GYROTRANSVERSALS OF ORDER p^3

RAMJASH GURJAR⁽¹⁾, RATAN LAL⁽²⁾ AND VIPUL KAKKAR⁽³⁾

ABSTRACT. In this paper, we compute the isomorphism classes of gyrotransversals of order p^3 corresponding to a fixed subgroup of order p in the group $\mathbb{Z}_p \ltimes \mathbb{Z}_{p^3}$, where p is an odd prime. This yields a lower bound for the number of right gyrogroups of order p^3 upto isomorphism. In addition, we obtain a lower bound for the nonisomorphic right gyrogroups of order p^3 of nilpotency class 2.

1. INTRODUCTION

Let H be a subgroup of a group G and S be a right transversal to H in G with $e \in S$, where e is the identity of the group G. Then, the set S with the induced binary operation \circ defined by $\{x \circ y\} = S \cap Hxy$ becomes a right loop with the identity e. S is also a right transversal to the subgroup $H \cap \langle S \rangle$ in the group $\langle S \rangle$ (see [7]). Using the identification of the members of the set S with the corresponding right cosets of H in G, we get a group homomorphism $\lambda : G \longrightarrow Sym(S)$ defined by $\{\lambda(g)(x)\} = S \cap Hxg, g \in G, x \in S$. The kernel of λ is $Core_G(H)$, the core of H in G. The group $G_S = \lambda(\langle S \rangle \cap H)$ is called the group torsion of S (see [7, Defination 3.1]). If we identify S with $\lambda(S)$, then $\lambda(\langle S \rangle) = G_S S$. Note that, the group $G_S S$ depends only on S and not on H (see [7]). Also, S is a right transversal to the subgroup G_S in the group $G_S f$ (see [7]). Moreover, S is a group if and only if G_S is trivial. Also, in a group G, if a subgroup H is normal, then the corresponding right transversal S is a group which is isomorphic to the quotient group G/H. Thus for a finite abelian p-group, a gyrotransversal is a group [2].

²⁰¹⁰ Mathematics Subject Classification. 20N05.

Key words and phrases. Gyrotransversal, Right gyrogroup, Cauchy-Frobenius Formula, Right loop.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. Received: March 9, 2023 Accepted: Aug. 6, 2023.

The gyrogroup structure is the result of a classic work of A. A. Ungar [13] in the study of Lorentz groups. A gyrogroup is a generalization of a group. In, [3], [13] and [14], Ungar and Foguel studied left gyrogroups and gyrotransversals to a subgroup in a group (see [3, Defination 2.9, p. 31]).

Agore and Militaru [1] observed that all the finite groups of order n can be obtained through the factorization $S_n = S_{n-1}\mathbb{Z}_n$, where S_n is the symmetric group of degree n. Lal and Yadav [9] studied the right gyrogroups, gyrotransversals and their deformations and they showed that there is a unique gyrotransversal to S_{n-1} in S_n . They also proved that right gyrogroups and gyrotransversals are the same in some sense (see [3, Theorem 2.12, p. 33]). Therefore it is reasonable to study the isomorphism classes of gyrotransversals in different groups to get the lower bound of non-isomorphic gyrogroups. The semidirect product of two groups H and K is denoted by $H \ltimes K$, where K is regarded as the normal subgroup in $H \ltimes K$. In this paper, we have used the *Cauchy-Frobenius Formula* to calculate the number of gyrotransversals upto isomorphism in the group $G = \mathbb{Z}_p \ltimes \mathbb{Z}_{p^3}$ to a fixed subgroup H of G of order p, where p is an odd prime. For this, we take the natural action of $Aut_H(G)$ on the set of all the gyrotransversals to the subgroup H in G, where $Aut_H(G) = \{\theta \in Aut(G) \mid \theta(H) = H\}$.

Let S and T be two right transversals to the subgroup H in G such that $\langle S \rangle = G = \langle T \rangle$. Then by [8, Proposition 2.7, p. 652], if $S \simeq T$, then there exists $\theta \in Aut_H(G)$ such that $\theta(S) = T$. Thus, the action of $Aut_H(G)$ on the set of all right transversals isomorphic to S is a transitive action. Since |H| = p, if S is a right transversal to H in G, then either $S = \langle S \rangle$ or $\langle S \rangle = G$. Therefore, the number of orbits under the action of $Aut_H(G)$ is equal to the number of isomorphism classes of right loops. Thus we get a lower bound for the number of gyrotransversals of order p^3 up to isomorphic right gyrogroups of order p^3 . Also, a lower bound for the number of non-isomorphic right gyrogroups of nilpotency class 2 is obtained. Throughout the paper, \mathbb{Z}_n denotes the cyclic group of order n and U(p) denotes the group of units (mod p).

GYROTRANSVERSALS OF ORDER p^3

2. Preliminaries

In this section, we give the preliminaries that we will use throughout the paper.

