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QMLE OF THE GENERAL PERIODIC GARCH MODELS

AHMED GHEZAL (1) AND IMANE ZEMMOURI(2)

Abstract. In this article, we study the necessary and sufficient conditions that

guarantee the strict stationarity of general periodic generalized autoregressive con-

ditional heteroskedasticity models (in the periodic sense). We also obtain condi-

tions for the existence of finite higher-order moments under general and tractable

assumptions. We propose the quasi-maximum likelihood estimation of general peri-

odic generalized autoregressive conditional heteroskedasticity parameters and derive

their asymptotic properties. We demonstrate the strong consistency and asymptotic

normality of the quasi-maximum likelihood estimation in special cases.

1. Introduction

In this article, we aim to study the generalization of periodic generalized autore-

gressive conditional heteroskedasticity (PGARCH) models as proposed by Bollerslev

and Ghysels ([6], 1996). These models focus on the conditional variance based on the

past information. We consider the process (εt)t∈Z, which satisfies εt = σtet, where

(et)t∈Z is a process independent of (σt)t∈Z and is i.i.d. with E {et} = 0, E {e2t} = 1.

The volatility process (σt)t∈Z is assumed to satisfy

(1.1)





σ2
t = h−1

t

ht := h (σ2
t ) = β0 (st) +

p∑
i=1

βi (st) gst (et−i) +
p∑

j=1

αj (st) fst (et−j) ht−j

,

where (st)t is a sequence of positive integers with a finite state space P = {1, ..., s} .
The coefficients αj (.) and βi (.) are defined on P and take values in R

+ with β0 (.) > 0.

Additionally, ht is defined on R
+ with values in R

+ as an invertible function, while
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h, g. and f. are real-valued and measurable functions. When s ≥ 2, the processes

(εt)t are nonstationary but exhibit periodic stationarity, making them attractive for

investigating volatility and distinct (seasonal) patterns. To rewrite model (1.1), let’s

consider st =
s∑

v=1

vI∆(v) (t) , where ∆ (v) := {sn+ v, (v, n) ∈ P× Z}. Consequently,

the model (1.1) is equivalent to

(1.2)





εsn+v = σsn+vesn+v

hsn+v := h
(
σ2
sn+v

)
= β0 (v) +

p∑
i=1

βi (v) gv (esn+v−i)

+
p∑

j=1

αj (v) fv (esn+v−j)hsn+v−j

with σ2
sn+v = h−1

sn+v, where α1 (v) , ..., αp (v) , β1 (v) , ..., βp (v) are the coefficients at

regime v. We can derive several models from Eq (1.1) or (1.2),

Model The volatility process (σt)

Periodic GARCH σ2
t = β0 (st) +

q∑
i=1

βi (st) ε
2
t−i

+
p∑

j=1

αj (st)σ
2
t−j

Periodic LGARCH σt = β0 (st) +
q∑

i=1

βi (st) εt−i

+
p∑

j=1

αj (st) σt−j

Periodic exponential GARCH log σ2
t = β0 (st) +

q∑
i=1

(βi (st) et−i + γi (st)

× (|et−i| −E {|et−i|})) +
p∑

j=1

αj (st) log σ
2
t−j

Periodic multiplicative GARCH log σ2
t = β0 (st) +

q∑
i=1

βi (st) log e
2
t−i

+
p∑

j=1

αj (st) log σ
2
t−j

Periodic logGARCH log σ2
t = β0 (st) +

q∑
i=1

βi (st) log ε
2
t−i

+
p∑

j=1

αj (st) log σ
2
t−j

Periodic asym-power GARCH σδ
t = β0 (st) +

q∑
i=1

βi (st) (|εt−i|+ γ (st) εt−i)
δ

+
p∑

j=1

αj (st)σ
δ
t−j

Table 1 : General PGARCH specification.
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Continuation of Table 1

Periodic threshold GARCH σt = β0 (st) +
q∑

i=1

(
βi (st) ε

−
t−i + γi (st) ε

+
t−i

)

+
p∑

j=1

αj (st)σt−j

Periodic GJR power GARCH σδ
t = β0 (st) +

q∑
i=1

(
βi (st) + γi (st) I{εt−i>0}

)
εδt−i

+
p∑

j=1

αj (st) σ
δ
t−j

Periodic absolute value GARCH σt = β0 (st) +
q∑

i=1

βi (st) |εt−i|+
p∑

j=1

αj (st) σt−j

Periodic nonlinear GARCH σδ
t = β0 (st) +

q∑
i=1

βi (st) |εt−i|δ +
p∑

j=1

αj (st)σ
δ
t−j

Periodic V GARCH σ2
t = β0 (st) +

q∑
i=1

βi (st) (et−i − γi (st))
2

+
p∑

j=1

αj (st) σ
2
t−j

In this article, we present some properties of the general PGARCH process. In

Section 3, we propose the Quasi-Maximum Likelihood Estimation (QMLE) of the

general PGARCH parameters and analyze their asymptotic properties. In Section

4, we demonstrate the strong consistency (SC) and asymptotic normality (AN) of

the QMLE in specific states.

Some notations used throughout the article are defined as follows:

• The identity matrix is denoted by I(n).

• The indicator function is denoted by I{.}.

• The zero matrix is denoted by O(n,m). For further clarification, we use O(n) to

represent O(n,n) and O(n) to represent O(n,1).

• ρ (M) represents the spectral radius of a matrix M(n,n).

• The vec operator is denoted by M̃ = vec (M).

• The Kronecker product of matrices is denoted by ⊗.

• The symbol  denotes convergence in distribution.

