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ON MULTI-HYPERRINGS

A. FAYAZI(1), T. NOZARI(2), R. AMERI(3) AND M. NOROUZI(4)

Abstract. In this paper, we introduce multi-hyperrings and obtain several related

results. Also, we study the concept of sub-multi-hyperring and different operations

on multi-hyperrings such that intersection, union, direct product, and homomor-

phism, and investigate their main properties.

1. Introduction

A multiset (a bag or mset) is an extension of the Cantorian set, where the repetition

of elements matters. Yager [15] in 1986 studied the bag structures. Hyperstructures

are extensions of classical (algebraic) structures. Marty [7] defined hypergroup as

a generalization of a group. This “theory” was developed with the contributions of

various authors. For instance, Krasner [6] in 1983, introduced the notion of hyperrings

and hyperfields.

In this paper, we study a new algebraic structure obtained by associating a mul-

tiset with a Krasner hyperring calling it multi-hyperring. Till now, the combina-

tion between multisets and hyper compositional structures has primarily been ex-

plored within the context of hypergroups, establishing the concept of a (fuzzy) multi-

hypergroup. Consequently, utilizing the same terminologies, this association may

arise in future researches. Hence, we extend the previous studies to encompass the

combination of multisets and Krasner hyperrings. This theory holds for its appli-

cability in both mathematics and computer sciences. The present paper has the

following structure: First, we introduce definitions related to multiset and Krasner

hyperring. Then we establish the concept of multi-hyperrings and study some of
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their properties. The last section, focuses on analyzing various operations on multi-

hyperrings. In particular, we show that the intersection (direct product, image) of

two multi-hyperrings is a multi-hyperring. Moreover, multi-hyperrings drawn from

non-commutative Krasner hyperrings could be commutative. Also, we analyze some

homomorphic properties of multi-hyperrings.

2. Preliminaries

Definition 2.1. [5] We display a multiset (mset) M, over the set X, with a function

CM : X −→ N, where N represents the set of all non-negative integers. For each

x ∈ X , CM(x) is the characteristic value of x in A and indicates the number of

occurrences of the element x in A. We denote the set of all multisets over X by

MS(X). A multiset A is a set if CM(x) = 0 or 1 for all x ∈ X . Let M and N be

two msets over a set X. If CM(x) ≤ CN(x), for all x ∈ X , then M is a sub-multiset

(submset) of N. ∅ is a sub-multiset of any multiset. We define the intersection of two

multisets M and N with CM∩N(x) = CM(x) ∧ CN(x) for all x ∈ X , (∧ =minimum).

Similarly, we can define the sum M +N and the union M ∪N .

Example 2.1. [11] Assume that we have several objects non-distinguishable except

for their labels a, b, or c. For example, we have two balls with the label a and one

ball with b, three with c, but no ball with the label d. Furthermore, we refrain from

attaching extra labels to distinguish the two elements. Thus a natural representation

of the situation is that we have a collection {2/a, 1/b, 3/c}. In this case, we say that

there are three occurrences of c, two occurrences of a, and so on.

For a set ∅ 6= X and the family of all non-empty subsets of X (P ∗(X)), we de-

fine a binary hyperoperation on X with + : X × X −→ P ∗(X), and call (X,+) a

hypergroupoid. Moreover, if (X,+) is associative, we call it semihypergroup, and if

X = X + a = a +X, ∀a ∈ X , we call it quasihypergroup. If (X,+) is both a semi-

hypergroup and a quasi-hypergroup, we call it hypergroup. As it is defined in [8], A

commutative hypergroup (N,+) is called canonical if: (1) there exists an element 0

in N such that for each x in N there exists a unique element x
′

in N, denoted by −x,

and 0 ∈ x+ x
′

; (2) z ∈ x+ y implies y ∈ z − x, for each x, y, z ∈ N . As it is proved

in [8], x+ 0 = x, for all x in N .
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Definition 2.2. [6] A Krasner hyperring is a triple (R,+, .) which satisfies the fol-

lowing axioms:

R1 : (R,+) is a canonical hypergroup with 0 as its neutral element;

R2 : (R \ {0}, .) is a semigroup, and a.0 = 0.a = 0, for all a ∈ R;

R3 : The operation . distributes over the hyperoperation +, that is, a.(b + c) =

a.b+ a.c and (b+ c).a = b.a + c.a, for all a, b, c ∈ R.

If (R, .) is a unitary commutative semigroup, the Krasner hyperring (R,+, .) is

unitary commutative. We say that ∅ 6= A ⊆ R is a sub-hyperring of R, if b+ d ⊆ A,

−b ∈ A and b.d ∈ A, ∀b, d ∈ A. Let S be a Krasner hyperring. A map h : R −→ S

is a homomorphism, if h(b+ d) = h(b) + h(d), h(b.d) = h(b).h(d) for all b, d ∈ R and

h(0) = 0. If (R \ {0}, .) is a commutative group, then the triple (R,+, .) is called

hyperfield.