Definition 2.1. [3, Definition 2.3, p. 29] A groupoid (S, \circ) is said to be a right gyrogroup if,

- (i) there exists an element $e \in S$ such that $x \circ e = x$ for all $x \in S$,
- (ii) for each element $a \in S$, there exists an element $a' \in S$ such that $a \circ a' = e$,
- (*iii*) there exists a map $f: S \times S \longrightarrow Aut(S, \circ)$ such that for any $x, y, z \in S$,

$$(x \circ y) \circ z = f(y, z)(x) \circ (y \circ z),$$

(iv)
$$f(y, y') = I_S$$
 for all $y \in S$.

By [9, Corollary 5.7, p. 3566], (S, \circ) is a right loop with the identity e and a' is also the left inverse for each $a \in S$.

Definition 2.2. ([3, Defination 2.9, p. 31]) A gyrotransversal is a right transversal S to a subgroup H in a group G if

(i) $e \in S$, where e is the identity of the group G,

(ii)
$$S^{-1} \subseteq S$$
,

(iii) $h^{-1}Sh \subseteq S$ for all $h \in H$.

Proposition 2.1. [9, Corollary 5.11, p. 3569] Let S be a gyrotransversal to a subgroup H in a group G and $g: S \longrightarrow H$ be a map such that g(e) = e. Then the transversal $S_g = \{g(x)x \mid x \in S\}$ is a gyrotransversal if and only if

$$g(x^{-1}) = g(x)^{-1}$$

and $g(h^{-1}xh) = h^{-1}g(x)h$

for all $x \in S$ and $h \in H$.

The deformation map is defined as the map $g: S \longrightarrow H$ satisfying the conditions in the Proposition 2.1 and S_g is called the deformed gyrotransversal with respect to the fixed gyrotransversal S to the subgroup H in a group G.

Two right transversals are said to be isomorphic to each other if they are isomorphic as their induced right loop structures. If S and T are two isomorphic right transversals to H in G and S is a gyrotransversal, then T is also a gyrotransversal to H in G. **Theorem 2.1.** (Cauchy-Frobenius Formula)[11, Theorem 3.1.2, p. 75] Let a group G acts on a set X. Then the average number of points fixed by the elements of G is equal to the number of orbits of G on X that is,

number of orbits =
$$\frac{1}{|G|} \sum_{g \in G} |Fix(g)|,$$

where $Fix(g) = \{x \in X \mid g \cdot x = x\}.$

Let $G = H \ltimes K$ be a group, where H is abelian. Let S be a gyrotransversal to the subgroup H in the group G and $g : S \longrightarrow H$ be a deformation map. Then for all $s \in S$ and $h \in H$, we have

(2.1)
$$g(h^{-1}sh) = h^{-1}g(s)h = g(s)$$

The map $(h, s) \mapsto h^{-1}sh$ for all $h \in H$ and $s \in S$ defines an action of H on S. Then for any $s \in S \setminus \{e\}$, the orbit of s is given as $s^* = \{h^{-1}sh \mid h \in H\}$. Using Equation (2.1), in order to define the map g one can easily observe that it is sufficient to find the images of the representatives of the H-orbits on $S \setminus \{e\}$. Let $\{s_1, s_2, \dots, s_n\}$ be a set of representatives of the H-orbits on $S \setminus \{e\}$. Note that for all $h, h' \in H$, $h^{-1}(h's_i^*)h = h'(h^{-1}s_i^*h) = h's_i^*$. Thus, $h^{-1}sh \in S$ holds trivially for all $h \in H$ and $s \in S$. Therefore, it is sufficient to check that $S^{-1} = S$ for S to be a gyrotransversal to H in G. Now, we have the total number of gyrotransversals to the subgroup H in the group G.

Theorem 2.2. [5] Let $G = H \ltimes K$ be a group, where H is abelian. Then, the total number of gyrotransversals to the subgroup H in the group G is

$$= \begin{cases} |H|^{\frac{n}{2}}, & \text{if } n \text{ is even} \\ |H|^{\frac{n+1}{2}}, & \text{if } n \text{ is odd,} \end{cases}$$

where n is the number of H-orbits on $S \setminus \{e\}$.

3. Gyrotransversals in $\mathbb{Z}_p \ltimes \mathbb{Z}_{p^3}$

Let G denotes the group $\mathbb{Z}_p \ltimes \mathbb{Z}_{p^3}$ with the presentation

$$G = \langle a, b \mid a^{p^3} = 1 = b^p, bab^{-1} = a^{1+p^2} \rangle,$$

where p is an odd prime. Let $H = \langle b \rangle$ be a subgroup of G of order p. Throughout this section, G and H respectively denote the group and subgroup as discussed above. Then one can easily observe that if S is a gyrotransversal to H in G which is not a group, then $H \simeq G_S$ and $G \simeq G_S S$. To find all the gyrotransversals in G to the subgroup H, we will determine H-orbits in G.

Let $\overline{a^r} = \{a^{pi+r} \mid 0 \le i \le p^2 - 1, 1 \le r \le p - 1\}$ and X denotes the collection of all the gyrotransversals to the subgroup H in G.

