII), along with their p-values, are used to contrast the OMEx-EP distribution’s fits to

© 2024 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JJMS 17, No. 4, 609-634 (2024 ) / 627

Fig. 6: TTT and estimated hrf (left) plots for FD1

Fig. 7: TTT and estimated hrf (left) plots for FD2 (right)& FD2 (left).

other competing models. In general, the best model for matching the data has lower values for these measures and a higher
p-value for K-S statistics. We have also provided the asymptotic standard errors and confidence intervals of the MLEs of
the parameters for each competing model.

Visual comparisons of the fitted density, CdF, sf and probability plots (PPP) for the two datasets are presented in Figure
8 & 9, respectively. These plots reveal that the proposed distributions provide a good fit to this data when compared to
co-rival models. Moreover, for FD1 & FD2, a correlation matrix is provided as an input for other complex analyses such
as exploratory factor analysis and structural equation models. For FD1 (right) & FD2 (left), it is given as




1 −0.389 0.791
. 1 0.213
. . 1







1 0.052 0.623
. 1 0.705
. . 1




Next, the covariance among each combination of components in a given stochastic process is represented by the
square matrix known as the dispersion matrix. The covariance matrix logically broadens the concept of variance to
alternate realities. For FD1(right) & FD2 (left), it is computed below
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


5.269 ∗ 10−06 −0.002 0.027
. 1.015 7.277
. . 211.264







8.494 ∗ 10−08 0.00002 1.151 ∗ 10−5

. 1.015 4.505 ∗ 10−02

. . 4.024 ∗ 10−03




Models λ̂ β̂ â b̂ δ̂

Ex (δ ) — — — —

0.493

0.085

[0.17,0.65]

ME (δ ) — — — —

1.747

0.193

[1.37,2.13]

MO−E

(β ,δ )
—

5.553

2.940

[0,11.41]

— —

1.379

0.193

[1.00,1.75]

GMO−E

(λ ,β ,δ )

0.728

0.111

[0.51,0.95]

26.575

13.761

[0,53.547]

— —

4.465

1.327

[1.86,7.07]

Kw−E

a,b,δ
— —

4.119

1.362

[1.449,6.789]

0.977

0.437

[0.120,1.834]

2.333

0.424

[1.502,3.164]

B−E

(a,b,δ )
— —

22.318

10.545

[1.828,42.808]

7.677

3.299

[1.211,14.143]

1.543

0.388

[0.783,2.303]

MOKw−E

(β ,a,b,δ )
—

0.119

0.035

[0.050,0.188]

2.244

1.253

[0.389,5.230]

1.273

0.369

[0.550,1.996]

0.112

0.024

[0.065,0.159]

KwMO−E

(β ,a,b,δ )
—

0.873

0.217

[0.448,1.298]

9.119

3.56

[2.128,16.110]

2.887

0.939

[1.047,4.727]

0.164

0.187

[0,0.531]

KwP−E

(λ ,a,b,δ )

2.705

3.007

[0,8.599]

—

5.898

2.242

[1.504,10.292]

3.332

1.289

[0.806,5.858]

0.869

0.555

[0,1.957]

OMEx−EP

(λ ,β ,δ )

6.029

2.346

[1.431,10.623]

37.531

14.535

[9.042,66.020]

— —

0.020

0.002

[0.012,0.024]

Table 9: MLEs,standarderrors with 95% sureness intervals(asides)values for FD1
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Models MVM-I MVM-II MVM-III MVM-IV MVM-V MVM-VI
MV M−V II

p−value

Ex (δ ) 613.76 612.39 613.36 612.54 0.563 0.22
0.19
(0.07)

ME (δ ) 602.24 600.37 601.72 602.11 0.505 0.25
014

(0.13)
MO−E
(β ,δ ) 589.38 596.32 597.67 597.98 0.83 0.21

0.10
(0.47)