Example 2.2. [6, 9] Let F be a field and G a sub-group of F ∗. Then F/G forms a

“hyperfield” if the multiplication and the addition are defined as follows: xG.yG =

xyG, xG + yG = {(xp + yq)G : p, q ∈ G}, for all xG, yG ∈ F/G. If F is a ring and

G is a normal subgroup of F ∗, then F/G becomes a hyperring.

All throughout this paper, we consider X = (X,+, .) as a Krasner hyperring with

the additive identity 0.

3. Properties of Multi-Hyperrings

Definition 3.1. Let A be a mset drawn from X. Then A is said to be a (Krasner)

multi-hyperring if for all a, d in X,

(1)
∧

b∈a+dCA(b) ≥ CA(a) ∧ CA(d) and CA(a.d) ≥ CA(a) ∧ CA(d);

(2) CA(−a) ≥ CA(a).

we denote the set of all multi-hyperrings over X by MHR(X).

Example 3.1. Let X = {0, 1, 2, 3} be a set with,
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+ 0 1 2 3

0 {0} {1} {2} {3}

1 {1} {0, 1} {3} {2,3}

2 {2} {3} {0} {1}

3 {3} {2,3} {1} {0, 1}

and a.d=











2 if a, d ∈ {2, 3}

0 otherwise.

Then (X,+, .) is a Krasner hyperring [14]. Clearly, A = {4/0, 2/1, 3/2, 2/3} is a

multi-hyperring over X.

Example 3.2. Consider R = {r̄G | r̄ ∈ Z12} = {¯̄r | r̄ ∈ Z12}, where G = {1̄, 5̄, 7̄, 1̄1}

is multiplicative sub-group of units of Z12. Now define on R, the hyperoperation ⊕

and multiplication . by ¯̄r ⊕ ¯̄s = {¯̄t : (¯̄r + ¯̄s) ∩ ¯̄t 6= ∅} and ¯̄r.¯̄s = ¯̄x.y. Then, (R,⊕, .)

is a Krasner hyperring [1] and A = {5/¯̄0, 2/¯̄1, 3/¯̄2, 2/¯̄3, 4/¯̄4, 3/¯̄6} is a multi-hyperring

over R.

Example 3.3. Let m be a fixed element in X. Consider multiset A with CA(a) =

CA(m), ∀a ∈ X. A is a multi-hyperring over X, and is called the constant multi-

hyperring over X. For any Krasner hyperring X with | X |= n, we can define at least

“n” multi-hyperrings over X, based on what happens in this example.

Proposition 3.1. For all multi-hyperring A over X and a ∈ X,

(1) CA(0) ≥ CA(a);

(2)
∧

d∈n.aCA(d) ≥ CA(a), ∀n ∈ N;

(3) CA(−a) = CA(a).

Proof. Let a ∈ X .

(1) Since A is a multi-hyperring over X, then

CA(0) ≥ ∧d∈−a+aCA(d) ≥ CA(−a) ∧ CA(a) ≥ CA(a).

(2) We have

∧d∈n.aCA(d) = ∧d∈a+(n−1)aCA(d) ≥ CA(a) ∧ (∧d∈(n−1)aCA(d))

≥ CA(a) ∧ CA(a) ∧ (∧d∈(n−2)aCA(d)) ≥ ...

≥ CA(a) ∧ CA(a) ∧ ... ∧ CA(a) = CA(a).
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(3) It is sufficient to prove that,

CA(a) ≥ ∧d∈0+aCA(d) = ∧d∈0+(−(−a))CA(d) ≥ CA(0) ∧ CA(−(−a))

= CA(−(−a)) ≥ CA(−a).

�

Proposition 3.2. Let A be a multi-hyperring over X.
∧

b∈a−dCA(b) = CA(0) implies

CA(a) = CA(d), ∀a, d ∈ X.

Proof. Let a, d ∈ X . Since A is a multi-hyperring over X,

CA(a) ≥ ∧b∈(a−d)+dCA(b) ≥ (∧b∈a−dCA(b)) ∧ CA(d) = CA(0) ∧ CA(d) = CA(d).

Also

CA(d) = CA(−d) ≥ ∧b∈−a+(a−d)CA(b) ≥ CA(−a) ∧ (∧b∈a−dCA(b))

≥ CA(a) ∧ CA(0) = CA(a).

�

Theorem 3.1. For A ∈ MS(X), the following assertions are equivalent:

(1) ∧b∈a+dCA(b) ≥ CA(a) ∧ CA(d) and CA(−a) ≥ CA(a);

(2) ∧b∈a−dCA(b) ≥ CA(a) ∧ CA(d),

for all a, d ∈ X.

Proof. Let a, d ∈ X . If the condition (1) holds, then

∧b∈a−dCA(b) = ∧b∈a+(−d)CA(b) ≥ CA(a) ∧ CA(−d) ≥ CA(a) ∧ CA(d).

Now, if the condition (2) holds, then we have

CA(0) ≥ ∧b∈a−aCA(b) ≥ CA(a) ∧ CA(a) = CA(a).

Thus CA(−a) ≥ ∧b∈0−aC(b) ≥ CA(0) ∧ CA(a) = CA(a). Hence

∧b∈a+dCA(b) = ∧b∈a−(−d)CA(b) ≥ CA(a) ∧ CA(−d) ≥ CA(a) ∧ CA(d).