Lemma 3.1. Let $b^j a^i$ be any element of $\mathbb{Z}_p \ltimes \mathbb{Z}_{p^3}$, where $0 \leq i \leq p^3 - 1$, $0 \leq j \leq p - 1$. Then

- (i) $a^{i}b^{j} = b^{j}a^{i(1-jp^{2})},$ (ii) $(b^{j}a^{i})^{n} = b^{nj}a^{ni-\frac{n(n-1)}{2}p^{2}ij}$ for all n.
- $\begin{array}{ll} Proof. \qquad (i) \ \text{Using } bab^{-1} = a^{1+p^2}, \text{ we get } b^{-1}ab = a^{1-p^2}. \ \text{Therefore, } b^{-1}a^ib = a^{i(1-p^2)} \\ \text{ for all } 0 \leq i \leq p^3 1. \ \text{Now, } b^{-2}a^ib^2 = b^{-1}a^{i(1-p^2)}b = (b^{-1}ab)^{i(1-p^2)} = a^{i(1-p^2)^2}. \\ \text{Using the similar argument, we get } b^{-3}a^ib^3 = b^{-1}a^{i(1-p^2)^2}b = (b^{-1}ab)^{i(1-p^2)^2} = a^{i(1-p^2)^3}. \\ \text{Inductively, we get } b^{-j}a^ib^j = a^{i(1-p^2)^j} \text{ for all } 0 \leq j \leq p-1. \ \text{Using } a^{p^3} = 1, \text{ we have } b^{-j}a^ib^j = a^{i(1-jp^2)}. \ \text{Hence, } a^ib^j = b^ja^{i(1-jp^2)}. \end{array}$
 - (*ii*) Using the part (*i*), for all $0 \le i \le p^3 1$ and $0 \le j \le p 1$, we get $(b^j a^i)^2 = b^j (a^i b^j) a^i = b^j b^j a^{i(1-jp^2)} a^i = b^{2j} a^{i(2-jp^2)}$. Now $(b^j a^i)^3 = b^j a^i (b^j a^i)^2 = b^j (a^i b^{2j}) a^{i(2-jp^2)} = b^j b^{2j} a^{i(1-2jp^2)} a^{i(2-jp^2)} = b^{3j} a^{i(3-3jp^2)}$. Similarly, we get $(b^j a^i)^4 = b^j (a^i b^{3j}) a^{i(3-3jp^2)} = b^j b^{3j} a^{i(1-3jp^2)} a^{i(3-3jp^2)} = b^{4j} a^{4i-6ijp^2}$. Inductively, we get $(b^j a^i)^n = b^{nj} a^{ni-\frac{n(n-1)}{2}ijp^2}$ for all n.

Theorem 3.1. The total number of gyrotransversals to the subgroup H in the group G is equal to $p^{\frac{(p-1)(p+2)}{2}}$.

Proof. The right cosets of the subgroup H in the group G are given by Ha^i $(0 \le i \le p^3 - 1)$. Thus, a right transversal of H in G is given by

$$S = \bigcup_{i=1}^{p^3 - 1} (\{1\} \cup \{b^{j_i} a^i\}),$$

where $0 \leq j_i \leq p-1$. Now, for $b^j a^{pi+r} \in S$, we have $(b^j a^{pi+r})^{-1} = b^{-j} a^{p(-prj-i)-r}$ = $b^{-j} a^{p(-prj-i-1)+(p-r)}$. Then $S^{-1} = S$ if and only if $b^j a^{pi+r} \in S$ implies $(b^j a^{pi+r})^{-1} \in S$. Therefore, a gyrotransversal S in G is given as (3.1)

$$S = \{1\} \cup \bigcup_{i=1}^{\frac{p-1}{2}} (b^{j_i} \overline{a^{r_i}} \cup b^{-j_i} \overline{a^{-r_i}} \cup \{b^{j_i} a^{p^2 i}\} \cup \{b^{-j_i} a^{-p^2 i}\}) \cup \bigcup_{l=1}^{\frac{p^2-1}{2}} (\{b^{j_l} a^{pl}\} \cup \{b^{-j_l} a^{-pl}\}),$$

where $0 \leq j_i, j_l \leq p-1, r_i \in \{1, 2, \dots, p-1\}$ and gcd(l, p) = 1. Therefore, the set of representatives of *H*-orbits is

$$\{a, a^2, \cdots, a^{p-1}\} \cup \{a^p, a^{2p}, \cdots, a^{p(p^2-1)}\}.$$

Now, the total number of orbits is equal to $n = (p-1) + (p^2 - 1) = (p-1)(p+2)$. Hence, using the Theorem 2.2, the total number of gyrotransversals is $p^{\frac{(p-1)(p+2)}{2}}$.

Now, we calculate the isomorphism classes of gyrotransversals to the subgroup H in the group G. We will use the *Cauchy-Frobenius Formula* to find the isomorphism class of gyrotransversals. As given in [6], any automorphism $\theta \in Aut_H(G)$ is given by

$$\theta(a) = b^j a^i$$
 and $\theta(b) = b$,

where $0 \leq j \leq p-1$ and $i \in \mathbb{Z}_{p^3}$ such that gcd(p, i) = 1. Here, we see that the map $\theta \in Aut_H(G)$ fixes all the elements of H. Therefore any $\theta \in Aut_H(G)$ will give us an isomorphism between S and $\theta(S)$. In this way, $Aut_H(G)$ acts naturally on the set X. Note that, the image of any map $\theta \in Aut_H(G)$ depends only on the images of the elements of the subgroup $\langle a \rangle$ of G. Now, we find the set $Fix(\theta) = \{S \in X \mid \theta(S) = S\}$, for all $\theta \in Aut_H(G)$.

