
Jordan Journal of Mathematics and Statistics (JJMS), 17(1), 2024, pp 85 - 97

DOI: https://doi.org/10.47013/17.1.5

GYROTRANSVERSALS OF ORDER p3

RAMJASH GURJAR (1), RATAN LAL(2) AND VIPUL KAKKAR(3)

Abstract. In this paper, we compute the isomorphism classes of gyrotransversals

of order p3 corresponding to a fixed subgroup of order p in the group Zp⋉Zp3 , where

p is an odd prime. This yields a lower bound for the number of right gyrogroups

of order p
3 upto isomorphism. In addition, we obtain a lower bound for the non-

isomorphic right gyrogroups of order p3 of nilpotency class 2.

1. Introduction

Let H be a subgroup of a group G and S be a right transversal to H in G with

e ∈ S, where e is the identity of the group G. Then, the set S with the induced

binary operation ◦ defined by {x ◦ y} = S ∩ Hxy becomes a right loop with the

identity e. S is also a right transversal to the subgroup H ∩ 〈S〉 in the group 〈S〉

(see [7]). Using the identification of the members of the set S with the corresponding

right cosets of H in G, we get a group homomorphism λ : G −→ Sym(S) defined by

{λ(g)(x)} = S∩Hxg, g ∈ G, x ∈ S. The kernel of λ is CoreG(H), the core of H in G.

The group GS = λ(〈S〉 ∩H) is called the group torsion of S (see [7, Defination 3.1]).

If we identify S with λ(S), then λ(〈S〉) = GSS. Note that, the group GSS depends

only on S and not on H (see [7]). Also, S is a right transversal to the subgroup GS

in the group GSS (see [7]). Moreover, S is a group if and only if GS is trivial. Also,

in a group G, if a subgroup H is normal, then the corresponding right transversal S

is a group which is isomorphic to the quotient group G/H . Thus for a finite abelian

p-group, a gyrotransversal is a group [2].
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The gyrogroup structure is the result of a classic work of A. A. Ungar [13] in the

study of Lorentz groups. A gyrogroup is a generalization of a group. In, [3], [13] and

[14], Ungar and Foguel studied left gyrogroups and gyrotransversals to a subgroup in

a group (see [3, Defination 2.9, p. 31]).

Agore and Militaru [1] observed that all the finite groups of order n can be ob-

tained through the factorization Sn = Sn−1Zn, where Sn is the symmetric group

of degree n. Lal and Yadav [9] studied the right gyrogroups, gyrotransversals and

their deformations and they showed that there is a unique gyrotransversal to Sn−1

in Sn. They also proved that right gyrogroups and gyrotransversals are the same in

some sense (see [3, Theorem 2.12, p. 33]). Therefore it is reasonable to study the

isomorphism classes of gyrotransversals in different groups to get the lower bound

of non-isomorphic gyrogroups. The semidirect product of two groups H and K is

denoted by H ⋉ K, where K is regarded as the normal subgroup in H ⋉ K. In

this paper, we have used the Cauchy-Frobenius Formula to calculate the number of

gyrotransversals upto isomorphism in the group G = Zp ⋉ Zp3 to a fixed subgroup

H of G of order p, where p is an odd prime. For this, we take the natural action

of AutH(G) on the set of all the gyrotransversals to the subgroup H in G, where

AutH(G) = {θ ∈ Aut(G) | θ(H) = H}.

Let S and T be two right transversals to the subgroup H in G such that 〈S〉 = G =

〈T 〉. Then by [8, Proposition 2.7, p. 652], if S ≃ T , then there exists θ ∈ AutH(G)

such that θ(S) = T . Thus, the action of AutH(G) on the set of all right transversals

isomorphic to S is a transitive action. Since |H| = p, if S is a right transversal to H in

G, then either S = 〈S〉 or 〈S〉 = G. Therefore, the number of orbits under the action

of AutH(G) is equal to the number of isomorphism classes of right loops. Thus we

get a lower bound for the number of gyrotransversals of order p3 upto isomorphism

in the group G. As a result, we get a lower bound for the number of non-isomorphic

right gyrogroups of order p3. Also, a lower bound for the number of non-isomorphic

right gyrogroups of nilpotency class 2 is obtained. Throughout the paper, Zn denotes

the cyclic group of order n and U(p) denotes the group of units (mod p).