GMO−E
(λ ,β ,δ ) 579.56 578.75 579.07 580.61 0.43 0.086

0.092
(0.77)

Kw−E
a,b,δ 590.16 593.85 591.29 593.46 0.53 0.132

0.098
(0.75)

B−E
(a,b,δ ) 593.78 591.22 590.57 592.25 0.51 0.131

0.108
(0.73)

MOKw−E
(β ,a,b,δ ) 588.52 587.28 588.37 587.98 0.39 0.127

0.10
(0.74)

KwMO−E
(β ,a,b,δ ) 579.56 580.39 579.09 581.64 0.47 0.109

0.10
(0.78)

KwP−E
(λ ,a,b,δ ) 580.03 582.66 579.75 581.83 0.48 0.073

0.097
(0.77)

OMEx−EP
(λ ,β ,δ ) 574.10 580.27 574.54 576.50 0.40 0.051

0.084
(0.80)

Table 10: Log-likelihood, MVM-I, MVM-II, MVM-III, MVM-IV,MVM-IV, MVM-V, MVM-VI,MVM-VII (p-value)
values for FD1

Models λ̂ β̂ â b̂ δ̂

Ex (δ ) — — — —
0.540
0.063

[0.42,0.66]

ME (δ ) — — — —
0.925
0.077

[0.62,108]

MO−E
(β ,δ ) —

8.778
3.555

[1.81,15.74]
— —

1.379
0.193

[1.00,1.75]

GMO−E
(λ ,β ,δ )

0.179
0.070

[0.04,0.32]

47.635
44.901

[0,135.64]
— —

4.465
1.327

[1.86,7.07]

Kw−E
a,b,δ — —

3.304
1.106

[1.13,5.47]

1.100
0.764
[0,2.59]

1.037
0.614
[0,2.24]

B−E
(a,b,δ )

— —
0.807
0.696
[0,2.17]

3.461
1.003

[1.49,5.42]

1.331
0.855
[0,3.01]

MOKw−E
(β ,a,b,δ ) —

0.008
0.002

[0.004,0.01]

2.716
1.316

[0.14,5.29]

1.986
0.784

[0.449,3.52]

0.099
0.048
[0,0.19]

KwMO−E
(β ,a,b,δ ) —

0.373
0.136

[0.11,0.64]

3.478
0.861

[1.79,5.17]

3.306
0.779

[1.78,4.83]

0.299
1.112
[0,2.48]

KwP−E
(λ ,a,b,δ )

4.001
5.670

[0,15.11]
—

3.265
0.991

[1.32,5.21]

2.658
1.984
[0,6.55]

0.177
0.226
[0,0.62]

OMEx−EP
(λ ,β ,δ )

4.232
0.365

[3.52,4.95]

0.569
0.026

[0.52,0.62]
— —

0.208
0.017

[0.17,0.24]

Table 11: MLEs, standard errors, sureness intervals (asides) values for FD2
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Models MVM-I MVM-II MVM-III MVM-IV MVM-V MVM-VI
MV M−V II

p−value

Ex (δ ) 234.63 236.91 234.68 235.54 6.53 1.25
0.27
(0.06)

MEx (δ ) 210.40 212.68 210.45 211.30 1.52 0.25
0.14
(0.13)

MO−E
(β ,δ ) 210.36 214.92 210.53 212.16 1.18 0.17

0.10
(0.43)

GMO−E
(λ ,β ,δ ) 210.54 217.38 210.89 213.24 1.02 0.16

0.09
(0.51)

Kw−E
a,b,δ 209.42 216.24 209.77 212.12 0.74 0.11

0.08
(0.50)

B−E
(a,b,δ ) 207.38 214.22 207.73 210.08 0.98 0.15

0.11
(0.34)

MOKw−E
(β ,a,b,δ ) 209.44 218.56 210.04 213.04 0.79 0.12

0.10
(0.44)

