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HAAR WAVELET COLLOCATION METHOD FOR TELEGRAPH

EQUATIONS WITH DIFFERENT BOUNDARY CONDITIONS

SHAHID AHMED (1) SHAH JAHAN(2) AND K.S NISAR (3)

Abstract. In this article, we study the Haar wavelet operational matrix approach

for finding the numerical solutions of hyperbolic telegraph equations under suitable

initial and boundary conditions. It has been approximated in both space and time

using the Haar wavelets series with unknown coefficients. The advantage of the

method is that it reduces the original problems to a set of algebraic equations that

can be solved using standard methods. The precision and efficacy of the numerical

method are shown via numerical examples. It has been shown experimentally that

the approach is straightforward, precise, when compared to some of the current

numerical methods.

1. Introduction

In 1957, Kirchoff was the first who introduce the telegraph equation for analyz-

ing the disturbances inside objects and wave propagation. The general form of the

hyperbolic telegraph equation is:

∂2ρ(z, t)

∂t2
+ 2a

∂ρ(z, t)

∂t
+ b2ρ(z, t) =

∂2ρ(z, t)

∂z2
+R(z, t), 0 ≤ z ≤ 1, t ≥ 0,(1.1)

with initial conditions (ICs)

ρ(z, 0) = f(z),
∂ρ(z, 0)

∂t
= f1(z), 0 ≤ z ≤ 1.
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Dirichlet boundary conditions(DBCs)

ρ(0, t) = Θ0(t), ρ(1, t) = Θ1(t), 0 ≤ t ≤ 1,

and Neuman boundary conditions(NBCs)

∂ρ(0, t)

∂z
= Θ0(z),

∂ρ(z, 0)

∂t
= Θ1(z).

Where a and b are arbitrary constant, and R(z, t) gives the field variable. Many

physical and biological problems such as electric signals on transmission lines, pulsed

blood flow inside the arteries, dispersive wave propagation, and random insect mo-

tions along hedge can be governed by the telegraph equation [14, 19, 27]. Over a cou-

ple of decades, the equation (1.1) has been solved by various analytical and numerical

methods, such as Laplace transform method [2], DRBIE method [7] finite-difference

method [4], homotopy perturbation method [28], cubic B-spline method [21], Ado-

main decomposition method [1], Monte-Carlo method [3], and Legendre Multiwavelet

Galerkin method [30], reduced differential transform method [22], variational iteration

method [5, 20], multi-wavelet Galerkin method [21]. It is frequently quite challeng-

ing to obtain an analytical solution to the partial differential equations (PDEs) that

are accustomed to describe numerous physical and biological events, numerical ap-

proaches play an essential role in the process of finding solutions to these types of

problems. The numerical techniques that are based on wavelets are one of the per-

suasive alternatives to the exsisting numerical methods. Wavelet methods achieved a

great success in numerical analysis and approximation theory due to computational

simplicity, straightforward methodology, and speedy convergence [16, 17, 29]. The

most frequently adapted wavelets for solving differential equations include Legendre

wavelets, Bernoulli wavelets, ultraspherical wavelets, and Haar wavelets. The dif-

ferential equations solving wavelet methods are based on Galerkin techniques or the

collocation approach. The Haar wavelet-based collocation techniques are mostly uti-

lized for solving linear and nonlinear PDEs [17]. Other distinguishing features of these

wavelets include their ability to detect the singular points, contain various boundary

conditions, and can be integrated at arbitrary times. Since derivatives don’t persist

at partition locations, It is not feasible to directly solve PDEs with these wavelets,

which is the biggest limitation. There are two different approaches that can be taken
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to get out of this predicament. Interpolating splines are used to impose some order

on the Haar wavelets is one approach, as proposed by Cattani. Another technique

is to employ the Integral techniques, which were first presented by Chen and Hsiao

[6]. They discussed the integration operational matrices for the Haar wavelet fam-

ily. Lipik [15], established the Haar wavelet method to solve an ordinary and PDEs.