�

Proposition 3.3. Let A ∈ MHR(X). Then ∀a1, ..., ar ∈ X, r ∈ N and r ≥ 2;
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(1)
∧

b∈a1−...−ar
CA(b) ≥ CA(a1) ∧ ... ∧ CA(ar);

(2) CA(a1.....ar) ≥ CA(a1) ∧ ... ∧ CA(ar).

Proof. 1. By induction on the value of n, the assertion is true for n = 2. Assume

that

∧z∈x1−x2−...−xn
CA(z) ≥ CA(x1) ∧ CA(x2) ∧ ... ∧ CA(xn),

and let z′ ∈ x1 − x2 − ... − xn − xn+1. Then there exists x ∈ x1 − x2 − ... − xn such

that z′ ∈ x− xn+1. Since A is a multi-hyperring over X, then

∧z′∈x−xn+1
CA(z

′) ≥ CA(x) ∧ CA(xn+1).

Using our assumption, it is implied that our statement is true for n + 1.

2. The proof is similar to 1. �

Proposition 3.4. If A is a multi-hyperring over X, then −A is a multi-hyperring

over X, where C−A(x) = CA(−x), ∀x ∈ X.

Definition 3.2. Let a ∈ X . For A,B ∈ MHR(X), we define A ⊙ B and A ◦ B by

CA⊙B(a) = ∨{CA(b)∧CB(d) : b, d ∈ X, a ∈ b+ d}, and CA◦B(a) = ∨{CA(b)∧CB(d) :

b, d ∈ X, a = b.d}, respectively. If a cannot be expressed as above, then CA◦B(a) = 0.

Example 3.4. Let (X,+, .) be that given in Example 3.1. Consider two multi-

hyperrings A = {3/0, 1/1, 2/2, 1/3} and B = {4/0, 2/1, 3/2, 2/3} over X. It is clear

that A⊙B = {3/0, 2/1, 3/2, 2/3} and A ◦B = {3/0, 2/2}.

Proposition 3.5. For A ⊆ B ∈ MHR(X), then for any multi-hyperring K of X,

K ⊙A ⊆ K ⊙ B.

Proof. We have, for a ∈ X

CK⊙B(a) = ∨{CK(b) ∧ CB(d) : b, d ∈ X, a ∈ b+ d}

≥ ∨{CK(b) ∧ CA(d) : b, d ∈ X, a ∈ b+ d} = CK⊙A.

�

Proposition 3.6. For A ∈ MHR(X),

(1) A⊙ A = A;
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(2) −A ⊆ A and A ⊆ −A and −A = A.

Proof. Let a ∈ X .

(1) Since A is a multi-hyperring over X, then CA(a) ≥ CA(b) ∧ CA(d), ∀a ∈ b+ d.

Hence CA(a) ≥ ∨{CA(b) ∧ CA(d) : b, d ∈ X, a ∈ b+ d} = CA⊙A(x). Again

CA⊙A(a) = ∨{CA(b) ∧ CA(d) : b, d ∈ X, a ∈ b+ d} ≥ CA(a) ∧ CA(0) = CA(a).

(2) Since C−A(a) = CA(−a) = CA(a), the given assertion is true. �

Theorem 3.2. Let A and B be two multi-hyperrings over X.

(1) If CA(0) = CB(0), then A and B are submsets of A⊙ B;

(2) −(A ◦B) = A ◦B.

Proof. (1) Let a ∈ X . Since CA(0) = CB(0), then

CA⊙B(a) = ∨{CA(b) ∧ CB(d) : b, d ∈ X, a ∈ b+ d} ≥ CA(0) ∧ CB(a) = CB(a).

Similarly, A ⊆ A⊙ B.

(2) Let x ∈ X . Then by Proposition 3.1(3), we have

C−(A◦B)(a) = CA◦B(−a) = ∨{CA(b) ∧ CB(d) : b, d ∈ X,−a = b.d}

= ∨{CA(−b) ∧ CB(d) : b, d ∈ X, a = (−b).d} = CA◦B(a).

�

Definition 3.3. Let X be a Krasner hyperring with unity 1. If CA(1) > 0, then

the multi-hyperring A over X is said to be a unitary multi-hyperring. Also, if for all

a, d ∈ X , CA(a.d) = CA(d.a), we say that A is commutative.

Example 3.5. Let X = {0, 1, 2}, and

+ 0 1 2

0 {0} {1} {2}

1 {1} {1} {0,1,2}

2 {2} {0,1,2} {2}

and

. 0 1 2

0 0 0 0

1 0 1 2

2 0 1 2
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Then, (X,+, .) is a Krasner hyperring [2]. Also, X is non-cmmutative, and A =

{4/0, 1/1, 1/2} is a commutative multi-hyperring.

Theorem 3.3. Let A ∈ MS(X).

(1) If An = {a ∈ X : CA(a) ≥ n} is a sub-hyperring of X, for all n ∈ N and

define CA(a) =
∑

n∈N χAn
(a), then A is a multi-hyperring over X;

(2) If A ∈ MHR(X), then for all n ∈ N, An is a sub-hyperring of X.