KwMO−E
(β ,a,b,δ ) 207.82 216.94 208.42 211.42 0.61 0.11

0.08
(0.73)

KwP−E
(λ ,a,b,δ ) 206.63 215.74 207.23 210.26 0.48 0.07

0.09
(0.79)

OMEx−EP
(λ ,β ,δ ) 205.42 212.23 205.77 208.12 0.41 0.05

0.08
(0.84)

Table 12: Log-likelihood, MVM-I, MVM-II, MVM-III, MVM-IV,MVM-V, MVM-VI,MVM-VII (p-value) values for
FD2

Table 9 and Table 11 for FD1 and FD2, respectively, list the MLEs of the parameters in conjunction with the associated
standard errors in parenthesis for every estimated model. Further, Table 10 and Table 12 list the multiple MVMs for the
models that were suited to the FD1 & FD2, respectively. The OMEx-EP is identified to be a superior choice than the
various analogies of exponential models for the entirety of the data relying on these findings based on the lowest values of
several considerations. Figure 8 also exhibits a graphic representation of the fitted density’s agreement with the observed
histogram, estimated CdF, estimated survival function (sf), and PP plot of the data set I. These findings imply that the
proposed distributions produce a considerably better fit to the particular set of data.
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Fig. 8: Plots of the estimated PdF (Top-Left),CdF(Top-Right),sf(Bottom-Left) and P-Pplots(Bottom-right) of the OMEx-
EP model for FD1.

Fig. 9: Plots of the estimated PdF (Top-Left),CdF(Top-Right),sf(Bottom-Left) and P-Pplots(Bottom-right) of the OMEx-
EP model for FD2.

7.4 Analysis of right censored data

When there is partial knowledge of a subject’s event time but not the definite occurrence time, the phenomena of censoring
unfolds. Well before research reaches its end, a participant doesn’t somehow experience the incident will be termed as right
censoring. Pike [35] documented the facts from a lab experiment in which rats’ vaginas were coated with the carcinogenic
agent DMBA, and the length of t days it took for cancer to manifest was observed. The information below pertains to
a 19-rat group (referred to as Group 1 in Pike’s study) with the observations marked with an exclamatory sign, being
censored:
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143,164,188,188,190,192,206,213,216,216∗,220,227,230,234,244∗,246,265,304

To assess if these data are matched by the OMEx-EP distribution, we apply the statistic test described in section 3.3
specifically. To that purpose, we first compute the maximum likelihood estimators of the unknown parameters.

ρ = (λ ,δ ,β )T = (2.435,0.695,0.4263)T

Data are clustered into r = 4 intervals I j We give the indispensable calculus in the following Table 13.

a j 191.53 218.63 241.63 304

ε j 5 6 4 4

e j 0.4895 0.4895 0.4895 0.4895

Ĉ1 j 0.3624 0.4587 -1.6352 0.7485

Ĉ2 j 1.5236 -1.2536 0.9748 -0.9568

Ĉ3 j -0.5196 0.9415 1.0236 0.2396

Table 13: values of a j,e j,ε j ,Ĉ1 j,Ĉ2 j,Ĉ3 j.

Then we obtain the value of the statistic test Y 2
n :

Y 2 =
r

∑
j=1

(ϖ j − e j)
2

ϖ j

+Q = 4.9365+ 2.6543= 7.5908

For significance level U3b5 = 0.05, the critical value χ2
5 = 9.4877 is superior than the value of Y 2

n = 7.5908, so we
can say that the proposed model OMEx-EP fit these data set.

8 Conclusion

The OMEx-G and Poisson-G families of distributions are amalgamated into a new extended class of distribution.
Mathematical features and its crucial special situations are researched. Simulation is used to explore and assess the MLE
for parameter estimation. Two real-world data sets fitting the application yield positive results in support of the
distributions from the suggested class. Because of the additional parameter and increased flexibility, this novel family is
anticipated to supplement the literature on continuous distributions and significantly boost model fitting.
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