Hussain et al. [11] studied the solution of proportional-delay Riccati differential

equations using Haar Wavelet. Islam et al. [26] used wavelet collocation technique to

solve boundary value problem, and also solved the elliptic boundary value problem

by using Haar wavelet collocation technique. Hariharan and Kannan[9] solved some

linear and nonlinear wave-type problems using Haar wavelet. For stability analysis

for Haar wavelet collocation method one can see [6, 16, 17, 25]. Recently, Irfan and

Shah [24], solved the time factional telegraph equation with DBC using Fibonacci

wavelet method. Shah [23] used the wavelet collocation technique to solve Bioheat

transfer model, additionally, they presented a computational wavelet-based approach

for tackling the dual-phase-lag system of bioheat transfer under hyperthermia [12].

P. Yadav et al. [31], solved the Fredholm integral equations of second kind using Fi-

bonacci wavelet collocation method. Motivated by the advantages of Haar wavelets

over other wavelets and their appealing features, we are deeply inspired to solve

hyperbolic telegraph equation (1.1) by operational matrices of integration of Haar

wavelet technique. The operational matrix approximation converts the main prob-

lem into simple algebraic equations whose solutions can be obtained using Newton’s

method. The benefits of the suggested method over previously published methods

are as follows:

• This method unlike standard methods, does not entail the calculation of the

Haar matrix’s inverse.

• The primary chunks of Haar wavelet operational matrices are generated once

and reused in for further computations, the CPU time is significantly reduced.

• Direct and simple applicability, with no need for intermediate approaches.

The proposed method avoids the occurrence of numerical instability.

• This technique is highly practical for resolving boundary value problems, be-

cause these conditions are instantly considered.
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Article is organized as: A brief description of the Haar wavelet and operational ma-

trices of integration is discussed in section 2. In section 3, the description of solution

technique for telegraph equations is provided. Section 4, present some numerical

examples to emphasize the efficiency and precision of the prescribed numerical tech-

nique, and in section 5 conclusion is drawn.

2. Haar wavelet and operational matrices

Here, our focus is to develop operational matrices for Haar wavelets. Since Haar

wavelet is the oldest and simplest kind of orthonormal wavelet with a compact sup-

port. Alfred Haar [10] a Hungarian mathematician, proposed the Haar wavelet in

1910.

Haar wavelet [16]: The Haar wavelet is a series of weighted square-shaped func-

tions that together constitute a wavelet basis. The mother wavelet for z ∈ [0, 1), is

defined as:

(2.1) hi(z) =























1 z ∈ [α, β),

−1 z ∈ [β, γ),

0 otherwise.

Where α = k
2j
, β = k+0.5

2j
, γ = k+1

2j
, here j = 0, 1, ..., m − 1, m = 2j+1, and j =

0, 1, ...M, indicates the maximum level of resolution. Also i = k + 2j − 1, 0 ≤ j < i,

and 1 ≤ k < 2j+1, j, k ∈ Z, are decomposition of index i. For i = 0, we have the

scaling function for Haar wavelet family (1.1).

h0(z) =











1 z ∈ [0, 1),

0 otherwise.

(2.2)

A function ρ(z) ∈ L2[0, 1], can be decomposed as an infinite series of functions that

is

ρ(z) =

∞
∑

i=1

cihi(z).
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This series is truncated to a limited number of terms in a bid to approximate by

utilizing Haar wavelet. Thus, any ρ(z) ∈ L2[0, 1], can be interpreted as.

ρ(z) ∼=

N
∑

i=1

cihi(z), N = 2j+1,

where j indicate highest degree of resolution. Following collocation points are con-

sidered to discretize Haar functions hi(z) by dividing the interval

zl =
l − 0.5

N
, l = 1, 2, ..., N.

Operational Matrices of Integration: In order to construct the operational ma-

trices of integration via Haar wavelet we integrate (2.1) as:

Pi,1(z) =

∫ z

0

hi(z
′)dz′,

and

Pi,2(z) =

∫ z

0

Pi,1(z
′)dz′.

These integrals can be calculated by using equation (1.1) as follows:

Pi,1(z) =























z − α z ∈ (α, β),

γ − z z ∈ [β, γ),

0 otherwise.