Proof. Let A ∈ MS(X).

(1) Let a, d ∈ X and CA(a) = r, CA(d) = s. Then a ∈ Ar and d ∈ As, so that

a /∈ Ar+n and d /∈ As+n, ∀n ∈ N. Let r ∧ s = r and so y ∈ Ar. Since b ∈ Ar, for all

b ∈ a + d,
∧

b∈a+d CA(b) ≥ r = r ∧ s = CA(a) ∧ CA(d), and CA(a.d) ≥ r = r ∧ s =

CA(a) ∧ CA(d), and CA(−a) ≥ r = CA(a). Thus A is a multi-hyperring over X.

(2) Let a, d ∈ An. Since A is a multi-hyperring over X, then
∧

b∈a+d CA(b) ≥

CA(a)∧CA(d) ≥ n. Thus a+d ⊆ An; because for all b ∈ a+d, we get CA(b) ≥ n and

so b ∈ An. Also, we have CA(a.d) ≥ CA(a) ∧ CA(d) ≥ n. Hence a.d ∈ An. Moreover,

CA(−a) ≥ CA(a) ≥ n. Thus −a ∈ An. Therefore, ∀n ∈ N, An is a sub-hyperrings of

X.

�

Example 3.6. Let X = {0, 1}. Consider hyperoperation “+” as:

0 + 1 = 1 + 0 = {1}, 1 + 1 = {0, 1} and 0 + 0 = {0}.

and operation “.” the usual multiplication. Then (X, +, .) is a Krasner hyperring

[13]. Consider the multi-hyperring A = {2/0, 1/1} over X. Then A1 = {0, 1}, A2 =

{0}, and An = ∅, n ≥ 3. Moreover, A1, A2 and An, n ≥ 3 are sub-hyperrings of X.

Proposition 3.7. Let A,B ∈ MHR(X). Then −(A ◦B)n = (A ◦B)n , ∀n ∈ N.

Proof. Let a ∈ X . Then a ∈ −(A ◦ B)n iff C−(A◦B)(a) ≥ n iff CA◦B(−a) ≥ n iff

∨{CA(b) ∧ CB(d) : b, d ∈ X,−a = b.d} ≥ n iff ∨{CA(−b) ∧ CB(d) : b, d ∈ X, a =

(−b).d} ≥ n iff CA◦B(a) ≥ n iff a ∈ (A ◦B)n. Thus the result holds. �

Proposition 3.8. Let A ∈ MHR(X). Consider

A∗ = {a ∈ X : CA(a) > 0} and A∗ = {a ∈ X : CA(a) = CA(0)}.
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Then A∗ and A∗ are sub-hyperrings of X.

Proof. It is similar to Theorem 3.3(1). �

Proposition 3.9. Let A ∈ MHR(X). Then (−A)∗ = A∗ and (−A)∗ = A∗.

Proof. For all a ∈ X , we have a ∈ (−A)∗ iff C−A(a) > 0 iff CA(−a) > 0 iff CA(a) > 0

iff a ∈ A∗. Therefore (−A)∗ = A∗. Similarly, we can prove another result. �

Definition 3.4. Let A ∈ MHR(X). The nonempty submset B of A is said to be

a sub-multi-hyperring of A, if B ∈ MHR(X). The sub-multi-hyperring B of A is

proper, if A 6= B. Moreover, B is said to be complete, if B∗ = A∗.

Example 3.7. Let X be the Krasner hyperring in Example 3.1. Consider A =

{5/0, 3/1, 4/2, 3/3} and B = {3/0, 1/1, 2/2, 1/3}. Then B is a proper sub-multi-

hyperring of A. Moreover, we have B∗ = X = A∗ and so B is complete.

4. Operations on Multi-Hyperrings

Proposition 4.1. Let A,B ∈ MHR(X). The intersection of A and B is a multi-

hyperring over X.

Proof. It is straightforward. �

Example 4.1. Consider X = {0, 1, 2, 3}, and

+ 0 1 2 3

0 {0} {1} {2} {3}

1 {1} {0, 2} {1, 3} {2}

2 {2} {1, 3} {0, 2} {1}

3 {3} {2} {1} {0}

and

. 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 2 0

3 0 3 0 3

Then (X,+, .) is a hyperring [2]. Two multi-hyperrings A = {3/0, 1/2} and B =

{3/0, 1/3}, and A ∩B = {3/0} are multi-hyperrings over X, but since
∧

z∈3+2CA∪B(z) = 0 � 1 = CA∪B(3) ∧ CA∪B(2),

then A ∪ B = {3/0, 1/2, 1/3} is not a multi-hyperring over X.

Theorem 4.1. Let A,B ∈ MHR(X).
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(1) If CA(0) = CB(0), A
∗ ∩ B∗ = (A ∩B)∗, ;

(2) An ∩ Bn = (A ∩ B)n, for all n ∈ N.

Proof. (1) Since A,B ∈ MHR(X), their intersection is a multi-hyperring over X.