GYROTRANSVERSALS OF ORDER p
3 87

2. Preliminaries

In this section, we give the preliminaries that we will use throughout the paper.

Definition 2.1. [3, Definition 2.3, p. 29] A groupoid (S, ◦) is said to be a right

gyrogroup if,

(i) there exists an element e ∈ S such that x ◦ e = x for all x ∈ S,

(ii) for each element a ∈ S, there exists an element a′ ∈ S such that a ◦ a′ = e,

(iii) there exists a map f : S × S −→ Aut(S, ◦) such that for any x, y, z ∈ S,

(x ◦ y) ◦ z = f(y, z)(x) ◦ (y ◦ z),

(iv) f(y, y′) = IS for all y ∈ S.

By [9, Corollary 5.7, p. 3566], (S, ◦) is a right loop with the identity e and a′ is also

the left inverse for each a ∈ S.

Definition 2.2. ([3, Defination 2.9, p. 31]) A gyrotransversal is a right transversal

S to a subgroup H in a group G if

(i) e ∈ S, where e is the identity of the group G,

(ii) S−1 ⊆ S,

(iii) h−1Sh ⊆ S for all h ∈ H .

Proposition 2.1. [9, Corollary 5.11, p. 3569] Let S be a gyrotransversal to a subgroup

H in a group G and g : S −→ H be a map such that g(e) = e. Then the transversal

Sg = {g(x)x | x ∈ S} is a gyrotransversal if and only if

g(x−1) = g(x)−1

and g(h−1xh) = h−1g(x)h

for all x ∈ S and h ∈ H.

The deformation map is defined as the map g : S −→ H satisfying the conditions in

the Proposition 2.1 and Sg is called the deformed gyrotransversal with respect to the

fixed gyrotransversal S to the subgroup H in a group G.

Two right transversals are said to be isomorphic to each other if they are isomorphic

as their induced right loop structures. If S and T are two isomorphic right transversals

to H in G and S is a gyrotransversal, then T is also a gyrotransversal to H in G.
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Theorem 2.1. (Cauchy-Frobenius Formula)[11, Theorem 3.1.2, p. 75] Let a group

G acts on a set X. Then the average number of points fixed by the elements of G is

equal to the number of orbits of G on X that is,

number of orbits =
1

|G|

∑

g∈G

|Fix(g)|,

where Fix(g) = {x ∈ X | g · x = x}.

Let G = H ⋉K be a group, where H is abelian. Let S be a gyrotransversal to the

subgroup H in the group G and g : S −→ H be a deformation map. Then for all

s ∈ S and h ∈ H , we have

(2.1) g(h−1sh) = h−1g(s)h = g(s).

The map (h, s) 7→ h−1sh for all h ∈ H and s ∈ S defines an action of H on S. Then

for any s ∈ S \ {e}, the orbit of s is given as s⋆ = {h−1sh | h ∈ H}. Using Equation

(2.1), in order to define the map g one can easily observe that it is sufficient to find

the images of the representatives of the H-orbits on S \ {e}. Let {s1, s2, · · · , sn}

be a set of representatives of the H-orbits on S \ {e}. Note that for all h, h′ ∈ H ,

h−1(h′s⋆i )h = h′(h−1s⋆ih) = h′s⋆i . Thus, h−1sh ∈ S holds trivially for all h ∈ H and

s ∈ S. Therefore, it is sufficient to check that S−1 = S for S to be a gyrotransversal

to H in G. Now, we have the total number of gyrotransversals to the subgroup H in

the group G.

Theorem 2.2. [5] Let G = H ⋉K be a group, where H is abelian. Then, the total

number of gyrotransversals to the subgroup H in the group G is

=







|H|
n
2 , if n is even

|H|
n+1
2 , if n is odd,

where n is the number of H-orbits on S \ {e}.

3. Gyrotransversals in Zp ⋉ Zp3

Let G denotes the group Zp ⋉ Zp3 with the presentation

G = 〈a, b | ap
3

= 1 = bp, bab−1 = a1+p2〉,
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where p is an odd prime. Let H = 〈b〉 be a subgroup of G of order p. Throughout this

section, G and H respectively denote the group and subgroup as discussed above.