Lemma 3.2. Let $\theta_i \in Aut_H(G)$ be defined by $\theta_i(a) = a^{p^2i+1}$, where $0 \leq i \leq p-1$. Then $|Fix(\theta_i)| = |X|$.

Proof. Let $\theta_i(a) = a^{p^2i+1}$, where $0 \leq i \leq p-1$. Let S be a gyrotransversal to H in G such that $\theta_i(S) = S$. By (3.1), S consists of the elements from the sets $b^j \overline{a^u}$ and the elements of the form $b^j a^{p^2u}$ and $b^j a^{pv}$, where $0 \leq j \leq p-1$, $u \in \{1, 2, \dots, p-1\}$

and $v \in \{1, 2, \dots, p^2 - 1\}$ with gcd(v, p) = 1. Note that, $\theta_i(b^j \overline{a^u}) = b^j \overline{a^u}, \theta_i(b^j a^{p^2 u}) = b^j a^{p^2 u}$ and $\theta_i(b^j a^{pv}) = b^j a^{pv}$. Hence, the map θ_i fixes all gyrotransversals. \Box

Lemma 3.3. Let $\theta_i \in Aut_H(G)$ be defined by $\theta_i(a) = a^{pi+1}$, where $0 < i \leq p^2 - 1$ and gcd(p,i) = 1. Then $|Fix(\theta_i)| = p^{\frac{3(p-1)}{2}}$.

Proof. Let $\theta_i(a) = a^{pi+1}$, where $0 \leq i \leq p^2 - 1$. Let S be a gyrotransversal to H in G such that $\theta_i(S) = S$. Using Equation (3.1), S consists of the elements from the sets $b^j \overline{a^u}$ and the elements of the form $b^j a^{p^2u}$ and $b^j a^{pv}$, where $0 \leq j \leq p - 1$, $u \in \{1, 2, \dots, p - 1\}$ and $v \in \{1, 2, \dots, p^2 - 1\}$ with gcd(v, p) = 1. Note that, $\theta_i(b^j \overline{a^u}) = b^j \overline{a^u}$ and $\theta_i(b^j a^{p^2u}) = b^j a^{p^2u}$.

Observe that, $\theta_i(b^j a^{pv}) = b^j a^{p^2vi+pv}$, $\theta_i(b^j a^{p^2vi+pv}) = b^j a^{2p^2vi+pv}$, $\theta_i(b^j a^{2p^2vi+pv}) = b^j a^{3p^2vi+pv}$ and $\theta_i(b^j a^{(p-1).p^2vi+pv}) = b^j a^{p.p^2vi+pv} = b^j a^{pv}$. Here we see that this map makes a cycle of p elements and p(p-1) total elements of these types. Hence, $b^j a^{pv}$ have $p^{\frac{p-1}{2}}$ choices. So the map θ_i fixes $p^{\frac{p-1}{2}} \times p^{\frac{p-1}{2}} = p^{\frac{3(p-1)}{2}}$ gyrotransversals.

Lemma 3.4. Let $\theta_{i,k} \in Aut_H(G)$ be defined by $\theta_{i,k}(a) = b^k a^{pi+1}$, where $0 \leq i \leq p^2 - 1$ and $1 \leq k \leq p-1$. Then $|Fix(\theta_{i,k})| = 0$.

Proof. Let $\theta_{i,k}(a) = b^k a^{pi+1}$, where $0 \leq i \leq p^2 - 1$, $1 \leq k \leq p - 1$. Let S be a gyrotransversal to H in G such that $\theta_{i,k}(S) = S$. Using Equation (3.1), S consists of the elements from the sets $b^j \overline{a^u}$ and the elements of the form $b^j a^{p^2u}$ and $b^j a^{pv}$, where $0 \leq j \leq p - 1$, $u \in \{1, 2, \dots, p - 1\}$ and $v \in \{1, 2, \dots, p^2 - 1\}$ with gcd(v, p) = 1. Note that, $\theta_{i,k}(b^j \overline{a^u}) = b^{uk+j} \overline{a^u} \notin S$ because if $b^{uk+j} \overline{a^u} \in S$ then $j \equiv uk+j \pmod{p}$ which implies that $r_{\gamma}k \equiv 0 \pmod{p}$ which is not true. Hence, the map $\theta_{i,k}$ does not fix any gyrotransversal.

Lemma 3.5. Let $\theta_{i,r,k} \in Aut_H(G)$ be defined by $\theta_{i,r,k}(a) = b^k a^{pi+r}$, where $0 \leq i \leq p^2 - 1$, $0 \leq k \leq p - 1$ and $1 < r \leq p - 1$ with α being the order of $r \pmod{p}$ is even. Then $|Fix(\theta_{i,r,k})| = 1$.