2. Strict stationarity

Consider the r = (2p+ 1)−dimensional random vectors defined as follows: ht :=

(fst (et) ht, ..., fst (et−p+1) ht−p+1, ht, gst (et) , ..., gst (et−p+1))
′
, H ′ :=

(
O′

(p), 1, O
′
(p)

)
and

e′t = (β0 (st) fst (et), O′
(p−1), β0 (st) , gst (et) , O

′
(p−1))

′. Additionally, we have an r ×
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r−matrix denoted as Λt with

Λst (et) :=




α1 (st) fst (et) ... αp (st) fst (et) 0 β1 (st) fst (et) ... βp (st) fst (et)

I(p−1) O(p−1) O(p−1) O(p−1) O(p−1)

α1 (st) ... αp (st) 0 β1 (st) ... βp (st)

0 ... 0 0 0 ... 0

O(p−1) O(p−1) O(p−1) I(p−1) O(p−1)




.

The process described by theEq. (1.1) is equivalent to the following process

(2.1) ht = Λst (et)ht−1 + et,

with ht = H ′ht, Eq. (2.1) is similar to the generalized PV AR process presented

lately by Franses and Paap [10]. Furthermore, since Gladychev [14], it has become

possible to utilize a non-periodic multivariate stationary process (Hn)n , where

Hn :=
(
h′
ns+1, ..., h

′
ns+s

)′ ∈ R
rs represents a non-periodic generalized V AR process,

i.e.,

(2.3) Hn = ΓnHn−1 + η
n
,

where

Γn :=




O(r) · · · O(r) Λ1 (ens+1)

O(r) · · · O(r) Λ2 (ens+2) Λ1 (ens+1)
...

. . .
...

...

O(r) · · · O(r)

{
s−1∏
v=0

Λs−v (ens+s−v)

}




rs×rs

,

η
n
:=




ens+1

Λ2 (ens+2) ens+1 + ens+2

...
s∑

k=1

{
s−k−1∏
v=0

Λs−v (ens+s−v)

}
ens+k




rs×1

,

where
s−1∏
v=0

Λv = I(r) if s < 1. Moreover, the process solution of (2.3) is strictly sta-

tionary (resp. ergodic) equivalent to the solution of (2.1) being strictly periodically

stationary (abbreviated as SPS) (resp. periodically ergodic, abbreviated as PE. See

Boyles and Gardner ( [9], 1983 )). The conditions that ensure the existence of SPS

solution of PGARCH models were studied by Bibi et al. ([1], [4]). However, in our

article, we derive the manageable conditions for general PGARCH .
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Since (et)t∈Z is an independent and identically distribution process, stationary and

ergodic, the process
(
Γn, ηn

)
n
is also stationary and ergodic. This is ensured by the

conditions E
{
log+ ‖Γ1‖

}
< ∞ and E

{
log+

∥∥∥η
1

∥∥∥
}
< ∞, where log+ (y) = log y ∨ 0

for any y > 0. The results presented in this subsection are based on the theorems

proven by Bougerol and Picard [8].

Theorem 2.1. Eq. (2.3) has a unique strictly stationary solution and ergodic if and

only if the top-Lyapunov exponent γL (Γ) of (Γn)n ,

(2.4) γL (Γ) := inf
n>0

{
1

n
E

{
log

∥∥∥∥∥

n−1∏

j=0

Γn−j

∥∥∥∥∥

}}
a.s.
= lim

t−→∞

{
1

n
log

∥∥∥∥∥

n−1∏

j=0

Γn−j

∥∥∥∥∥

}
,

is strictly negative. The unique stationary solution is ergodic, causal and given by

(2.5) Hn =
∑

k≥0

{
k−1∏

j=0

Γn−j

}
η
n−k

,

where the series (2.5) converges almost surely (a.s.) and

σ2
ns+v = h−1


∑

k≥0

({
k−1∏

j=0

Γn−j

}
η
n−k

⊗H

)′

F̃ ′


 ,

with F̃ ′ :=


O(r), . . . , O(r), I(r)︸︷︷︸

vth−block

, O(r), . . . , O(r)




r×rs

.

Proof. The proof of this theorem is identical to the Theorem 1.3 presented by Bougerol

and Picard [7]. �

Proposition 2.1. If the top-Lyapunov exponent of

({
s−1∏
v=0

Λs−v (ens+s−v)

})

n

is strictly

negative, then Eq. (2.3) also has a unique, strictly stationary solution, ergodic and

can be represented by the series (2.5).

Proof. A simple computation shows that

n∏

j=0

Γn−j = Γn




O(r) · · · O(r) O(r)

O(r) · · · O(r) O(r)

...
. . .

...
...

O(r) · · · O(r)

n−1∏
j=1

{
s−1∏
v=0

Λs−v (ens+s−v−j)

}




,
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therefore, due to the independence of the top-Lyapunov exponent from the norm, we

can conclude that γL (Γ) ≤ γL (Λ) . �

Corollary 2.1. If p = 1, a sufficient condition that ensures γL (Λ) < 0 is that

E

{
s∏

v=1

α1 (v) |fv−1 (e0)|
}

< 1. This condition is the same as the one presented in [13]

for the scalar case.

Proof. If p = 1, we have γL (Λ) = E

{
log

{
s∏

v=1

α1 (v) |fv−1 (e0)|
}}

. �

Example 2.1. In this example, Table 2 provides a summary of the available results

indicating that the condition γL (Λ) < 0 holds for certain specifications.