And Pi,2(z) as follows

Pi,2(z) =







































(z−α)2

2
z ∈ [α, β),

1
4m2 −

(γ−z)2

2
z ∈ [β, γ),

1
4m2 z ∈ [γ, 1),

0 otherwise.

For illustration j = 2, implies N = 8, we obtain Haar coefficient matrix H with

dimension N ×N
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H =







































1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 −1







































The operational matrices of integration P1 and P2 for collocation points zl, is given

by

P1 =







































0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375

0.0625 0.1875 0.3125 0.4375 0.4375 0.3125 0.1875 0.0625

0.0625 0.1875 0.1875 0.0625 0 0 0 0

0 0 0 0 0.0625 0.1875 0.1875 0.0625

0.0625 0.0625 0 0 0 0 0 0

0 0 0.0625 0.0625 0 0 0 0

0 0 0 0 0.0625 0.0625 0 0

0 0 0 0 0 0 0.0625 0.0625







































P2 =







































0.0020 0.0176 0.0488 0.0957 0.1582 0.2363 0.3301 0.4395

0.0020 0.0176 0.0488 0.0957 0.1543 0.2012 0.2324 0.2480

0.0020 0.0176 0.0449 0.0605 0.0625 0.0625 0.0625 0.0625

0 0 0 0 0.0020 0.0176 0.0449 0.0605

0.0020 0.0137 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156

0 0 0.0020 0.0137 0.0156 0.0156 0.0156 0.0156

0 0 0 0 0.0020 0.0137 0.0156 0.0156

0 0 0 0 0 0 0.0020 0.0137







































3. Description of Method

Consider second order PDEs with inital and boundary conditions

∂2ρ(z, t)

∂t2
+ 2a

∂ρ(z, t)

∂t
+ b2ρ(z, t) =

∂2ρ(z, t)

∂z2
+R(z, t), 0 ≤ z ≤ 1, t ≥ 0.(3.1)
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With ICs

ρ(z, 0) = f(z),
∂ρ(z, 0)

∂ρ
= f1(z), 0 ≤ z ≤ 1.

DBCs

ρ(0, t) = Θ0(t), ρ(1, t) = Θ1(t), 0 ≤ t ≤ 1,

and NBCs

∂ρ(0, t)

∂z
= Θ0(z),

∂ρ(z, 0)

∂t
= Θ1(z).

Now expand ρ̈′′ in term of Haar wavelets we have

(3.2) ρ̈′′(z, t) =

N
∑

i=1

cihi(z),

where ci, i = 1, 2, 3, ...N is the coefficient of Haar to be calculated and “..” and

“′′” represent differentiation with regard to t and z respectively. Integrate equation

(3.2) with regard to t and z, we obtain

(3.3) ρ̇′′(z, t) = ∆t

N
∑

i=1

cihi(z) + ρ̇′′(z, tn),

where ∆t = t− tn

(3.4) ρ′′(z, t) =
1

2
∆2t

N
∑

i=1

cihi(t) + ∆tρ̇′ρ(z, tn) + ρ′′(z, tn),

(3.5)

ρ′(z, t) =
1

2
∆2t

N
∑

i=1

ciPi,1(t) + ∆t[ρ̇′(z, tn) + ρ̇′(0, tn)] + ρ′(z, tn)− ρ′(0, tn) + ρ′(0, t),

(3.6) ρ(z, t) =
1

2
∆2t

N
∑

i=1

ciPi,2(z) + ∆t[ρ̇(z, tn)− ρ̇(0, tn)− zρ̇′(0, tn)]+

ρ(z, tn)− ρ(0, tn)− z[ρ′(0, tn)− ρ′(0, t)] + ρ(0, t),

(3.7) ρ̇(z, t) =
1

2
∆t

N
∑

i=1

ciPi,2(z) + [ρ̇(z, tn)− ρ̇(0, tn)− zρ̇′(0, tn)] + zρ̇′(0, t)− ρ̇(0, t),

(3.8) ρ̈(z, t) =

N
∑

i=1

ciPi,2(z) + zρ̈′(0, t) + ρ̈(0, t).
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Plug x = 1 in the equation (3.6)and (3.8) to utilize the initial and boundary condition,

then we obtain

(3.9) ρ′(0, t)− ρ′(0, tn) = −
1

2
∆2t

N
∑

i=1

ciPi,2(1)−∆t[Θ
′

1(tn)−Θ
′

0(tn)−

ρ̇′(0, tn)] + Θ1(t)−Θ1(tn) + Θ0(tn)−Θ0(t).