Proof. Let $\theta_{i,r,k}(a) = b^k a^{pi+r}$, where $0 \le i \le p^2 - 1$, $0 \le k \le p - 1$ and $1 \le r \le p - 1$ with α be the order of $r \pmod{p}$ which is even. Let S be a gyrotransversal to H in G such that $\theta_{i,r,k}(S) = S$. Using Equation (3.1), S consists of the elements from the sets $b^j \overline{a^u}$ and the elements of the form $b^j a^{p^2u}$ and $b^j a^{pv}$, where $0 \leq j \leq p-1$, $u \in \{1, 2, \dots, p-1\}$ and $v \in \{1, 2, \dots, p^2-1\}$ with gcd(v, p) = 1. Note that $\theta_{i,r,k}(b^j \overline{a^u}) = b^{j+ku}\overline{a^{ur}}, \theta_{i,r,k}(b^{j+ku}\overline{a^{ur}}) = b^{j+ku+kur}\overline{a^{ur^2}}, \theta_{i,r,k}(b^{j+ku+kur}\overline{a^{ur^2}}) = b^{j+ku+kur+kur^2}\overline{a^{ur^3}}$ and

$$\theta_{i,r,k}(b^{j+ku+kur+\dots+kur\frac{\alpha}{2}-2}\overline{a^{ur\frac{\alpha}{2}-1}})$$

$$=b^{j+ku+kur+\dots+kur\frac{\alpha}{2}-1}\overline{a^{ur\frac{\alpha}{2}}}$$

$$=b^{j+ku+kur+\dots+kur\frac{\alpha}{2}-1}\overline{a^{-u}}$$

thus $b^{j+ku+kur+\dots+kur^{\frac{\alpha}{2}-1}} \in S$ if and only if $b^{j+ku+kur+kur^2+\dots+kur^{\frac{\alpha}{2}-1}} = b^{-j}$ which implies that $b^{ku(\frac{r^2}{r-1})} = b^{-2j}$. This shows that $b^{ku(\frac{-2}{r-1})} = b^{-2j}$. Thus,

$$ku = j(r-1) \pmod{p}$$

Since gcd(r-1,p) = 1 for each u, there is a unique j that satisfies Equation (3.2). Observe that, $\theta_{i,r,k}(b^j a^{p^2 u}) = b^j a^{p^2 ur}$, $\theta_{i,r,k}(b^j a^{p^2 ur}) = b^j a^{p^2 ur^2}$ and $\theta_{i,r,k}(b^j a^{p^2 ur^{\frac{\alpha}{2}-1}}) = b^j a^{p^2 ur^{\frac{\alpha}{2}}} = b^j a^{-p^2 u}$. Since S is a gyrotransversal and $(b^j a^{p^2 u})^{-1} = b^{-j} a^{-p^2 u}$ we have, $\theta_{i,r,k}(b^j a^{p^2 ur^{\frac{\alpha}{2}-1}}) \in S$ if and only if $j \equiv -j \pmod{p}$. This implies that j = 0. Also observe that, $\theta_{i,r,k}(b^j a^{pv}) = b^j a^{pv(pi+r)}$, $\theta_{i,r,k}(b^j a^{pv(pi+r)}) = b^j a^{pv(pi+r)^2}$ and $\theta_{i,r,k}(b^j a^{pv(pi+r)^{\frac{\beta}{2}-1}}) = b^j a^{pv(pi+r)^{\frac{\beta}{2}}} = b^j a^{-pv}$, where β denotes the order of (pi+r) $(mod p^2)$. Since S is a gyrotransversal and $(b^j a^{pv})^{-1} = b^{-j} a^{-pv}$, for $\theta(S) = S$ we have, $\theta_{i,r,k}(b^j a^{pv(pi+r)^{\frac{\beta}{2}-1}}) \in S$ if and only if $j \equiv -j \pmod{p}$ this implies that j = 0. Hence, the map $\theta_{i,r,k}$ fixes only one gyrotransversal.

Lemma 3.6. Let $\theta_{i,r,k} \in Aut_H(G)$ be defined by $\theta_{i,r,k}(a) = b^k a^{pi+r}$, where $0 \leq i \leq p^2 - 1$, $0 \leq k \leq p - 1$ and $1 < r \leq p - 1$ with the order of $r \pmod{p}$ is odd which denoted by α . Then $|Fix(\theta_{i,r,k})| = p^{2t+m}$, where $t = \frac{p-1}{2\alpha}$ and $m = \frac{p(p-1)}{2\beta}$ with β denotes the order of $(pi + r) \pmod{p^2}$.

Proof. Let $\theta_{i,r,k}(a) = b^k a^{pi+r}$, where $0 \leq i \leq p^2 - 1$, $0 \leq k \leq p - 1$ and $1 < r \leq p - 1$ with α be the order of $r \pmod{p}$, which is odd. Let S be a gyrotransversal to Hin G such that $\theta_{i,r,k}(S) = S$. Using Equation (3.1), S consists of the elements from the sets $b^j \overline{a^u}$ and the elements of the form $b^j a^{p^2u}$ and $b^j a^{pv}$, where $0 \leq j \leq p - 1$,