Then one can easily observe that if S is a gyrotransversal to H in G which is not

a group, then H ≃ GS and G ≃ GSS. To find all the gyrotransversals in G to the

subgroup H , we will determine H-orbits in G.

Let ar = {api+r | 0 ≤ i ≤ p2 − 1, 1 ≤ r ≤ p− 1} and X denotes the collection of all

the gyrotransversals to the subgroup H in G.

Lemma 3.1. Let bjai be any element of Zp⋉Zp3, where 0 6 i 6 p3−1, 0 6 j 6 p−1.

Then

(i) aibj = bjai(1−jp2),

(ii) (bjai)n = bnjani−
n(n−1)

2
p2ij for all n.

Proof. (i) Using bab−1 = a1+p2, we get b−1ab = a1−p2 . Therefore, b−1aib = ai(1−p2)

for all 0 ≤ i ≤ p3 − 1. Now, b−2aib2 = b−1ai(1−p2)b = (b−1ab)i(1−p2) = ai(1−p2)2 .

Using the similar argument, we get b−3aib3 = b−1ai(1−p2)2b = (b−1ab)i(1−p2)2 =

ai(1−p2)3 . Inductively, we get b−jaibj = ai(1−p2)j for all 0 ≤ j ≤ p − 1. Using

ap
3
= 1, we have b−jaibj = ai(1−jp2). Hence, aibj = bjai(1−jp2).

(ii) Using the part (i), for all 0 ≤ i ≤ p3 − 1 and 0 ≤ j ≤ p − 1, we get

(bjai)2 = bj(aibj)ai = bjbjai(1−jp2)ai = b2jai(2−jp2). Now (bjai)3 = bjai(bjai)2 =

bj(aib2j)ai(2−jp2) = bjb2jai(1−2jp2)ai(2−jp2) = b3jai(3−3jp2). Similarly, we get

(bjai)4 = bj(aib3j)ai(3−3jp2) = bjb3jai(1−3jp2)ai(3−3jp2) = b4ja4i−6ijp2. Induc-

tively, we get (bjai)n = bnjani−
n(n−1)

2
ijp2 for all n.

�

Theorem 3.1. The total number of gyrotransversals to the subgroup H in the group

G is equal to p
(p−1)(p+2)

2 .

Proof. The right cosets of the subgroup H in the group G are given by Hai (0 ≤ i ≤

p3 − 1). Thus, a right transversal of H in G is given by

S =

p3−1
⋃

i=1

({1} ∪ {bjiai}),
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where 0 6 ji 6 p − 1. Now, for bjapi+r ∈ S, we have (bjapi+r)−1 = b−jap(−prj−i)−r

= b−jap(−prj−i−1)+(p−r). Then S−1 = S if and only if bjapi+r ∈ S implies (bjapi+r)−1

∈ S. Therefore, a gyrotransversal S in G is given as

(3.1)

S = {1}∪

p−1
2
⋃

i=1

(bjiari ∪ b−jia−ri∪{bjiap
2i} ∪ {b−jia−p2i}) ∪

p2−1
2
⋃

l=1

({bjlapl} ∪ {b−jla−pl}),

where 0 6 ji, jl 6 p− 1, ri ∈ {1, 2, · · · , p− 1} and gcd(l, p) = 1. Therefore, the set of

representatives of H-orbits is

{a, a2, · · · , ap−1} ∪ {ap, a2p, · · · , ap(p
2
−1)}.

Now, the total number of orbits is equal to n = (p− 1) + (p2 − 1) = (p− 1)(p + 2).

Hence, using the Theorem 2.2, the total number of gyrotransversals is p
(p−1)(p+2)

2 .

�

Now, we calculate the isomorphism classes of gyrotransversals to the subgroup H in

the group G. We will use the Cauchy-Frobenius Formula to find the isomorphism

class of gyrotransversals. As given in [6], any automorphism θ ∈ AutH(G) is given

by

θ(a) = bjai and θ(b) = b,

where 0 6 j 6 p− 1 and i ∈ Zp3 such that gcd(p, i) = 1. Here, we see that the map

θ ∈ AutH(G) fixes all the elements of H . Therefore any θ ∈ AutH(G) will give us an

isomorphism between S and θ(S). In this way, AutH(G) acts naturally on the set X .