(3.10) ρ̈′(0, t) = −

N
∑

i=1

ciPi,2(1)−Θ
′′

0(t) + Θ
′′

1(t).

Subsitute (3.9) and (3.10) into the equation (3.4) and (3.6) and discretize, the result

by assuming z → zl and t → tn+1, we compute

(3.11) ρ′′(zl, tn+1) =
1

2
∆2t

N
∑

i=1

cihi(zl) + ∆tρ̇′′(zl, tn) + ρ′′(zl, tn).

(3.12)

ρ′(zl, tn+1) =
1

2
∆2t

N
∑

i=1

ciPi,1(zl) + ∆tρ̇′(zl, tn) + ρ′(zl, tn)−
1

2
∆2t

N
∑

i=1

ciPi,2(1)−

∆t[Θ
′

1(tn)−Θ
′

0(tn)] + Θ
′

1(tn+1)−Θ
′

1(tn) + Θ
′

0(tn) + Θ
′

0(tn).

(3.13)

ρ(zl, tn+1) =
1

2
∆2t

N
∑

i=1

ciPi,1(zl) + ∆t[ρ̇(zl, tn) + ρ̇(zl, tn)] + ρ(zl, tn)− ρ(0, tn)−

zl

2
∆2t

N
∑

i=1

ciPi,2(1)− zl∆t[Θ
′

1(tn)−Θ
′

0(tn)]−

zl[Θ1(tn)−Θ0(tn) + Θ0(tn+1)−Θ1(tn+1)] + Θ
′

0(tn+1).

(3.14) ρ̇(zl, tn+1) = ∆t

N
∑

i=1

ciPi,1(zl) + [ρ̇(zl, tn) + ρ̇(0, tn)] + zl∆t

N
∑

i=1

ciPi,2(1)−

zl[Θ
′

1(tn)−Θ
′

0(tn)]− zl[Θ
′

0(tn+1)−Θ
′

1(tn+1)] + Θ
′

0(tn+1),
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where

Pi,2(1) =











0.5 if i = 1

1
4m2 if i > 1.

(3.15) ρ̈(zl, tn+1) = ∆t

N
∑

i=1

ci[Pi,1(zl)−zlPi,1(1)]−zl[Θ
′′

0(tn+1)−Θ
′

1(tn+1)]−Θ
′

0(tn+1).

After subsituting (3.15) (3.14) and (3.11) in (1.1) we have,

(3.16) ∆t

N
∑

i=1

ci[Pi,1(zl)− zlPi,1(1)]− zl[Θ
′′

0(tn+1)−Θ
′

1(tn+1)]−Θ
′

0(tn+1)

+ 2[∆t

N
∑

i=1

ciPi,1(zl) + [ρ̇(zl, tn) + ρ̇(0, tn)] + zl∆t

N
∑

i=1

ciPi,2(1)−

zl[Θ
′

1(tn)−Θ
′

0(tn)]− zl[Θ
′

0(tn+1)−Θ
′

1(tn+1)] + Θ
′

0(tn+1)] + b2ρ(z, t) =

1

2
∆2t

N
∑

i=1

cihi(zl) + ∆tρ̇′′(zl, tn) + ρ′′(zl, tn).

This is an algebraic equation system, resolving it using Newton’s methods we find

the Haar wavelet coefficient ci after subsituting these coefficient in (3.13) we get the

approximate solutions.