Additionally, A∗ and B∗ are sub-hyperrings of X, this implies that their intersection

is a sub-hyperring of X (See Propositions 3.8 and 4.1). Therefore A∗∩B∗, and (A∩B)∗

are well-defined. If a ∈ A∗ ∩ B∗, then a ∈ A∗, and a ∈ B∗. Thus CA(a) ∧ CB(a) =

CA(0) ∧ CB(0) and CA∩B(a) = CA∩B(0). Therefore, a ∈ (A ∩B)∗.

Now a ∈ (A∩B)∗, implies CA(a) ≥ CA∩B(a) = CA∩B(0) = CA(0)∧CB(0) = CA(0).

So, by Proposition 3.1(1), we get CA(a) = CA(0), that is a ∈ A∗. Similarly, we can

prove that a ∈ B∗, so a ∈ A∗ ∩ B∗, which completes the proof.

(2) It is straightforward. �

Proposition 4.2. Let A and B be multi-hyperrings over X and CA(0) = CB(0). Then

A ∪ B and A ∩B are submsets of A⊙ B.

Proof. A and B are two multi-hyperrings over X, so ∀a ∈ X

CA⊙B(a) = ∨{CA(b) ∧ CB(d) : b, d ∈ X, a ∈ b+ d} ≥ CA(a) ∧ CB(0) = CA(a).

In the same way, we have CA⊙B(a) ≥ CB(a). So CA⊙B(a) ≥ CA(a) ∨ CB(a) =

CA∪B(a). Similarly, we can prove this result for the intersection. �

Theorem 4.2. Let {Ai : i = 1, 2, ...} be an arbitrary family of multi-hyperrings over

X. Then

(1) ∩Ai is a multi-hyperring of X, where C∩iAi
(a) = ∧iCAi

(a), ∀a ∈ X;

(2) ∪iAi, is a multi-hyperring over X; if for every chain of multi-hyperrings A1 ⊆

A2 ⊆ ... (resp. A1 ⊇ A2 ⊇ ...), there exists n ∈ N such that An = Am,

∀m ≥ n.

Proof. Let a, b ∈ X and Ai, i = 1, 2, ..., be the multi-hyperrings over the same Krasner

hyperring X.

(1) By Definition 3.1, we get

∧b∈a+dC∩iAi
(b) = ∧b∈a+d(∧iCAi

(b)) = ∧i(∧b∈a+dCAi
(b)) ≥ ∧i(CAi

(a) ∧ CAi
(d))

= (∧iCAi
(a)) ∧ (∧iCAi

(d)) = C∩iAi
(a) ∧ C∩iAi

(d).
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Moreover,

C∩iAi
(a.d) = ∧iCAi

(a.d) ≥ ∧i(CAi
(a) ∧ CAi

(d))

= (∧iCAi
(a)) ∧ (∧iCAi

(d)) = C∩iAi
(a) ∧ C∩iAi

(d).

Also, C∩iAi
(−a) = ∧iCAi

(−a) ≥ ∧iCAi
(a) = C∩iAi

(a).

(2) From hypothesis ∃in = 1, 2, ... s.t. CAin
(a) = ∨i∈ICAi

(a) = C∪iAi
(a). Therefore,

∧b∈a+dC∪iAi
(b) = ∧b∈a+dCAin

(b) ≥ CAin
(a) ∧ CAin

(d) = C∪iAi
(a) ∧ C∪iAi

(d).

Furthermore, C∪iAi
(a.d) = CAin

(a.d) ≥ CAin
(a) ∧ CAin

(d) = C∪iAi
(a) ∧ C∪iAi

(d).

Additionally, C∪iAi
(−a) = CAin

(−a) ≥ CAin
(a) = C∪iAi

(a), and this completes the

proof. If A1 ⊇ A2 ⊇ ..., then CA1
(a) =

∨

i CAi
(a) = C∪iAi

(k) and, by the same

procedure, we can arrive at the result. �

Definition 4.1. For A ∈ MS(X), we define < A >=
⋂

{B : B ∈ MHR(X), A ⊆ B},

which implies < A > is the smallest multi-hyperring containing A. Also, we say that

A is generated by two multi-hyperrings if A is the smallest multi-hyperring over X

containing the same two multi-hyperrings, and so on.

Theorem 4.3. Let A and B be multi-hyperrings over X with CA(0) = CB(0), and

A⊙ B ∈ MHR(X). Then, A⊙ B is generated by A and B.

Proof. Let a ∈ X . Since CA(0) = CB(0), then

CA⊙B(a) = ∨{CA(b) ∧ CB(d) : b, d ∈ X, a ∈ b+ d} ≥ CA(a) ∧ CB(0) = CA(a).

Thus A ⊆ A⊙ B. Similarly, B ⊆ A⊙B. Now, if K is a multi-hyperring over X s.t.

A,B ⊆ K, then

CK⊙K(a) = ∨{CK(b) ∧ CK(d) : b, d ∈ X, a ∈ b+ d}

≥ ∨{CA(b) ∧ CB(d) : b, d ∈ X, a ∈ b+ d} = CA⊙B(a).