Note that, the image of any map θ ∈ AutH(G) depends only on the images of the

elements of the subgroup 〈a〉 of G. Now, we find the set Fix(θ) = {S ∈ X | θ(S) =

S}, for all θ ∈ AutH(G).

Lemma 3.2. Let θi ∈ AutH(G) be defined by θi(a) = ap
2i+1, where 0 6 i 6 p − 1.

Then |Fix(θi)| = |X|.

Proof. Let θi(a) = ap
2i+1, where 0 6 i 6 p − 1. Let S be a gyrotransversal to H in

G such that θi(S) = S. By (3.1), S consists of the elements from the sets bjau and

the elements of the form bjap
2u and bjapv, where 0 6 j 6 p− 1, u ∈ {1, 2, · · · , p− 1}
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and v ∈ {1, 2, · · · , p2−1} with gcd(v, p) = 1. Note that, θi(b
jau) = bjau, θi(b

jap
2u) =

bjap
2u and θi(b

japv) = bjapv. Hence, the map θi fixes all gyrotransversals. �

Lemma 3.3. Let θi ∈ AutH(G) be defined by θi(a) = api+1, where 0 < i 6 p2−1 and

gcd(p, i) = 1. Then |Fix(θi)| = p
3(p−1)

2 .

Proof. Let θi(a) = api+1, where 0 6 i 6 p2 − 1. Let S be a gyrotransversal to H

in G such that θi(S) = S. Using Equation (3.1), S consists of the elements from

the sets bjau and the elements of the form bjap
2u and bjapv, where 0 6 j 6 p − 1,

u ∈ {1, 2, · · · , p − 1} and v ∈ {1, 2, · · · , p2 − 1} with gcd(v, p) = 1. Note that,

θi(b
jau) = bjauand θi(b

jap
2u) = bjap

2u.

Observe that, θi(b
japv) = bjap

2vi+pv, θi(b
jap

2vi+pv) = bja2p
2vi+pv,

θi(b
ja2p

2vi+pv) = bja3p
2vi+pv and θi(b

ja(p−1).p2vi+pv) = bjap.p
2vi+pv = bjapv. Here we

see that this map makes a cycle of p elements and p(p − 1) total elements of these

types. Hence, bjapv have p
p−1
2 choices. So the map θi fixes p

p−1
2 ×p

p−1
2 ×p

p−1
2 = p

3(p−1)
2

gyrotransversals. �

Lemma 3.4. Let θi,k ∈ AutH(G) be defined by θi,k(a) = bkapi+1, where 0 6 i 6 p2−1

and 1 6 k 6 p− 1. Then |Fix(θi,k)| = 0.

Proof. Let θi,k(a) = bkapi+1, where 0 6 i 6 p2 − 1, 1 6 k 6 p − 1. Let S be a

gyrotransversal to H in G such that θi,k(S) = S. Using Equation (3.1), S consists of

the elements from the sets bjau and the elements of the form bjap
2u and bjapv, where

0 6 j 6 p − 1, u ∈ {1, 2, · · · , p − 1} and v ∈ {1, 2, · · · , p2 − 1} with gcd(v, p) = 1.

Note that, θi,k(b
jau) = buk+jau /∈ S because if buk+jau ∈ S then j ≡ uk + j (mod p)

which implies that rγk ≡ 0 (mod p) which is not true. Hence, the map θi,k does not

fix any gyrotransversal. �

Lemma 3.5. Let θi,r,k ∈ AutH(G) be defined by θi,r,k(a) = bkapi+r, where 0 6 i 6

p2 − 1, 0 ≤ k ≤ p− 1 and 1 < r ≤ p− 1 with α being the order of r (mod p) is even.

Then |Fix(θi,r,k)| = 1.