Model The condition γL (Λ) < 0

Periodic GARCH (1, 1)

{

s
∏

v=1
(α1 (v) + γ1 (v))

}

< 1

Periodic LGARCH (1, 1)
s
∏

v=1
E {|α1 (v) e0 + γ1 (v)|} < 1

Periodic exponential GARCH (1, 1)

{

s
∏

v=1
α1 (v)

}

< 1

Periodic multiplicative GARCH (1, 1)

{

s
∏

v=1
α1 (v)

}

< 1

Periodic logGARCH (1, 1)

{

s
∏

v=1
(α1 (v) + γ1 (v))

}

< 1

Periodic asym-power GARCH (1, 1)
s
∏

v=1
E

{∣

∣

∣
α1 (v) + (|e0|+ γ (v − 1) e0)

δ β1 (v)
∣

∣

∣

}

< 1

Periodic threshold GARCH (1, 1) E

{

s
∏

v=1

∣

∣

∣
α1 (v) + γ1 (v) e

+
0 + β1 (v) e

−
0

∣

∣

∣

}

< 1

Periodic GJR power GARCH (1, 1) E

{

s
∏

v=1

∣

∣α1 (v) +
(

β1 (v) eδ0 + γ1 (v) eδ0I{e0>0}

)
∣

∣

}

< 1

Periodic absolute value GARCH (1, 1) E

{

s
∏

v=1
(α1 (v) + |e0|β1 (v))

}

< 1

Periodic nonlinear GARCH (1, 1) E

{

s
∏

v=1

(

α1 (v) + β1 (v) |e0|δ
)

}

< 1

Periodic V GARCH (1, 1)

{

s
∏

v=1
α1 (v)

}

< 1

Table 2 : The condition γL (Λ) < 0 holds for some specifications.

When it is difficult to obtain the top Lyapunov exponent criterion, we propose the

following result

Theorem 2.2. (Hn)n is a stationary process solution of model (2.3) under the as-

sumption τl := E
{
e2lt
}
< ∞ with l > 1,

1. if ρ

(
s−1∏
v=0

E
{
Λ⊗l

s−v (e0)
})

< 1, then Hn ∈ Ll.

2. if ρ

(
s−1∏
v=0

E
{
Λ⊗l

s−v (e0)
})

≥ 1, then there is no strictly stationary solution (Hn)n

to the process (2.3) such that Hn ∈ Ll.
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Proof. The proof is identical to that of Theorem 4.1 in the work by Bibi and Aknouche

[4]. Firstly, we define R
rs−random vectors

P n (t) = O(rs)I{ n<0} + ΓtP n−1 (t− 1) I{ n≥0},

and Q
n
(t) = P n (t) − P n−1 (t) for all n ∈ Z. It is easy to prove that for all n ≥ 0,

P n (t) and Q
n
(t) are measurable functions of et, ..., et−n. We have for all n ∈ Z

Q
n
(t) = O(rs)I{ n<0} + η

t
I{ n=0} + ΓtP n−1 (t− 1) I{ n>0},

which implies that E
{
Q⊗l

n
(t)
}
=
(
E
{
Γ⊗l
t

})n
E
{
η⊗l

t−n

}
for all n > 0. Since

ρ

(
s−1∏
v=0

E
{
Λ⊗l

s−v (e0)
})

= ρ
(
E
{
Γ⊗l
t

})
< 1, we can conclude that P n (t)

Ll and a.s.−→
H t ∈ Ll satisfies Eq. (2.3). Secondly, from (2.3), we obtain for any n > 0

H t =

{
n∏

k=0

Γt−k

}
H t−n−1 +

n∑

j=0

{
j−1∏

k=0

Γt−k

}
η
t−j

,

and E
{
H⊗l

t

}
≥

n∑
j=0

(
E
{
Γ⊗l
t

})k
E
{
η⊗l

t−j

}
. This completes the proof. �

3. Asymptotic properties of the QMLE

In this section, we display the SC and AN of the QMLE for general periodic

GARCH models. The study conducted by Aknouche and Bibi [1] investigates the as-

ymptotic properties of PGARCH(p, q) models. Additionally, Straumann and Mikosch

[15] provide an analysis of the asymptotic properties of augmented GARCH for the

scalar case.

3.1. Strong consistency. The vector parameters is denoted as θ := (θ′ (1) , ..., θ′ (s))
′ ∈

Θ ⊂
(
R

∗
+ × R

2p
+

)s
. Let θ0 := (θ′0 (1) , ..., θ

′
0 (s))

′
the true parameter value is unknown.

Consider a time series (ε1, ..., εns)
′ defined by (1.1) with the parameter θ0, given as

follows

(3.1)





εst+v = σst+v (θ) est+v

hst+v (θ) = β0,0 (v) +
p∑

i=1

βi,0 (v) gv,θ (est+v−i)

+
p∑

j=1

αj,0 (v) fv,θ (est+v−j)hst+v−j (θ)

,
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with σ2
t (θ) = h−1

t (θ), the Gaussian log−quasi-likelihood, conditional on initial values

e0, ..., e1−p, h̃0, ..., h̃1−p is expressed as L̃ns (θ) =
−1
ns

n−1∑
t=0

s∑
v=1

l̃st+v (θ) . It is accompanied

by the contribution function l̃t (θ) =
ε2t
σ̃2
t
+ log σ̃2

t , t ≥ 1, where σ̃2
t = σ̃2

t (θ) and it can

be computed for t ≥ 1,





εst+v = σ̃st+v (θ) est+v

h̃st+v (θ) = β0 (v) +
p∑

i=1

βi (v) gv,θ (est+v−i) +
p∑

j=1

αj (v) fv,θ (est+v−j) h̃st+v−j (θ)
,

with σ̃2
t (θ) = h̃−1

t (θ) by giving initial values e0, ..., e1−p, h̃0, ..., h̃1−p. The QMLE

of the true parameters θ0, denoted by θ̂ns, is defined as θ̂ns = arg min
θ∈Θ

J̃ns (θ) =

arg max
θ∈Θ

L̃ns (θ) , where J̃ns (θ) = 1
ns

n−1∑
t=0

s∑
v=1

l̃st+v (θ) . Now, we will use the following

hypotheses to prove the strong consistency of the QMLE.

A1. θ0 ∈ Θ and Θ is compact.

A2. The top Lyapunov exponent γL (Λ
0) of the sequence

(
Λ0

st
(et)
)
t
is negative.

Here,
(
Λ0

st
(et)
)
t
denotes the sequence obtained by replacing θ0 with θ in (Λst (et))t .