$$u \in \{1, 2, \cdots, p-1\} \text{ and } v \in \{1, 2, \cdots, p^2 - 1\} \text{ with } gcd(v, p) = 1. \text{ Note, } \theta_{i,r,k}(b^{j}\overline{a^{u}}) = b^{j+ku}\overline{a^{ur}}, \theta_{i,r,k}(b^{j+ku}\overline{a^{ur}}) = b^{j+ku+kur}\overline{a^{ur^2}}, \theta_{i,r,k}(b^{j+ku+kur}\overline{a^{ur^2}}) = b^{j+ku+kur+kur^2}\overline{a^{ur^3}} \text{ and } b^{j+ku+kur}\overline{a^{ur^2}} = b^{j+ku+kur+kur^2}\overline{a^{ur^3}}$$

$$\theta_{i,r,k}(b^{j+ku+kur+kur^{2}+\dots+kur^{\alpha-2}}\overline{a^{ur^{\alpha-1}}})$$

$$= b^{j+ku+kur+kur^{2}+\dots+kur^{\alpha-1}}\overline{a^{ur^{\alpha}}}$$

$$= b^{j}\overline{a^{u}}.$$

Hence this map make a cycle of α elements. Therefor we have, only $p^{\frac{p-1}{2\alpha}} = p^t$ choices for these type of elements.

Observe that, $\theta_{i,r,k}(b^j a^{p^2 u}) = b^j a^{p^2 ur}$, $\theta_{i,r,k}(b^j a^{p^2 ur}) = b^j a^{p^2 ur^2}$ and $\theta_{i,r,k}(b^j a^{p^2 ur^{\alpha-1}}) = b^j a^{p^2 ur^{\alpha}} = b^j a^{p^2 u}$. As above we have, only $p^{\frac{p-1}{2\alpha}} = p^t$ choices for these type of elements. Also observe that, $\theta_{i,r,k}(b^j a^{pv}) = b^j a^{pv(pi+r)}$, $\theta_{i,r,k}(b^j a^{pv(pi+r)}) = b^j a^{pv(pi+r)^2}$ and $\theta_{i,r,k}(b^j a^{pv(pi+r)^{\beta-1}}) = b^j a^{pv(pi+r)^{\beta}} = b^j a^{pv}$. Here we say that this map makes a cycle of β elements. So we have, only $p^{\frac{p(p-1)}{2\beta}} = p^m$ choices for these type of elements. Hence the map $\theta_{i,r,k}$ fixes $p^t \times p^t \times p^m = p^{2t+m}$ gyrotransversals.

Theorem 3.2. The number of isomorphism classes of gyrotransversals to the subgroup H in the group G is equal to

(3.3)
$$\frac{1}{p(p-1)} \left(\alpha_e p + p^{\frac{p^2 + p - 4}{2}} + (p-1) p^{\frac{3p-5}{2}} + \sum_{\eta=1}^{\alpha_o} \sum_{i=0}^{p-1} p^{2t_\eta + m_{\eta,i}} \right),$$

where α_e is the total number of even order elements in U(p), α_o is the total number of odd order elements except the identity in U(p), t_{η} is the t value corresponding to η^{th} odd order element except the identity and $m_{\eta,i}$ is the m value of η^{th} odd order element except the identity corresponding to different *i*'s.

Proof. Using Lemma 3.2 each θ_i fixes $p^{\frac{(p-1)(p+2)}{2}}$ number of gyrotransversals. Therefore total number of gyrotransversals fixed by all the maps θ_i is $pp^{\frac{(p-1)(p+2)}{2}}$. Similarly from Lemma 3.3 fixes $(p^2 - p)p^{\frac{3(p-1)}{2}}$ gyrotransversals, Lemma 3.4 does not fix any gyrotransversal, Lemma 3.5 fixes $\alpha_e p^2 p$ gyrotransversals and from Lemma 3.6 fixes $p \sum_{\eta=0}^{\alpha_o} \sum_{i=0}^{p^2-1} p^{2t_\eta+m_{\eta,i}}$ gyrotransversals.

Now by the Cauchy-Frobenius Formula, we have, the number of isomorphism classes

of gyrotransversals is equal to the number of orbits, that is,

$$= \frac{1}{|Aut_H(G)|} \sum_{\theta \in Aut_H(G)} |Fix(\theta)|$$

= $\frac{1}{p^3(p-1)} \left(\alpha_e p^3 + p^{\frac{p(p+1)}{2}} + (p-1)p^{\frac{3p-1}{2}} + p \sum_{\eta=1}^{\alpha_o} \sum_{i=0}^{p^2-1} p^{2t_\eta + m_{\eta,i}} \right)$
= $\frac{1}{p(p-1)} \left(\alpha_e p + p^{\frac{p^2+p-4}{2}} + (p-1)p^{\frac{3p-5}{2}} + \sum_{\eta=1}^{\alpha_o} \sum_{i=0}^{p-1} p^{2t_\eta + m_{\eta,i}} \right).$

Corollary 3.1. The lower bound of the number of non isomorphic right gyrogroups of order p^3 is given in Equation (3.3).