Therefore, we have

A⊙ B ⊆ K ⊙K.(4.1)

Now, since K is a multi-hyperring over X, then for all a ∈ b+d, CK(a) ≥ ∧a∈b+dCK(a) ≥

CK(b) ∧ CK(d), So CK(a) ≥ ∨{CK(b) ∧ CK(d) : b, d ∈ X, a ∈ b + d} = CK⊙K(a).

Consequently, K ⊇ K ⊙K, so (4.1) completes the proof. �
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Recall that if X and Y be Krasner hyperrings, then X ×Y is a Krasner hyperring

such that + and . on it are defined component-wise.

Theorem 4.4. Let X and Y be Krasner hyperrings, and A ∈ MS(X), B ∈ MS(Y ),

such that CA(0) = CB(0
′), where 0 ∈ X and 0′ ∈ Y are the identity elements. Con-

sider CA×B(a, d) = CA(a) ∧ CB(d), for all a ∈ X, d ∈ Y . Then A and B are (com-

mutative) multi- hyperrings over X and Y , respectively, iff A×B is a (commutative)

multi-hyperring over X × Y .

Proof. For all (m, t), (k, p) in X × Y ,

∧(a,d)∈(m,t)+(k,p)CA×B(a, d) = ∧(a,d)∈(m+k,t+p)CA×B(a, d)

= (∧a∈m+kCA(a)) ∧ (∧d∈t+pCB(d))

≥ (CA(m) ∧ CA(k)) ∧ (CB(t) ∧ CB(p))

= (CA(m) ∧ CB(t)) ∧ (CA(k) ∧ CB(p))

= CA×B(m, t) ∧ CA×B(k, p).

Besides,

CA×B((m, t).(k, p)) = CA×B(m.k, t.p) = CA(m.k) ∧ CB(t.p)

≥ (CA(m) ∧ CA(k)) ∧ (CB(t) ∧ CB(p))

= (CA(m) ∧ CB(t)) ∧ (CA(k) ∧ CB(p))

= CA×B(m, t) ∧ CA×B(k, p).

Moreover,

CA×B(−(m, t)) = CA×B(−m,−t) = CA(−m) ∧ CB(−t)

≥ CA(m) ∧ CB(t) = CA×B(m, t).

Therefore A× B ∈ MHR(X × Y ). Now, if A, and B are commutative, then

CA×B((m, t).(k, p)) = CA×B(m.k, t.p) = CA(m.k) ∧ CB(t.p)

= CA(k.m) ∧ CB(p.t) = CA×B(k.m, p.t)

= CA×B((k, p).(m, t)).
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Thus A×B is commutative.

Conversely, for a ∈ A, d ∈ B,

∧b∈a+dCA(b) = ∧b∈a+d(CA(b) ∧ CA(0)) = ∧b∈a+d(CA(b) ∧ CB(0
′))

=
∧

(b,0′)∈(a+d,0′+0′)

CA×B(b, 0
′) = ∧(b,0′)∈(a,0′)+(d,0′)CA×B(b, 0

′)

≥ CA×B(a, 0
′) ∧ CA×B(d, 0

′)

= (CA(a) ∧ CB(0
′)) ∧ (CA(d) ∧ CB(0

′))

= CA(a) ∧ CA(d) ∧ CB(0
′) = CA(a) ∧ CA(d).

Also,

CA(a.d) = CA(a.d) ∧ CA(0.0) = CA(a.d) ∧ CB(0
′.0′) = CA×B(a.d, 0

′.0′)

= CA×B((a, 0
′).(d, 0′)) ≥ CA×B(a, 0

′) ∧ CA×B(d, 0
′)

≥ (CA(a) ∧ CB(0
′)) ∧ (CA(d) ∧ CB(0

′))

= CA(a) ∧ CA(d) ∧ CB(0
′) = CA(a) ∧ CA(d).

Moreover,

CA(−a) = CA(−a) ∧ CA(0) = CA(−a) ∧ CB(−0′) = CA×B(−a,−0′)

= CA×B(−(a, 0′)) ≥ CA×B(a, 0
′) = CA(a) ∧ CB(0

′) = CA(a).

Therefore, A is a multi-hyperring over X. Similarly, B is a multi-hyperring over Y.

Also, if A× B is commutative, then

CA(a.d) = CA(a.d) ∧ CA(0.0) = CA(a.d) ∧ CB(0
′.0′) = CA×B(a.d, 0

′.0′)

= CA×B((a, 0
′).(d, 0′)) = CA×B((d, 0

′).(a, 0′)) = CA×B(d.a, 0
′.0′)

= CA(d.a) ∧ CB(0
′.0′) = CA(d.a).

Therefore A is commutative on X. Similarly, B is commutative on Y. �

Example 4.2. Let X = Z12/H, Y = {0, 1, 2, 3} be Krasner hyperrings with hyper op-

erations and binary operations defined in Example 3.2 and Example 3.1, respectively.