A3. If, for all v ∈ P, σ2
v (θ) = σ2

v (θ0) a.s. then θ = θ0.

A4. For any θ ∈ Θ, gv,θ (e0) ≥ 0, fv,θ (e0) ≥ 0 and σ2
v (θ) ≥ σ > 0 for all v ∈ P.

A5. The function h is three times continuously differentiable and there exist

constants K > 0, δ such that the following conditions hold

a.

∣∣∣∣
(

∂h
∂θ(i)

(h−1 (σ2
v (θ)))

)−1
∣∣∣∣ ≤ Kσδ,

b.
∣∣∣ ∂2h
∂θ(i)∂θ(j)

(h−1 (σ2
v (θ)))

∣∣∣ ≤ Kσδ,

c.
∣∣∣ ∂3h
∂θ(i)∂θ(j)∂θ(k)

(h−1 (σ2
v (θ)))

∣∣∣ ≤ Kσδ,

for all σ2
v (θ) ≥ σ > 0, v ∈ P and i, j, k ∈ {1, ..., s (d+ 1)} .

Assumption A1 is a commonly used assumption in various real analysis results. As-

sumption A2 guarantees strict stationarity, ergodic (in the periodic sense), and the

existence of finite moments of (3.1). Assumption A3 is made to ensure the identifi-

ability of the parameter. Assumptions A4 and A5 are similar to those used in the

work of Aue et al.[2].
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Let (lt (θ))t be defined as lt (θ) =
ε2t
σ2
t
+ log σ2

t , where σ2
t = σ2

t (θ) and is obtained by





εst+v = σst+v (θ) est+v

hst+v (θ) = β0 (v) +
p∑

i=1

βi (v) gv,θ (est+v−i) +
p∑

j=1

αj (v) fv,θ (est+v−j)hst+v−j (θ)
,

with σ2
t (θ) = h−1

t (θ) , it is worth noting that σ2
t = σ2

t (θ0) and

Lns (θ) =
−1

ns

n−1∑

t=0

s∑

v=1

lst+v (θ) .

Now, we will present some of the results used to establish the SC

Lemma 3.1. Assume that A1-A5 are satisfied, the following items hold

1. lim
n−→∞

sup
θ∈Θ

∣∣∣L̃ns (θ)− Lns (θ)
∣∣∣ = 0 a.s. 2.

s∑
v=1

Eθ0
{lv (θ0)} < ∞.

3. If θ 6= θ0, then
s∑

v=1

Eθ0
{lv (θ)− lv (θ0)} ≥ 0.

4. For any θ 6= θ0, consider a neighborhood V (θ) such that

lim inf
n−→∞

inf
θ̃∈Θ

(
−L̃ns

(
θ̃
))

>

s∑

v=1

Eθ0
{lv (θ0)} .

Proof. First, we have

sup
θ∈Θ

∣∣∣L̃ns (θ)− Lns (θ)
∣∣∣ ≤

1

n
sup
θ∈Θ

n−1∑

t=0

s∑

v=1

(
ε2st+v

σ2

∣∣σ̃2
st+v (θ)− σ2

st+v (θ)
∣∣+
∣∣log σ̃2

st+v (θ)− log σ2
st+v (θ)

∣∣
)
,

and
∣∣∣h̃t − ht

∣∣∣ ≤ H ′

{
t∏

j=0

Λst−j
(et−j)

}∣∣∣h̃0 − h0

∣∣∣ ,

under assumption A2, we have
∣∣∣h̃t − ht

∣∣∣ a.s.−→0. Applying the mean value theorem, we

get

∣∣σ̃2
t (θ)− σ2

t (θ)
∣∣ =

∣∣∣h−1
(
h̃t (θ)

)
− h−1 (ht (θ))

∣∣∣ ≤ Kσδ
∣∣∣h̃t (θ)− ht (θ)

∣∣∣ a.s.−→0,

∣∣log σ̃2
t (θ)− log σ2

t (θ)
∣∣ ≤ 1

σ

∣∣σ̃2
t (θ)− σ2

t (θ)
∣∣ a.s.−→0.
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By the last inequality, we can establish that the supremum of the absolute difference

between L̃ns (θ) and Lns (θ) is bounded as follows

sup
θ∈Θ

∣∣∣L̃ns (θ)− Lns (θ)
∣∣∣ ≤ 1

nσ
sup
θ∈Θ

n−1∑

t=0

s∑

v=1

(
1 +

ε2st+v

σ

) ∣∣σ̃2
st+v (θ)− σ2

st+v (θ)
∣∣ .

By applying Lemma 1 proposed by Straumann and Mikosch [15], we find
∑
t≥0

ε2t |σ̃2
t (θ)− σ2

t (θ)| converges a.s., if E
{
log+ ε2t

}
< ∞. This result holds under

assumption A2.

Second, we can note that lv (θ0) = (l+v − l−v ) (θ0) , where l
+
v (θ0) = max (lv (θ0) , 0) and

l−v (θ0) = max (0,−lv (θ0)) . If we assume that
s∑

v=1

Eθ0
{l+v (θ0)} < ∞ and

s∑
v=1

Eθ0
{l−v (θ0)} < ∞. Under the condition A4, we get

s∑

v=1

Eθ0

{
l−v (θ0)

}
≤

s∑

v=1

Eθ0

{
log

(
max

(
1,

1

σ2
v (θ0)

))}

≤
s∑

v=1

log

(
Eθ0

{
max

(
1,

1

σ2
v (θ0)

)})
≤ max (0,−s log σ) < ∞,

on the other side
s∑

v=1

Eθ0

{
l+v (θ0)

}
≤ s+

1

δ

s∑

v=1

log

(
max

(
1

eδ
, Eθ0

{(
σ2
v (θ0)

)δ}
))

,

where e is the base of the natural logarithm function and δ > 0. Under the conditions

A2 and A4, we have

Eθ0

{(
σ2
v (θ0)

)δ}
= Eθ0






h−1


∑

k≥0

({
k−1∏

j=0

Γ−j

}
η−k

⊗H

)′

F̃ ′






δ




< ∞.