Proof. Let θi,r,k(a) = bkapi+r, where 0 6 i 6 p2 − 1, 0 ≤ k ≤ p− 1 and 1 ≤ r ≤ p− 1

with α be the order of r (mod p) which is even. Let S be a gyrotransversal to H in



92 RAMJASH GURJAR , RATAN LAL AND VIPUL KAKKAR

G such that θi,r,k(S) = S. Using Equation (3.1), S consists of the elements from the

sets bjau and the elements of the form bjap
2u and bjapv, where 0 6 j 6 p − 1, u ∈

{1, 2, · · · , p−1} and v ∈ {1, 2, · · · , p2−1} with gcd(v, p) = 1. Note that θi,r,k(b
jau) =

bj+kuaur, θi,r,k(b
j+kuaur) = bj+ku+kuraur2, θi,r,k(b

j+ku+kuraur2) = bj+ku+kur+kur2aur3 and

θi,r,k(b
j+ku+kur+···+kur

α
2 −2

aur
α
2 −1

)

= bj+ku+kur+···+kur
α
2 −1

aur
α
2

= bj+ku+kur+···+kur
α
2 −1

a−u

thus bj+ku+kur+···+kur
α
2 −1

∈ S if and only if bj+ku+kur+kur2+...+kur
α
2 −1

= b−j which

implies that bku(
r
α
2 −1
r−1

) = b−2j . This shows that bku(
−2
r−1

) = b−2j . Thus,

(3.2) ku = j(r − 1) (mod p)

Since gcd(r − 1, p) = 1 for each u, there is a unique j that satisfies Equation (3.2).

Observe that, θi,r,k(b
jap

2u) = bjap
2ur, θi,r,k(b

jap
2ur) = bjap

2ur2 and

θi,r,k(b
jap

2ur
α
2 −1

) = bjap
2ur

α
2 = bja−p2u. Since S is a gyrotransversal and (bjap

2u)−1 =

b−ja−p2u we have, θi,r,k(b
jap

2ur
α
2 −1

) ∈ S if and only if j ≡ −j (mod p). This implies

that j = 0. Also observe that, θi,r,k(b
japv) = bjapv(pi+r), θi,r,k(b

japv(pi+r)) = bjapv(pi+r)2

and θi,r,k(b
japv(pi+r)

β
2 −1

) = bjapv(pi+r)
β
2 = bja−pv, where β denotes the order of (pi+ r)

(mod p2). Since S is a gyrotransversal and (bjapv)−1 = b−ja−pv, for θ(S) = S we have,

θi,r,k(b
japv(pi+r)

β
2 −1

) ∈ S if and only if j ≡ −j (mod p) this implies that j = 0. Hence,

the map θi,r,k fixes only one gyrotransversal.

�

Lemma 3.6. Let θi,r,k ∈ AutH(G) be defined by θi,r,k(a) = bkapi+r, where 0 6 i 6

p2 − 1, 0 6 k ≤ p − 1 and 1 < r ≤ p − 1 with the order of r (mod p) is odd which

denoted by α. Then |Fix(θi,r,k)| = p2t+m, where t = p−1
2α

and m = p(p−1)
2β

with β

denotes the order of (pi+ r) (mod p2).

Proof. Let θi,r,k(a) = bkapi+r, where 0 6 i 6 p2 − 1, 0 6 k ≤ p− 1 and 1 < r 6 p− 1

with α be the order of r (mod p), which is odd. Let S be a gyrotransversal to H

in G such that θi,r,k(S) = S. Using Equation (3.1), S consists of the elements from

the sets bjau and the elements of the form bjap
2u and bjapv, where 0 6 j 6 p − 1,
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u ∈ {1, 2, · · · , p−1} and v ∈ {1, 2, · · · , p2−1} with gcd(v, p) = 1. Note, θi,r,k(b
jau) =

bj+kuaur, θi,r,k(b
j+kuaur) = bj+ku+kuraur2, θi,r,k(b

j+ku+kuraur2) = bj+ku+kur+kur2aur3 and

θi,r,k(b
j+ku+kur+kur2+···+kurα−2

aurα−1)

= bj+ku+kur+kur2+···+kurα−1

aurα

= bjau.

Hence this map make a cycle of α elements. Therefor we have, only p
p−1
2α = pt choices

for these type of elements.