4. Applications and Results

Here, the telegraph equation of the form (1.1) is solved via the Haar wavelet col-

location approach. For the purpose of demonstrating the efficacy of the suggested

numerical technique, we have taken into account a few edge cases on (1.1). These are

the examples that are being considered since either the exact solution has been found

for them or they are solved in a similar fashion utilising other numerical methods.

The precision of the Haar wavelet collocation methods is computed by the absolute

error L2 and maximum absolute errors L∞ by using the formulas given as:

L2 = ‖ρ(z, t)− ρn,m(z, t)‖,

L∞ = max |ρ(z, t)− ρn,m(z, t)|,
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where ρ(z, t) and ρn,m(z, t) are precise and approximate solutions respectively. Whole

comptational work is done on (Matlab–R2022a). To test the accuracy and conver-

gence of solutions for one-dimensional problems, we utilized the following theorem of

convergence, for the proof one can see [25].

Theorem 4.1. Let f ∈ L2(R) be a continous function defined on [0, 1) whose first

derivative is bounded, then the error norm at the j-th level satisfies the following

inequality

‖Em‖ = ‖u(x)− um(x)‖ ≤
K2

12

(

1

2M

)2

,

where K > 0 and M is a positive number related to the resolution level j-th of the

wavelet by M = 2j.

Example 4.1. Consider the case when a = 6, b = 2, 0 ≤ x ≤ 1 we have telegraph

equation (1.1) as

∂2ρ(z, t)

∂t2
+ 12

∂ρ(z, t)

∂t
+ 4ρ(z, t) =

∂2ρ(z, t)

∂z2
+R(z, t), 0 ≤ z ≤ 1, t ≥ 0.(4.1)

with ICs ρ(z, 0) = sin(z), ∂ρ(z,0)
∂t

= 0, 0 ≤ z ≤ 1, DBCs

ρ(0, t) = 0, ρ(1, t) = cos(t) sin(1), 0 ≤ t ≤ 1,

R(z, t) = −12 sin(t) sin(z) + 4 cos(t) sin(z).

The precise solution is ρ(z, t) = cos(t) sin(z). After solving with Haar wavelet collo-

cation technique we obtain the following system of algebraic equation:

(4.2)
N
∑

i=1

ci[Pi,2(zl)−zlPi,2(1)+12∆tPi,2(zl)−12∆tPi,2(1)−2zl∆
2tPi,2(1)+2zl∆

2tPi,2(zl)] =

∆t sin(tn+1) sin(zl)− cos(zn+1) sin(zl)− 12xl sin(tn) sin(zl)− 12 sin(tn+1) sin(zl)+

12 sin(tn+1) sin(1) + 4[cos(tn+1) sin(zl)− cos(tn) sin(zl)]− 4zl[∆t sin(tn) sin(1)−

cos(tn) sin(1)]− cos(tn) sin(1) + xl cos(tn+1) sin(1).
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Figure 1. (A) At j = 4, comparision of approximate and exact solu-

tion of example 4.1 (B) Behaviour of approximate solutions at different

time levels.

(a) (b)

(c) (d)

(e)

Figure 2. (A), (B),(C) behaviour of approximate solutions at differ-

ent resolutions. (D) Shows the absolute error (E) exact solution.
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Table 1. L∞ at various t values are compared, of example 4.1.

time(t) Present

Method

MWGM

[13]

CUBSM

[18]

CUBTSM

[21]

0.01 4.53e-12 5.70e-10 5.24e-06 4.63e-06

0.02 1.81e-12 3.83e-10 8.61e-06 1.01e-05

0.04 2.72e-12 3.84e-10 1.25e-05 1.42e-05

0.06 3.62e-11 5.74e-10 2.03e-05 1.71e-05

0.08 1.06e-11 1.46e-10 2.75e-05 1.90e-05

Table 2. Effects of time parameter t and the resolution level j, of

example 4.1.