Consider multi-hyperring A = {4/(0̄H), 1/(1̄H), 2/(2̄H), 1/(3̄H), 3/(4̄H), 2/(6̄H)}

over X and B = {6/0, 1/1, 5/2, 1/3} over Y. We have A×B = {4/(0̄H, 0), 1/(0̄H, 1),
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4/(0̄H, 2), 1/(0̄H, 3), 1/(1̄H, 0), 1/(1̄H, 1), 1/(1̄H, 2), 1/(1̄H, 3), 2/(2̄H, 0), 1/( ¯2H, 1),

2/(2̄H, 2), 1/(2̄H, 3), 1/(3̄H, 0), 1/(3̄H, 1), 1/(3̄H, 2), 1/(3̄H, 3), 3/(4̄H, 0), 1/(4̄H, 1),

3/(4̄H, 2), 1/(4̄H, 3), 2/(6̄H, 0), 1/(6̄H, 1), 2/(6̄H, 2), 1/(6̄H, 3)}.

Definition 4.2. Let h be a mapping from Krasner hyperring X to Krasner hyperring

Y, A ∈ MHR(X), and B ∈ MHR(Y ). We define

Ch(A)(d) =











∨a∈h−1(d)CA(a), h−1(d) 6= ∅;

0, otherwise,

and Ch−1(B)(a) = CB(h(a)), for all a ∈ X , d ∈ Y . If h(A) = B, A is called homomor-

phic to B (A ≈ B).

Theorem 4.5. Let h be a homomorphism from Krasner hyperring X to Krasner

hyperring Y.

(1) If A ∈ MHR(X), then h(A) ∈ MHR(Y );

(2) If B ∈ MHR(Y ), then h−1(B) ∈ MHR(X).

Proof. (1) Let a, d ∈ Y , and b ∈ a+ d. If h−1(a) or h−1(d) is empty, the result holds.

Otherwise, ∃r, s ∈ X such that

CA(r) = ∨h(u)=aCA(u) = Ch(A)(a) and CA(s) = ∨h(l)=dCA(l) = Ch(A)(d).

Since h is a homomorphism, then b ∈ h(r) + h(s) implies b ∈ h(r + s). Hence,

∃k ∈ r + s such that b = h(k). Since A is a multi-hyperring over X, then

Ch(A)(b) = ∨h(t)=bCA(t) ≥ CA(k) ≥ ∧b∈r+sCA(b)

≥ CA(r) ∧ CA(s) = Ch(A)(a) ∧ Ch(A)(d).

Moreover,

Ch(A)(a.d) = ∨v∈h−1(a.d)CA(v) ≥ CA(r.s) ≥ CA(r) ∧ CA(s) = Ch(A)(a) ∧ Ch(A)(d).

Also,

Ch(A)(−a) = ∨w∈h−1(−a)CA(w) = ∨k∈h−1(a)CA(−k) ≥ ∨k∈h−1(a)CA(k) = Ch(A)(a).
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(2) Let B be a multi-hyperring over Y. ∀q, k ∈ X ,

∧m∈q+kCh−1(B)(m) = ∧m∈q+kCB(h(m)) = ∧s∈h(q)+h(k)CB(s)

≥ CB(h(q)) ∧ CB(h(k)) = Ch−1(B)(q) ∧ Ch−1(B)(k).

Moreover,

Ch−1(B)(q.k) = CB(h(q.k)) = CB(h(q).h(k)) ≥ CB(h(q)) ∧ CB(h(k))

= Ch−1(B)(q) ∧ Ch−1(B)(k).

Also, Ch−1(B)(−q) = CB(h(−q)) = CB(−h(q)) ≥ CB(h(q)) = Ch−1(B)(q).

�

Proposition 4.3. Let ϕ : X −→ Y and h : Y −→ Z be homomorphisms of Krasner

hyperrings and A ∈ MHR(X), B ∈ MHR(Y ). Then

(1) (hϕ)(A) = h(ϕ(A));

(2) (hϕ)−1(B) = ϕ−1(h−1(B)).

Proof. (1) Let d ∈ Z. If h−1(d) = ∅, then clearly the result holds. Otherwise,

Ch(ϕ(A))(d) = ∨b∈h−1(d)Cϕ(A)(b) = ∨b∈h−1(d)(∨a∈ϕ−1(b)CA(a))

= ∨a∈(hϕ)−1(d)CA(a) = C(hϕ)(A)(d).

(2) Let q ∈ X . Then

C(hϕ)−1(A)(q) = CA((hϕ)(q)) = CA(h(ϕ(q))) = Ch−1(A)(ϕ(q)) = Cϕ−1(h−1(A))(q).

�

Theorem 4.6. Let h be a mapping from Krasner hyperring X to Krasner hyperring

Y, Ai ∈ MHR(X), and Bj ∈ MHR(Y ), i, j = 1, 2, ... be two arbitrary families of

multi-hyperrings over X, and Y. Then

(1) h(−Ai) = −h(Ai), and h−1(−Bj) = −h−1(Bj);

(2) h(∩iAi) = ∩ih(Ai), h(∪iAi) = ∪ih(Ai) and h
−1(∩jBj) = ∩jh

−1(Bj), h
−1(∪jBj) =

∪jh
−1(Bj);

(3) h(An) = (h(A))n and h−1(Bn) = (h−1(B))n, for all n ∈ N.
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Proof. (1) It is straightforward.