Observe that, θi,r,k(b
jap

2u) = bjap
2ur, θi,r,k(b

jap
2ur) = bjap

2ur2 and

θi,r,k(b
jap

2urα−1
) = bjap

2urα = bjap
2u. As above we have, only p

p−1
2α = pt choices for

these type of elements. Also observe that, θi,r,k(b
japv) = bjapv(pi+r), θi,r,k(b

japv(pi+r)) =

bjapv(pi+r)2 and θi,r,k(b
japv(pi+r)β−1

) = bjapv(pi+r)β = bjapv. Here we say that this map

makes a cycle of β elements. So we have, only p
p(p−1)

2β = pm choices for these type of

elements. Hence the map θi,r,k fixes pt × pt × pm = p2t+m gyrotransversals. �

Theorem 3.2. The number of isomorphism classes of gyrotransversals to the sub-

group H in the group G is equal to

1

p(p− 1)

(

αep+ p
p2+p−4

2 + (p− 1)p
3p−5

2 +

αo
∑

η=1

p−1
∑

i=0

p2tη+mη,i

)

,(3.3)

where αe is the total number of even order elements in U(p), αo is the total number

of odd order elements except the identity in U(p), tη is the t value corresponding to

ηth odd order element except the identity and mη,i is the m value of ηth odd order

element except the identity corresponding to different i’s.

Proof. Using Lemma 3.2 each θi fixes p
(p−1)(p+2)

2 number of gyrotransversals. Therefore

total number of gyrotransversals fixed by all the maps θi is pp
(p−1)(p+2)

2 . Similarly

from Lemma 3.3 fixes (p2 − p)p
3(p−1)

2 gyrotransversals, Lemma 3.4 does not fix any

gyrotransversal, Lemma 3.5 fixes αep
2p gyrotransversals and from Lemma 3.6 fixes

p
∑αo

η=0

∑p2−1
i=0 p2tη+mη,i gyrotransversals.

Now by the Cauchy-Frobenius Formula, we have, the number of isomorphism classes
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of gyrotransversals is equal to the number of orbits, that is,

=
1

|AutH(G)|

∑

θ∈AutH (G)

|Fix(θ)|

=
1

p3(p− 1)



αep
3 + p

p(p+1)
2 + (p− 1)p

3p−1
2 + p

αo
∑

η=1

p2−1
∑

i=0

p2tη+mη,i





=
1

p(p− 1)

(

αep+ p
p2+p−4

2 + (p− 1)p
3p−5

2 +

αo
∑

η=1

p−1
∑

i=0

p2tη+mη,i

)

.

�

Corollary 3.1. The lower bound of the number of non isomorphic right gyrogroups

of order p3 is given in Equation (3.3).

Next, we find the lower bound of number of non-isomorphic gyrotransversals such that

the corresponding right gyrogroup is of nilpotency class 2. Note that, the center of

the group G, Z(G) = 〈ap〉. Now, we will find the deformations of the gyrotransversals

such that g(Z(G)) = 1, that is, a gyrotransversal of the form given below,

T = ap ∪

p−1
⋃

r=1

bjar.

Theorem 3.3. [5] If T be any gyrotransversal to the subgroup H in the group G such

that g(Z(G)) = 1, then T is of nilpotency class 2.

Now, we find the total number of such gyrotransversals to the subgroup H in the

group G.

Theorem 3.4. The total number of gyrotransversals in the group G to the subgroup

H such that g(Z(G)) = 1 is equal to p
p−1
2 .

Proof. The proof is similar to the proof of the Theorem 3.1. �

Theorem 3.5. The number of isomorphism classes of gyrotransversals to the sub-

group H in the group G such that g(Z(G)) = 1 is equal to

1

(p− 1)

(

αe + p
p−3
2 +

αo
∑

η=1

ptη

)

,
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where αe is the total number of even order elements in U(p), αo is the total number

of odd order elements except the identity in U(p) and tη is the t value of ηth odd order

element except the identity.

Proof. The proof is similar to the proof of the Theorem 3.2. �

Corollary 3.2. The lower bound of the number of non isomorphic right gyrogroups

of order p3 having the nilpotency class 2 is given by the number in Theorem 3.5.