Third, we have

s∑

v=1

Eθ0
{lv (θ)− lv (θ0)} =

s∑

v=1

Eθ0

{
log

(
σ2
v (θ)

σ2
v (θ0)

)
+

σ2
v (θ0)

σ2
v (θ)

− 1

}

≥
s∑

v=1

Eθ0

{
log

(
σ2
v (θ)

σ2
v (θ0)

)
+ log

(
σ2
v (θ0)

σ2
v (θ)

)}
≥ 0,

because, for all x > 0, x − 1 ≥ log x. Fourth, is similar the proof of LemmaB.4 in

Bibi and Aknouche [1]. �

Based on the previous results, we can establish the following result regarding the SC

of θ̂ns.
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Theorem 3.1. According to Assumptions A1-A5, θ̂ns −→ θ0 a.s. as n −→ ∞.

Proof. The proof of this theorem follows a similar approach to the proof of Theorem

3 presented in the work of Bibi and Aknouche [1]. �

3.2. Asymptotic normality. In this subsection, we present the AN of θ̂ns. We

begin by considering the Taylor series expansion of ∂
∂θ
L̃ns (θ) around θ0, we have

0 =
1√
ns

ns∑

t=1

∂l̃t

∂θ

(
θ̂ns

)
=

1√
ns

ns∑

t=1

∂l̃t

∂θ
(θ0) +

(
1

ns

ns∑

t=1

∂2 l̃t

∂θ∂θ′
(θ∗)

)
√
ns
(
θ̂ns − θ0

)
,

where θ∗ lies between θ̂ns and θ0. Then

√
ns
(
θ̂ns − θ0

)
=

(
1

ns

ns∑

t=1

∂2 l̃t

∂θ∂θ′
(θ∗)

)−1(
− 1√

ns

ns∑

t=1

∂l̃t

∂θ
(θ0)

)
.

Consequently, we show that

(3.2)
1√
n

n∑

t=1

s∑

v=1

∂l̃st+v

∂θ
(θ0) N (O,Ω) ,

1

n

n∑

t=1

s∑

v=1

∂2 l̃st+v

∂θ∂θ′
(θ∗) → Ξ a.s.,

where the matrix Ω is defined by

Ω := (τ2 − 1)

(
s∑

v=1

Eθ0

{
∂2lv

∂θ∂θ′
(θ0)

})−1

= (τ2 − 1)Ξ−1 with Ξ :=

s∑

v=1

Eθ0

{
1

σ4
v (θ0)

∂σ2
v

∂θ
(θ0)

∂σ2
v

∂θ′
(θ0)

}

. The partial derivatives of lt (θ) are obtained by

∂lt

∂θ
(θ) =

(
1− ε2t

σ2
t (θ)

)
1

σ2
t (θ)

∂σ2
t

∂θ
(θ)

∂2lt

∂θ∂θ′
(θ) =

(
1− ε2t

σ2
t (θ)

)
1

σ2
t (θ)

∂2σ2
t

∂θ∂θ′
(θ)

+

(
2

ε2t
σ2
t (θ)

− 1

)
1

σ4
t (θ)

∂σ2
t

∂θ
(θ)

∂σ2
t

∂θ′
(θ)

(3.3)

Remark 1. Since ∂lt
∂θ

(θ) and ∂2lt
∂θ∂θ′

(θ) are measurable functions of the SPS and PE

process (εst+v) , then
1√
n

n∑
t=1

s∑
v=1

∂lst+v

∂θ
(θ) is a SPS and PE zero−mean martingale

difference.
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But consider the following additional conditions

A6. θ0 ∈ Θ̊, where Θ̊ is the interior of Θ.

A7. τ2 < ∞.

A8. There exists a neighborhood V (θ0) of θ0 and σ2
t (θ) is 3−times continuously

differentiable in θ with measurable derivatives such that

a.
s∑

v=1

Eθ0

{∥∥∥ 1
σ2
v(θ0)

∂σ2
v

∂θ
(θ0)

∥∥∥
}
< ∞,

b.
s∑

v=1

Eθ0

{∥∥∥ 1
σ2
v(θ0)

∂2σ2
v

∂θ∂θ′
(θ0)

∥∥∥
}
< ∞,

c.
s∑

v=1

Eθ0

{∥∥∥ 1
σ4
v(θ0)

∂σ2
v

∂θ
(θ0)

∂σ2
v

∂θ′
(θ0)

∥∥∥
}
< ∞,

d.
s∑

v=1

Eθ0

{
sup

θ∈V (θ0)

∣∣∣ ∂3lv
∂θ(i)∂θ(j)∂θ(k)

(θ)
∣∣∣
}

< ∞,

for all i, j, k ∈ {1, ..., s (d+ 1)} .
A9. The components of

∂σ2
t (θ)

∂θ
are considered as linearly independent random

variables.

The assumptions A6-A9 are similar to the assumptions in Strumann and Mikosch

[15]. We use some of our results to prove the AN .

Lemma 3.2. Assume that A1-A9, the following items are satisfied

1. Ξ is invertible matrix.

2. 1√
n

∥∥∥∥
n∑

t=1

s∑
v=1

(
∂l̃st+v

∂θ
(θ0)− ∂lst+v

∂θ
(θ0)

)∥∥∥∥→ 0,

and 1
n

sup
θ∈V (θ0)

∥∥∥∥
n∑

t=1

s∑
v=1

(
∂2 l̃st+v

∂θ∂θ′
(θ0)− ∂2lst+v

∂θ∂θ′
(θ0)

)∥∥∥∥→ 0 in probability when n → ∞.