Resolution

level j

Error t=0.01 t=0.03 t=0.05 t=0.07

3 L∞ 8.241e-05 7.417e-06 2.060e-05 3.215e-05

L2 1.556e-05 2.812e-06 9.887e-06 4.081e-05

4 L∞ 8.329e-05 7.496e-05 2.082e-05 2.582e-05

L2 1.091e-06 1.713e-05 1.171e-06 3.582e-06

6 L∞ 8.393e-06 7.554e-06 2.098e-05 4.120e-05

L2 3.906e-06 5.712e-06 3.857e-06 3.121e-06

To find the Haar coefficients ci solve the system of algebraic equation with Newton’s

method, using these Haar coefficient in (3.13) we have the approximate solutions. In

Table 1, we compares L∞ for different values of t, enabling one to analyze the efficacy

and accuracy of the proposed technique. Clearly, the results obtained by using Haar

wavelet are highy efficient in comparison to multi-wavelet Galerkin method [13] and

cubic B-splines method [21]. In Table 2, the effects of the time parameters t for

different resolution levels j = 2, 4, 6 are presented. As we increase the resolution

levels the error decreases exponentially and results are more accurate.
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Example 4.2. Consider the case when a = 0.5, b = 1, 0 ≤ z ≤ 1 as

(4.3)
∂2ρ(z, t)

∂t2
+

∂ρ(z, t)

∂t
+ ρ(z, t) =

∂2ρ(z, t)

∂z2
+R(z, t), 0 ≤ z ≤ 1, t ≥ 0.

With ICs ρ(z, 0) = sin(z), ∂ρ(z,0)
∂t

= 0, 0 ≤ z ≤ 1.

DBCs ρ(0, t) = 0, ρ(1, t) = 0, 0 ≤ t ≤ 1. R(z, t) = (2− 2t+ t2)(z− z2)e−t +2t2e−t.

Exact solution of (4.3) is ρ(z, t) = (z − z2)t2e−t.

Now solving this problem using Haar wavelet method we have

(4.4)
N
∑

i=1

ci[Pi,2(zl)− zlPi,2(1) + ∆tPi,2(zl)− zl∆tPi,2(1)] = 2t2e−t − (z − z2)t2e−t+

(2−2t+t2)(z−z2)e−t+2t2e−t+(z−z2)e−t+2t−∆t(2e−t2t+2e−tt2)−2(2−2t+t2)e−t.

Equation (4.4) is the system of algebraic equation for example 4.2, which on solving

by Newton’s method, coefficent cis are calculated. By using these cofficient in (3.13)

we obtain the approximate solutions.

Table 3. Maximum absolute error (L∞) at various t values are com-

pared, of example 4.2.

time(t) Present method CUBSM [18] CUBTSM [21]

0.01 2.177e-12 8.76e-05 5.91e-05

0.03 1.687e-12 3.29e- 05 1.78e-05

0.05 1.607e-12 5.90e-06 1.43e- 05

0.07 1.527e-12 3.04e-05 1.35e-05

0.09 2.153e-11 6.92e-06 5.20e-06
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Table 4. Effects of time parameter t and the resolution level N =

2j+1, of example 4.2.

j Error t=0.01 t=0.03 t=0.05 t=0.07

3 L∞ 2.177e-12 1.687e-12 1.607e-12 1.527e-12

L2 2.692e-13 2.692e-13 1.446e-13 4.647e-13

4 L∞ 2.142e-12 2.643e-12 1.946e-12 1.853e-12

L2 4.925e-14 4.695e-14 4.521e-14 4.315e-14

6 L∞ 2.758e-13 2.758e-13 2.628e-13 2.312e-13

L2 1.292e-14 4.181e-14 8.599e-14 6.658e-14
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Figure 3. (A), (B) and (C) shows the comparision of exact and Haar

solution at t = 0.1, t = 0.2 t = 0.3 and the resolution j = 4. (D)

shows approximate solution at various time levels.
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(a) (b)

(c) (d)

(e)

Figure 4. Physical behaviour of numerical solution is shown at dif-

ferent resolution level i.e. N = 2j+1 (A) at j = 2 (B) at j = 4 (C)

at j = 6 (D) shows physical behaviour of exact solution at j = 4 (E)

Graphically depicts the behaviour of absolute error of example 4.2

Example 4.3. Consider equation (1.1) with a = 0, b = 0, R(z, t) = 0, and a ≤ z ≤ b

as

∂2ρ(z, t)

∂t2
+

∂ρ(z, t)

∂t
+ ρ(z, t) =

∂2ρ(z, t)

∂z2
+R(z, t), 0 ≤ z ≤ 1, t ≥ 0.(4.5)

With ICs

ρ(z, 0) = z,
∂ρ(z, 0)

∂τ
= z2, 0 ≤ z ≤ 1.
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NBCs

∂u(0, t)

∂z
= 0,

∂u(1, t)

∂z
= 1 + 2 sinh(t), 0 ≤ t ≤ 1.