As an illustration, we find the isomorphism classes of gyrotransversals of order 33 in

the group Z3 ⋉ Z27.

Example 3.1. Consider the group G = Z3 ⋉ Z27 = 〈a, b | a27 = 1 = b3, bab−1 =

a10〉 and the subgroup H = 〈b〉 of order 3. Then there are 3
(3−1)(3+2)

2 = 35 = 243

gyrotransversals to the subgroup H in the group G. These are given as

Sj = {1} ∪ (bja1 ∪ b−ja2) ∪ ({bja9} ∪ {b−ja18}) ∪
4
⋃

l=1

({bjla3l} ∪ {b−jla−3l}),

where l 6= 3. Any map θ ∈ AutH(G) is given by

θ(a) = bjai and θ(b) = b,

where j ∈ {0, 1, 2}, 0 ≤ i ≤ 26 and gcd(i, 3) = 1. So, |AutH(G)| = 54. Now, one can

easily check that the map θi(a) = ai, where i ∈ {1, 10, 19} fixes all gyrotransversals.

Therefore, |Fix(θi)| = 243 for all i ∈ {1, 10, 19}. The map θi(a) = ai, where i ∈

{4, 7, 13, 16, 22, 25} fixes 31 · 32(1) gyrotransversals given by

Sj ={1, bj1a, b−j1a2, bj2a3, bj1a4, b−j1a5, b−j2a6, bj1a7, b−j1a8, bj3a9, bj1a10, b−j1a11, bj2a12,

bj1a13, b−j1a14, b−j2a15, bj1a16, b−j1a17, b−j3a18, bj1a19, b−j1a20, bj2a21, bj1a22, b−j1a23,

b−j2a24, bj1a25, b−j1a26},

where 0 ≤ j1, j2, j3 ≤ 8. So, |Fix(θj)| = 27 for all j ∈ {4, 7, 13, 16, 22, 25}. The map

θl(a) = al, where l ∈ {2, 5, 8, · · · , 26} fixes the gyrotransversal

S ={1, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20, a21,

a22, a23, a24, a25, a26}.
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Note that for any bjai, θl(b
jai) = bjali. Therefore, if the map θl fixes any other

gyrotransversal, then it is given by

Sj ={1, bja, bja2, bja3, bja4, bja5, bja6, bja7, bja8, bja9, bja10, bja11, bja12, bja13, bja14,

bja15, bja16, bja17, bja18, bja19, bja20, bja21, bja22, bja23, bja24, bja25, bja26}.

Then bja ∈ Sj, but (b
ja)−1 = b−ja−i−p2j /∈ Sj. This is a contradiction. Thus the map

θl fails to fix any other gyrotransversal. So, |Fix(θl)| = 1 for all l ∈ {2, 5, 8, · · · , 26}.

Using the similar arguments, the map θl,k(a) = bkal, where l ∈ {2, 5, 8, · · · , 26} and

j ∈ {1, 2} fixes only one gyrotransversal.

Now, for the map θj(a) = bja, where j ∈ {1, 2}, we have if S is a gyrotransversal to

the subgroup H in G such that θj(S) = S and bka ∈ S, then θj(b
ka) = bk+ja ∈ S

for all k ∈ {0, 1, 2}. This is a contradiction as S is a right transversal to H in G.

Therefore, the map θj do not fix any gyrotransversal. Similarly, the map θj(a
i) = bjai,

where i ∈ {1, 4, 7, · · · , 25} and j ∈ {1, 2} do not fix any gyrotransversal. Therefore,

|Fix(θi,j)| = 0. Thus,

∑

θ∈AutH (G)

|Fix(θ)| = (3× 243) + (6× 27) + (9× 1) + (2× 9× 0) + (2× 9× 1) = 918.

Hence, using the Cauchy-Frobenius Formula, we get, the number of H orbits is equal

to 918
54

= 17. Hence, there are at least 17 non isomorphic right gyrogroups of order 27

Also, the number of gyrotransversals of H in the group G such that g(Z(G)) = 1 is

equal to 3. Hence, the number of isomorphism class of gyrotransversals of order 27

having nilpotency class 2 is equal to 1.
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