3. 1√
n

n∑
t=1

s∑
v=1

∂l̃st+v

∂θ
(θ0) N (O,Ω) and 1

n

n∑
t=1

s∑
v=1

∂2 l̃st+v

∂θ∂θ′
(θ∗) → Ξ a.s.

Proof. First, it is show that the matrix Ξ is positive definite. Assuming X ′
0ΞX0 = 0

for some X0 ∈ R
d, this is equivalent to

s∑
v=1

Eθ0

{
1

σ4
v(θ0)

(
∂σ2

v

∂θ′
(θ0)X0

)2}
= 0, which

implies ∂σ2
v

∂θ′
(θ0)X0 = 0 a.s. for all v ∈ S. Under A9 implies X0 = Od. This concludes

the first item.
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Second, we have for all i ∈ {1, ..., s (d+ 1)}
∣∣∣∣∣

∂l̃t

∂θ (i)
(θ0)−

∂lt

∂θ (i)
(θ0)

∣∣∣∣∣ =

∣∣∣∣∣∣

(
1

σ̃2
t (θ0)

− 1
σ2
t (θ0)

)
∂σ2

t

∂θ(i)
(θ0)

(
1− ε2t

σ̃2
t (θ0)

− ε2t
σ2
t (θ0)

)

+
(
1− ε2t

σ̃2
t (θ0)

)
1

σ̃2
t (θ0)

(
∂σ̃2

t

∂θ(i)
(θ0)− ∂σ2

t

∂θ(i)
(θ0)

)

∣∣∣∣∣∣

≤ K
(
1 + e2t

)( 1

σ2
t (θ0)

∂σ2
t

∂θ (i)
(θ0)

∣∣σ2
t (θ0)− σ̃2

t (θ0)
∣∣

+

∣∣∣∣
∂σ̃2

t

∂θ (i)
(θ0)−

∂σ2
t

∂θ (i)
(θ0)

∣∣∣∣
)
,

applying the mean value theorem, we have

∣∣∣∣
∂σ̃2

t

∂θ (i)
(θ0)−

∂σ2
t

∂θ (i)
(θ0)

∣∣∣∣ ≤ Kσδ
∣∣∣h̃t (θ0)− ht (θ0)

∣∣∣ ,

which implies

∣∣∣∣∣
∂l̃t

∂θ (i)
(θ0)−

∂lt

∂θ (i)
(θ0)

∣∣∣∣∣ ≤ K
(
1 + e2t

) ∣∣∣h̃t (θ0)− ht (θ0)
∣∣∣
(

1

σ2
t (θ0)

∂σ2
t

∂θ (i)
(θ0) + σδ

)
,

using the Markov inequality, we have for all σ > 0

P

(
1√
n

n∑

t=1

(
1 + e2t

) ∣∣∣h̃t (θ0)− ht (θ0)
∣∣∣
(

1

σ2
t (θ0)

∂σ2
t

∂θ (i)
(θ0) + σδ

)
> σ

)

≤ 2

σ
√
n

(
Eθ0

{
1

σ2
t (θ0)

∂σ2
t

∂θ (i)
(θ0)

}
+ σδ

) n∑

t=1

E
{∣∣∣h̃t (θ0)− ht (θ0)

∣∣∣
}
,

by Eq. (3.3), we get

∣∣∣∣∣
∂2 l̃t

∂θ (i) ∂θ (j)
(θ0)−

∂2lt

∂θ (i) ∂θ (j)
(θ0)

∣∣∣∣∣ ≤
3∑

i=1

|Ii| ,

with

I1 =

(
1

σ̃2
t (θ0)

− 1

σ2
t (θ0)

)




(
1− ε2t

σ̃2
t (θ0)

− ε2t
σ2
t (θ0)

)
∂2σ2

t

∂θ(i)∂θ(j)
(θ0)

+
(

2ε2t
σ̃2
t (θ0)

+
2ε2t

σ2
t (θ0)

− 1
)

1
σ2
t (θ0)

∂σ2
t

∂θ(i)
(θ0)

∂σ2
t

∂θ(j)
(θ0)

+
(

2ε2t
σ̃2
t (θ0)

− 1
)

1
σ̃2
t (θ0)

∂σ̃2
t

∂θ(j)
(θ0)

∂σ2
t

∂θ(i)
(θ0)





,

I2 =

(
1− ε2t

σ̃2
t (θ0)

)
1

σ̃2
t (θ0)

(
∂2σ̃2

t

∂θ (i) ∂θ (j)
(θ0)−

∂2σ2
t

∂θ (i) ∂θ (j)
(θ0)

)
,

I3 =

(
2ε2t

σ̃2
t (θ0)

− 1

)
1

σ̃2
t (θ0)





(
∂σ̃2

t

∂θ(i)
(θ0)− ∂σ2

t

∂θ(i)
(θ0)

)
1

σ̃2
t (θ0)

∂σ̃2
t

∂θ(j)
(θ0)

+
(

∂σ̃2
t

∂θ(j)
(θ0)− ∂σ2

t

∂θ(j)
(θ0)

)
1

σ2
t (θ0)

∂σ2
t

∂θ(i)
(θ0)



 ,
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applying the mean value theorem and under assumption A5, we have

∣∣∣∣
∂2σ̃2

t

∂θ (i) ∂θ (j)
(θ0)−

∂2σ2
t

∂θ (i) ∂θ (j)
(θ0)

∣∣∣∣ ≤ Kσδ
∣∣∣h̃t (θ0)− ht (θ0)

∣∣∣ ,

and using the Markov inequality, we have 1
n

sup
θ∈V (θ0)

∥∥∥∥
n∑

t=1

s∑
v=1

(
∂2 l̃st+v

∂θ∂θ′
(θ0)− ∂2lst+v

∂θ∂θ′
(θ0)

)∥∥∥∥
→ 0 in probability when n → ∞.