Exact solution of (4.5) is

ρ(z, t) = z + z2 sinh(t).

By Haar wavelet collocation technique we obtain the system of algebraic equations

as follows:

N
∑

i=1

ci[Pi,2(zl)− zlPi,2(1) =
zl

2
ρ

′′

(zl, tn) + zl sinh(tn+1).(4.6)

Solved it using Newton’s method or any other standard methods to find the Haar

coefficent ci using these cofficient in (3.13) we obtain the approximate solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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(z
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1.6
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U
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,t)

t=0.01

t=0.2
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t=0.4

t=0.5

(b)

(c)

Figure 5. (A) Representation of approximate solution and exact so-

lution at j=4 (B) Approximate solution at various time levels(C) Rep-

resents the behaviour of absolute error at resolution j = 5
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(a) (b)

(c) (d)

Figure 6. (A),(B),(C) 3D representation of numerical solution at res-

olution level j = 4, 6, 7 (D) exact solution at j = 7.

Table 5. Absolute error at various t values, for a fixed resolution level

j = 4, of example 4.3.

collocation point t=0.01 t=0.03 t=0.05

0.1 2.4415e-08 9.7703e-07 1.0964e-06

0.2 6.1045e-07 8.7902e-06 2.0121e-06

0.3 6.0743e-06 1.2258e-06 2.9163e-05

0.4 1.4067e-06 1.2258e-05 3.2352e-05

0.5 2.4447e-05 1.2519e-05 3.2536e-04

0.6 1.3555e-05 1.1639e-05 3.0622e-04

0.7 1.1468e-05 9.6966e-04 2.2539e-04

0.8 7.1498e-05 5.7511e-04 1.1249e-04

0.9 3.1206e-05 8.5397e-04 6.5703e-04
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In Fig. 5,6 we present 3D graph of approximate and exact solutions at different

resolution levels to demonstrate the efficiency of Haar wavelet collocation method the

absolute error is caculated at different time and demonstrated it in the form of Table

5. The obtained results are compared with [13] and [21]. We see that the outcomes

computed by Haar wavelet collocation method are quit efficient than other methods.

The error decreases as the resolution levels increases and the approximate solutions

is more closer to exact solution.

5. Conclusion

In this article, the hyperbolic telegraph equation with DBCs and NBCs are stud-

ied. The simplification was accomplished by constructing the operational matrices of

integration of Haar wavelet. This method simplifies the problem to a sparse system

of linear equations, which is then solved using Newton’s method. The usability of

the Haar wavelet collocation method is illustrated via three test examples with dif-

ferent boundary condition, we compare the obtained results with the multiwavelet

Galerkin method [13], B-splines method [18] and cubic trigonometric B-spline method

[21]. The obtained results demonstrates that the proposed technique for solving such

problems is reliable and efficient. For higher number of collocation points, more

precise results can be acquire, which is an essential features of the method. As we

increase the resolution level the error decreases exponentially and the results are

closer to exact solution. In examples 4.1, the maximum error is 1.81e − 12, and in

examples 4.2, at resolution j = 6 the maximum error is 1.292e− 14. Also the error

for t = 0.01, 0.03, 0.05, 0.07 corresponding to resolution levels j = 3, 4, 6, 7 is shown

in Tables 2,4 and 5. The present approach can be applied to both BVPs and IVPs

with a slight modification, but without the transformation of BVPs into IVPs or

vice versa. Additionally, the method can easily be extended to solve physical and

biological models.
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