Next, we find the lower bound of number of non-isomorphic gyrotransversals such that the corresponding right gyrogroup is of nilpotency class 2. Note that, the center of the group $G, Z(G) = \langle a^p \rangle$. Now, we will find the deformations of the gyrotransversals such that g(Z(G)) = 1, that is, a gyrotransversal of the form given below,

$$T = \overline{a^p} \cup \bigcup_{r=1}^{p-1} b^j \overline{a^r}.$$

Theorem 3.3. [5] If T be any gyrotransversal to the subgroup H in the group G such that g(Z(G)) = 1, then T is of nilpotency class 2.

Now, we find the total number of such gyrotransversals to the subgroup H in the group G.

Theorem 3.4. The total number of gyrotransversals in the group G to the subgroup H such that g(Z(G)) = 1 is equal to $p^{\frac{p-1}{2}}$.

Proof. The proof is similar to the proof of the Theorem 3.1. \Box

Theorem 3.5. The number of isomorphism classes of gyrotransversals to the subgroup H in the group G such that g(Z(G)) = 1 is equal to

$$\frac{1}{(p-1)} \left(\alpha_e + p^{\frac{p-3}{2}} + \sum_{\eta=1}^{\alpha_o} p^{t_\eta} \right),\,$$

where α_e is the total number of even order elements in U(p), α_o is the total number of odd order elements except the identity in U(p) and t_{η} is the t value of η^{th} odd order element except the identity.

Proof. The proof is similar to the proof of the Theorem 3.2.

Corollary 3.2. The lower bound of the number of non isomorphic right gyrogroups of order p^3 having the nilpotency class 2 is given by the number in Theorem 3.5.

As an illustration, we find the isomorphism classes of gyrotransversals of order 3^3 in the group $\mathbb{Z}_3 \ltimes \mathbb{Z}_{27}$.

Example 3.1. Consider the group $G = \mathbb{Z}_3 \ltimes \mathbb{Z}_{27} = \langle a, b \mid a^{27} = 1 = b^3, bab^{-1} = a^{10} \rangle$ and the subgroup $H = \langle b \rangle$ of order 3. Then there are $3^{\frac{(3-1)(3+2)}{2}} = 3^5 = 243$ gyrotransversals to the subgroup H in the group G. These are given as

$$S_j = \{1\} \cup (b^j \overline{a^1} \cup b^{-j} \overline{a^2}) \cup (\{b^j a^9\} \cup \{b^{-j} a^{18}\}) \cup \bigcup_{l=1}^4 (\{b^{j_l} a^{3l}\} \cup \{b^{-j_l} a^{-3l}\}),$$

where $l \neq 3$. Any map $\theta \in Aut_H(G)$ is given by

$$\theta(a) = b^j a^i \text{ and } \theta(b) = b,$$

where $j \in \{0, 1, 2\}$, $0 \le i \le 26$ and gcd(i, 3) = 1. So, $|Aut_H(G)| = 54$. Now, one can easily check that the map $\theta_i(a) = a^i$, where $i \in \{1, 10, 19\}$ fixes all gyrotransversals. Therefore, $|Fix(\theta_i)| = 243$ for all $i \in \{1, 10, 19\}$. The map $\theta_i(a) = a^i$, where $i \in \{4, 7, 13, 16, 22, 25\}$ fixes $3^1 \cdot 3^{2(1)}$ gyrotransversals given by

$$\begin{split} S_{j} =& \{1, b^{j_{1}}a, b^{-j_{1}}a^{2}, b^{j_{2}}a^{3}, b^{j_{1}}a^{4}, b^{-j_{1}}a^{5}, b^{-j_{2}}a^{6}, b^{j_{1}}a^{7}, b^{-j_{1}}a^{8}, b^{j_{3}}a^{9}, b^{j_{1}}a^{10}, b^{-j_{1}}a^{11}, b^{j_{2}}a^{12}, \\ b^{j_{1}}a^{13}, b^{-j_{1}}a^{14}, b^{-j_{2}}a^{15}, b^{j_{1}}a^{16}, b^{-j_{1}}a^{17}, b^{-j_{3}}a^{18}, b^{j_{1}}a^{19}, b^{-j_{1}}a^{20}, b^{j_{2}}a^{21}, b^{j_{1}}a^{22}, b^{-j_{1}}a^{23}, \\ b^{-j_{2}}a^{24}, b^{j_{1}}a^{25}, b^{-j_{1}}a^{26}\}, \end{split}$$

where $0 \le j_1, j_2, j_3 \le 8$. So, $|Fix(\theta_j)| = 27$ for all $j \in \{4, 7, 13, 16, 22, 25\}$. The map $\theta_l(a) = a^l$, where $l \in \{2, 5, 8, \dots, 26\}$ fixes the gyrotransversal

$$\begin{split} S = &\{1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^{10}, a^{11}, a^{12}, a^{13}, a^{14}, a^{15}, a^{16}, a^{17}, a^{18}, a^{19}, a^{20}, a^{21}, \\ &a^{22}, a^{23}, a^{24}, a^{25}, a^{26}\}. \end{split}$$