Third, let Gt := σ (et−u, u ≥ 0) . Since Eθ0

{
∂lt
∂θ

(θ0)
∣∣∣Gt−1

}
= 0, we can utilize the

Central Limit Theorem (C.L.T.) of Bilingsley [5] and the Wold-Cramér theorem to

obtain (3.2). By employing a second Taylor series expansion of ∂2L̃ns

∂θ∂θ′
(θ) at θ0, we

have for all i, j, k.

1

n

ns∑

t=1

∂2lt

∂θ (i) ∂θ (j)
(θ∗) =

1

n

ns∑

t=1

∂2lt

∂θ (i) ∂θ (j)
(θ0)

+

(
1

n

ns∑

t=1

∂3lt

∂θ (i) ∂θ (j) ∂θ (k)

(
θ̃
))

(θ∗ − θ0) ,

with θ̃ being between θ∗ and θ0. Applying the ergodic theorem, we have, for all i, j,

k,

lim sup
n→∞

∣∣∣∣∣
1

n

ns∑

t=1

∂3lt

∂θ (i) ∂θ (j) ∂θ (k)

(
θ̃
)∣∣∣∣∣

≤ Eθ0

{
sup

θ∈V (θ0)

∣∣∣∣
∂3lt

∂θ (i) ∂θ (j) ∂θ (k)
(θ)

∣∣∣∣

}
< ∞ a.s.,

and

lim sup
n→∞

∣∣∣∣∣
1

n

ns∑

t=1

∂2lt

∂θ (i) ∂θ (j)
(θ0)

∣∣∣∣∣→ Ξ a.s.

�

The next result checks the AN of θ̂ns.

Theorem 3.2. Under conditions A1-A9, we get

√
ns
(
θ̂ns − θ0

)
 N (O,Ω) as n → ∞

Proof. The proof is very analogous to that of Francq and Zaköıan [11]. We utilize

Lemma 3.2 and apply the Slutsky Lemma to establish this result. �
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4. Examples

To provide a clearer illustration of the outcomes, we will now examine specific

instances that fall within the scope of our overarching theory. Our objective is to

demonstrate the superior characteristics and advantages of the QMLE in various

econometric models such as PEGARCH , PMGARCH , PAGARCH and PTGARCH .

Throughout these examples, we aim to show the SC and AN of the QMLE.

Example 4.1. The QMLE in the PEGARCH model

The PEGARCH model is obtained by setting in model (1.2)

h
(
σ2
sn+v

)
= log σ2

sn+v, fv (esn+v) = 1,

gv (esn+v) = a (v) esn+v + b (v) (|esn+v| − E {|esn+v|}) ,

where |a (v)| < b (v) for all v ∈ P and we denote ai (v) = a (v)βi (v) and bi (v) =

b (v) βi (v) . Let θ
′ (v) := (β0 (v) , a1 (v) , ..., ap (v) , b1 (v) , ..., bp (v)). The next corollary

presents the SC of the QMLE.

Corollary 4.1. If for all v ∈ P, σ2
v (θ)

a.s.
= σ2

v (θ0) , then θ̂ns
a.s.−→ θ0 as n −→ ∞.

Proof. It suffices to prove the validity of Assumptions A1-A5. Assumptions A1-A2

are immediate. Note that σ2
v (θ) = σ2

v (θ0) a.s.is aquivalent to log σ2
v (θ) = log σ2

v (θ0)

a.s. for all v ∈ P. Now, just prove that θ = θ0, let the polynomials Av (z) =
p∑

i=1

βi (v) z
i and Bv (z) = 1 −

p∑
j=1

αj (v) z
j have no common root with Av (1) 6= 0

and αp (v) + βp (v) 6= 0 for all v ∈ P. By convention, if p = 0, Av (z) = 0 and

Bv (z) = 1 for all v ∈ P. It follows from the proof of Bibi and Aknouche [1], Lemma

B.2, that θ = θ0, thus satisfying A3. Additionally, since fv (esn+v) = 1 ≥ 0 and

gv (esn+v) = a (v) esn+v + b (v) (|esn+v| − E {|esn+v|}) ≥ 0, because if en > 0, then

0 < (a (v) + b (v)) esn+v < 2b (v) esn+v and if en < 0, then 0 < (a (v)− b (v)) esn+v <

−2b (v) esn+v. This implies that (A4) holds, and (A5) is realized. This completes

the proof. �

Another result shows the AN of the QMLE.
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Corollary 4.2. We have

√
ns
(
θ̂ns − θ0

)
 N (O,Ω) ,

as n → ∞ where Ω := (τ2 − 1)

(
s∑

v=1

Eθ0

{
1

σ4
v(θ0)

∂σ2
v

∂θ
(θ0)

∂σ2
v

∂θ′
(θ0)

})−1

.

Proof. Assumptions (A6-A7) are immediate. The proofs for (A8) and (A9) are

provided in Francq and Zaköıan [11] (Theorem 2.2) and Berkes et al. [3] (Lemma

5.7). �

Example 4.2. The QMLE in the PMGARCH model

The PMGARCH model is obtained by setting in model (1.2)

h
(
σ2
sn+v

)
= log σ2

sn+v, fv (esn+v) = 1 and gv (esn+v) = log e2sn+v for all v ∈ P.

Let θ (v) := (β0 (v) , β1 (v) , ..., βp (v) , α1 (v) , ..., αp (v))
′
. The next corollary presents

the SC of the QMLE.

Corollary 4.3. If for all v ∈ P, σ2
v (θ)

a.s.
= σ2

v (θ0) , then θ̂ns
a.s.−→ θ0 as n −→ ∞.