(2) Let a ∈ X , and d ∈ Y . We have

Ch(∪iAi)(d) = ∨a∈h−1(d)C∪iAi
(a) = ∨a∈h−1(d)(∨iCAi

(a))

= ∨i(∨a∈h−1(d)CAi
(a)) = ∨iCh(Ai)(d) = C∪ih(Ai)(d).

Also, Ch−1(∪jBj)(a) = C∪jBj
(h(a)) = ∨jCBj

(h(a)) = ∨jCh−1(Bj )(a) = C∪jh−1(Bj)(a).

Similarly, we can get other results.

(3) Let n ∈ N. If a ∈ h(An), then a = h(t), for some t ∈ An. Therefore,

Ch(A)(x) = ∨b∈h−1(a)CA(b) ≥ CA(t) ≥ n. Thus a ∈ (h(A))n and so h(An) ⊆ (h(A))n.

Now, if d ∈ (h(A))n, then Ch(A)(d) = ∨r∈h−1(d)CA(r) ≥ n and so CA(k) ≥ n, for some

k ∈ h−1(d). Therefore, k ∈ An and so d = h(k) ∈ h(An). Thus (h(A))n ⊆ h(An). So

equality holds. Now, we have a ∈ (h−1(B))n iff Ch−1(B)(a) ≥ n iff CB(h(a)) ≥ n iff

h(a) ∈ Bn iff a ∈ h−1(Bn). Thus the result holds. �

Theorem 4.7. Let h : X −→ Z, and ρ : Y −→ W be homomorphisms of Krasner

hyperrings with A ∈ MHR(X), B ∈ MHR(Y ), C ∈ MHR(Z), and D ∈ MHR(W ).

Consider h×ρ : X×Y −→ Z×W by setting (h×ρ)(a, d) = (h(a), ρ(d)), ∀a ∈ X, d ∈

Y . Then

(1) h× ρ is a homomorphism;

(2) (h × ρ)(A × B) is a multi-hyperring over Z × W , where (h × ρ)(A × B) =

h(A)× ρ(B);

(3) (h×ρ)−1(C×D) is a multi-hyperring over X×Y , such that (h×ρ)−1(C×D) =

h−1(C)× ρ−1(D).

Proof. (1) Let (m, t), (k, q) ∈ X × Y .

(h× ρ)((m, t) + (k, q)) = (h× ρ)({(s, v) : (s, v) ∈ (m+ k, t+ q)})

= {(h(s), ρ(v)) : s ∈ m+ k, v ∈ t + q}

= (h(m+ k), ρ(t+ q)) = (h(m) + h(k), ρ(t) + ρ(q))

= (h(m), ρ(t)) + (h(k), ρ(q)) = (h× ρ)(m, t) + (h× ρ)(k, q).
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Moreover,

(h× ρ)((m, t).(k, q)) = (h× ρ)(m.k, t.q) = (h(m.k), ρ(t.q)) = (h(m).h(k), ρ(t).ρ(q))

= (h(m), ρ(t)).(h(k), ρ(q)) = (h× ρ)(m, t).(h× ρ)(k, q).

Also, we have (h× ρ)(0, 0) = (h(0), ρ(0)) = (0, 0).

(2) The first result is obtained by Theorem 4.4 and Theorem 4.5. Let (c, b) be in

Z ×W . If (h× ρ)−1(c, b) is empty, we can easily get the result. Otherwise, we have

(h× ρ)−1(c, b) = (h× ρ)(c−1, b−1) = (h−1(c), ρ−1(b)). Therefore

C(h×ρ)(A×B)(c, b) = ∨(a,d)∈(h×ρ)−1(c,b)CA×B(a, d)

= ∨(a,d)∈(h−1(c),ρ−1(b))(CA(a) ∧ CB(d))

= (∨a∈h−1(c)CA(a)) ∧ (∨d∈ρ−1(b)CB(d))

= Ch(A)(c) ∧ Cρ(B)(b) = Ch(A)×ρ(B)(c, b).

(3) Similarly, by 4.11 and 4.18, we have the first part. Let (a, d) be in X × Y . If

h−1(c) or g−1(w) is empty, we can easily get the result. Otherwise, we have

C(h×ρ)−1(C×D)(a, d) = CC×D((h× ρ)(a, d)) = CC×D(h(a), ρ(d)) = CC(h(a)) ∧ CD(ρ(d))

= Ch−1(C)(a) ∧ Cρ−1(D)(d) = Ch−1(C)×ρ−1(D)(a, d).

�

5. Conclusion

A hyperring is a system (R,+, .) which satisfies the ring-like axioms. A well-known

type of hyperrings is the Krasner hyperring. Krasner hyperrings are essentially rings

in which addition is hyperoperation. Also, the theory of multisets is a generalization of

the classical sets theory. In this paper, we combined multisets and Krasner hyperrings

and introduced the notion of multi-hyperrings. We analyzed the main properties

and different operations on multi-hyperrings and obtained several results supported

by examples; Finally, we studied some homomorphic properties of multi-hyperrings.

Multi-hyperrings are helpful in mathematics and computer sciences; In future we will

investigate more properties of multi-hyperrings.
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