Note that for any $b^j a^i$, $\theta_l(b^j a^i) = b^j a^{li}$. Therefore, if the map θ_l fixes any other gyrotransversal, then it is given by

$$\begin{split} S_{j} =& \{1, b^{j}a, b^{j}a^{2}, b^{j}a^{3}, b^{j}a^{4}, b^{j}a^{5}, b^{j}a^{6}, b^{j}a^{7}, b^{j}a^{8}, b^{j}a^{9}, b^{j}a^{10}, b^{j}a^{11}, b^{j}a^{12}, b^{j}a^{13}, b^{j}a^{14}, b^{j}a^{15}, b^{j}a^{16}, b^{j}a^{16}, b^{j}a^{18}, b^{j}a^{19}, b^{j}a^{20}, b^{j}a^{21}, b^{j}a^{22}, b^{j}a^{23}, b^{j}a^{24}, b^{j}a^{25}, b^{j}a^{26}\}. \end{split}$$

Then $b^j a \in S_j$, but $(b^j a)^{-1} = b^{-j} a^{-i-p^2 j} \notin S_j$. This is a contradiction. Thus the map θ_l fails to fix any other gyrotransversal. So, $|Fix(\theta_l)| = 1$ for all $l \in \{2, 5, 8, \dots, 26\}$. Using the similar arguments, the map $\theta_{l,k}(a) = b^k a^l$, where $l \in \{2, 5, 8, \dots, 26\}$ and $j \in \{1, 2\}$ fixes only one gyrotransversal.

Now, for the map $\theta_j(a) = b^j a$, where $j \in \{1, 2\}$, we have if S is a gyrotransversal to the subgroup H in G such that $\theta_j(S) = S$ and $b^k a \in S$, then $\theta_j(b^k a) = b^{k+j} a \in S$ for all $k \in \{0, 1, 2\}$. This is a contradiction as S is a right transversal to H in G. Therefore, the map θ_j do not fix any gyrotransversal. Similarly, the map $\theta_j(a^i) = b^j a^i$, where $i \in \{1, 4, 7, \dots, 25\}$ and $j \in \{1, 2\}$ do not fix any gyrotransversal. Therefore, $|Fix(\theta_{i,j})| = 0$. Thus,

$$\sum_{\theta \in Aut_H(G)} |Fix(\theta)| = (3 \times 243) + (6 \times 27) + (9 \times 1) + (2 \times 9 \times 0) + (2 \times 9 \times 1) = 918.$$

Hence, using the Cauchy-Frobenius Formula, we get, the number of H orbits is equal to $\frac{918}{54} = 17$. Hence, there are at least 17 non isomorphic right gyrogroups of order 27 Also, the number of gyrotransversals of H in the group G such that g(Z(G)) = 1 is equal to 3. Hence, the number of isomorphism class of gyrotransversals of order 27 having nilpotency class 2 is equal to 1.

Acknowledgement

The first author is supported by the Senior Research Fellowship of UGC, India.

References

- A.L. Agore, G. Militaru, Classifying complements for groups. Applications, Annales de l'Institut Fourier, 65(3)(2015), 1349–1365.
- [2] A. Humam, P. Astuti, On the structure of characteristic subgroup lattices of finite abelian p-groups, Jordan Journal of Mathematics and Statistics, 15(3A)(2022), 435–444.

- [3] T. Foguel, A.A. Ungar, Involutory decomposition of groups into twisted subgroups and subgroups, *Journal of Group Theory*, 3(1)(2000), 27–46.
- [4] V. Kakkar, R.P. Shukla, On the Congruences in Right Loops, Communications in Algebra, 43(12)(2015), 5121–5130.
- [5] R. Lal, R. Gurjar, V. Kakkar, Gyrotransversals of order p^2 (Unpublished).
- [6] R. Lal, V. Kakkar, Automorphisms of semidirect product fixing a non-normal subgroup, https://arxiv.org/abs/2107.03976.
- [7] R. Lal, Transversals in groups, *Journal of algebra*, **181(1)**(1996), 70–81.
- [8] R. Lal, R.P. Shukla, Perfectly stable subgroups of finite groups, Communications in Algebra, 24(2)(1996), 643–657.
- [9] R. Lal, A.C. Yadav, Topological right gyrogroups and gyrotransversals, Communications in Algebra, 41(9)(2013), 3559–3575.
- [10] R.P. Shukla, Congruences in right quasigroups and general extensions, Communications in Algebra, 23(7)(1995), 2679–2695.
- [11] J.D.H. Smith, A.B. Romanowska, Post Modern Algebra, New York John Wiley & Sons Inc., (1999).
- [12] T. Suksumran, K. Wiboonton, Lagrange's theorem for gyrogroups and the Cauchy property, Quasigroups and Related Systems, 22(2014), 283–294.
- [13] A.A. Ungar, Thomas rotation and the parametrization of the lorentz transformation group, Foundations of Physics Letters, 1(1)(1988), 57–89.
- [14] A.A. Ungar, Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics, *Foundations of Physics*, 27(6)(1997), 881–951.

(1) Department of Mathematics, Central University of Rajasthan, NH-8, Ajmer, India.

Email address: ramjashgurjar83@gmail.com

(2) DEPARTMENT OF MATHEMATICS, GALGOTIAS UNIVERSITY, GREATER NOIDA, INDIA Email address: vermarattan789@gmail.com

(3) Department of Mathematics, Central University of Rajasthan, NH-8, Ajmer, India.

Email address: vplkakkar@gmail.com