Proof. It suffices to prove the validity of AssumptionsA1-A5. Assumptions (A1-A2)

are immediate. Note that σ2
v (θ) = σ2

v (θ0) a.s.is aquivalent to log σ2
v (θ) = log σ2

v (θ0)

a.s. for all v ∈ P. Now, just prove that θ = θ0, let the polynomials Av (z) =
p∑

i=1

βi (v) z
i and Bv (z) = 1 −

p∑
j=1

αj (v) z
j have no common root with Av (1) 6= 0 and

αp (v) + βp (v) 6= 0 for all v ∈ P. By convention, if p = 0, Av (z) = 0 and Bv (z) = 1

for all v ∈ P. It follows from the proof of Bibi and Aknouche [1], Lemma B.2, that

θ = θ0, thus satisfying A3. Assumptions (A4-A5) are holds. This completes the

proof. �

Another result shows the AN of the QMLE.

Corollary 4.4. We have

√
ns
(
θ̂ns − θ0

)
 N (O,Ω) ,

as n → ∞ where Ω := (τ2 − 1)

(
s∑

v=1

Eθ0

{
1

σ4
v(θ0)

∂σ2
v

∂θ
(θ0)

∂σ2
v

∂θ′
(θ0)

})−1

.
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Proof. Assumptions (A6-A7) are immediate. The proofs for (A8) and (A9) are

provided in Francq and Zaköıan [11] (Theorem 2.2) and Berkes et al. [3] (Lemma

5.7). �

Example 4.3. The QMLE in the PAGARCH model

The PAGARCH model is obtained by setting in model (1.2)

h
(
σ2
sn+v

)
= σ2

sn+v, fv (esn+v−j) = αj (v) + βj (v) (|esn+v−j |+ γ (v) esn+v−j)
2
,

gv (esn+v) = 0,

for all v ∈ P. Let θ (v) := (β0 (v) , β1 (v) , ..., βp (v) , α1 (v) , ..., αp (v) , γ (v))
′
. The next

corollary presents the SC of the QMLE.

Corollary 4.5. If for all v ∈ P, σ2
v (θ)

a.s.
= σ2

v (θ0) , then θ̂ns
a.s.−→ θ0 as n −→ ∞.

Proof. It suffices to prove the validity of Assumptions A1-A5. Assumptions (A1-

A2) are immediate. Note that σ2
v (θ) = σ2

v (θ0) a.s. for all v ∈ P. Now, just prove that

θ = θ0, let the polynomials Av (z) =
p∑

i=1

βi (v) z
i and Bv (z) = 1−

p∑
j=1

αj (v) z
j have no

common root with Av (1) 6= 0 and αp (v) + βp (v) 6= 0 for all v ∈ P. By convention, if

p = 0, Av (z) = 0 and Bv (z) = 1 for all v ∈ P. It follows from the proof of Bibi and

Aknouche [1], Lemma B.2, that θ = θ0, thus satisfying A3. Since fv (esn+v) ≥ 0 and

gv (esn+v) ≥ 0, which implies that (A4) holds and (A5) is realized. This completes

the proof. �

Another result shows the AN of the QMLE.

Corollary 4.6. We have

√
ns
(
θ̂ns − θ0

)
 N (O,Ω) ,

as n → ∞ where Ω := (τ2 − 1)

(
s∑

v=1

Eθ0

{
1

σ4
v(θ0)

∂σ2
v

∂θ
(θ0)

∂σ2
v

∂θ′
(θ0)

})−1

.

Proof. Assumptions (A6-A7) are immediate. The proofs for (A8) and (A9) are

provided in Hamadeh and Zaköıan [12] (Theorem 2.1) and Berkes et al. [3] (Lemma

5.7). �
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Example 4.4. The QMLE in the PTGARCH model

The PTGARCH model is obtained by setting in model (1.2)

h
(
σ2
sn+v

)
= σsn+v, fv (esn+v−j) = αj (v)+βj (v) e

−
sn+v−j+γj (v) e

+
sn+v−j, gv (esn+v) = 0,

for all v ∈ P with x+ = x ∨ 0 and x− = (−x) ∨ 0.

Let θ′ (v) := (β0 (v) , β1 (v) , ..., βp (v) , α1 (v) , ..., αp (v) , γ1 (v) , ..., γp (v)). The next

corollary presents the SC of the QMLE.

Corollary 4.7. If for all v ∈ P, σ2
v (θ)

a.s.
= σ2

v (θ0) , then θ̂ns
a.s.−→ θ0 as n −→ ∞.

Proof. It suffices to prove the validity of Assumptions A1-A5. Assumptions (A1-

A2) are immediate. Note that σ2
v (θ) = σ2

v (θ0) a.s. for all v ∈ P. Now, just prove

that θ = θ0, let the polynomials Av (z) =
p∑

i=1

βi (v) z
i, A+

v (z) =
p∑

i=1

γi (v) z
i and

Bv (z) = 1−
p∑

j=1

αj (v) z
j have no common root with Av (1)+A+

v (1) 6= 0 and αp (v)+

βp (v) + γp (v) 6= 0 for all v ∈ P. By convention, if p = 0, Av (z) = A+
v (z) = 0 and

Bv (z) = 1 for all v ∈ P. It follows from the proof of Hamadeh and Zaköıan [12],

Theorem 2.1, that θ = θ0, thus satisfying A3. Since f (en) ≥ 0 and g (en) ≥ 0, which

implies that (A4) holds and (A5) is realized. This completes the proof. �

Another result shows the AN of the QMLE.

Corollary 4.8. We have

√
ns
(
θ̂ns − θ0

)
 N (O,Ω) ,

as n → ∞ with Ω := 4 (τ2 − 1)

(
s∑

v=1

Eθ0

{
1

σ2
v(θ0)

∂σv

∂θ
(θ0)

∂σv

∂θ′
(θ0)

})−1

.

Proof. Assumptions (A6-A7) are immediate. The proofs for (A8) and (A9) are

provided in Hamadeh and Zaköıan [12] (Theorem 2.1) and Berkes et al. [3] (Lemma

5.7). �
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