
Jordan Journal of Mathematics and Statistics (JJMS), 17(1), 2024, pp 99 - 112

DOI: https://doi.org/10.47013/17.1.6

ON HIGHER ORDER HOMODERIVATIONS IN SEMI-PRIME

RINGS

SAID BELKADI (1) AND LAHCEN TAOUFIQ(2)

Abstract. Considering R as an associative ring, a map h which is additive on R

with the property h(zw) = h(z)h(w) + h(z)w + zh(w) valid for every z, w ∈ R is

called a homoderivation on R. In this paper our purpose is to demonstrate results

about this kind of mappings on rings. The link between n-Jordan homoderivations

that are mappings satisfying h(un) =

n
∑

t=1

(

n

t

)

(

h+ du
)t

(u)un−t for all u ∈ R and

homoderivations is investigated aa well as a result associating the mappings that

for n > 1 satisfy

Γ(un) = Γ(u)un−1 +
(

Γ(u) + u)
n−1
∑

t=1

(

n− 1

t

)

(h+ du)
t(u)un−1−t for every u ∈ R

called n-Jordan generalized homoderivations with generalized homoderivations i.e

maps with the property Γ(uv) = Γ(u)h(v)+Γ(u)v+uh(v) for every u, v ∈ R under

suitable conditions is proved.

1. Introduction

All along this article, R always considered as a ring with the associativity property

and that has a center Z(R). R is claimed to be semi-prime (prime) when for any

µ ∈ R, µRµ = 0 entails that µ = 0 (µRν = 0 implies that µ = 0 or ν = 0). R

will be κ-torsion free provided that κu = 0 (u ∈ R) signifies u = 0. U will be an

essential ideal of R when for each non zero ideal I of R we keep U ∩I 6= {0}. For any

u, v ∈ R, the commutator [u, v] will stand for uv − vu. A derivation is defined as a

mapping d on R which is additive and validates the identity d(zw) = d(z)w + zd(w)
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for all z, w ∈ R. A typical example of such mapping is the inner derivation linked to

a fixed element i ∈ R, di(j) = [i, j] for all j ∈ R. An additive map T : R 7→ R

can designated a generalized derivation assuming that we found a derivation d on R

with T(zw) = T(z)w + zd(w) holds for all z, w ∈ R. Derivations are natural exam-

ples of generalized derivations, also inner generalized derivations ( maps with form

u 7→ tu + us for any t, s ∈ R) represent another example. a Jordan homomorphism

(resp. n-Jordan homomorphism) is an additive map f between two rings having the

character f(u2) =
(

f(u)
)2

(resp. f(un) =
(

f(u)
)n
) for any u ∈ R. Finally, f is called

an anti-homomorphism if f(uv) = f(v)f(u) holds for each u, v ∈ R.

Numerous authors have inspected the notion of Jordan homomorphisms including

Kaplansky, Jacobson and Herstein. The concept defining n-Jordan homomorphism

between rings made known in the fifties by the work of Herstein [7]. It is acclaimed

that any Jordan homomorphism mapping two rings will always be a n-Jordan homo-

morphism on the assumption that n > 2, However, in general the opposite could be

false.

A characteristic conclusion due to Herstein [8] asserts that any Jordan derivation

(i.e. a map d which is additive verifying the 2nd power aspect : for any u ∈ R,

d(u2) = ud(u) + d(u)u) is a derivation in case that R is prime with char(R) 6= 2.

Cusack [5] generalized Hersteins result to 2-torsion free semiprime rings. Motivated

by these works Vukman and Kosi-Ulbl [10] proved : Each n-Jordan derivation in an

n!-torsion free semi-prime ring is a derivation. Finally, Wei and Xiao [11] extended

these results to generalized n-Jordan derivations in an n!-torsion free semi-prime

ring with identity element. In [6], El Sofy proposed the concept of homoderiva-

tion in rings which merges the notions of homomorphisms and derivations, that

is, an additive map h on R going to be a homoderivation whenever it satisfies :

h(uv) = h(u)h(v) + h(u)v + uh(v) for any u, v ∈ R. A case of these mappings is

h(u) = f(u) − u for every u ∈ R wherever f is an endomorphism on R. In a prime

ring, a homoderivation h will be a derivation if and only if h = 0. Indeed, h is a

derivation if h(u)h(v) = 0 for each u, v ∈ R. At this point, h(u)Rh(v) = {0} for every

u, v ∈ R. Thus, On the assumption of the primality of R, the unique additive map-

ping at the same time that is a derivation but also a homoderivation is 0E(R) where
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E(R) denotes the set of all endomorphisms of R. In the meanwhile of the previous

decade, there has been a concern in progress devoted to the link connecting a ring R

with the behaviour of a derivation or a homoderivation on R. The study of homod-

erivations is important because they provide a way to gain insight into the algebraic

structure of rings. Our goal is to refine these results to new areas. More specifically,

and going along behind the similar path of research, we will first give conditions en-

suring that an n-Jordan homoderivation in an n!-torsion free semi-prime unital ring

is the sum of a homoderivation with an anti-homomorphism Precisely, the alluded

result is : Consider h : R → R as an additive map on a unital semi-prime n!-torsion

free ring R with identity element e such that h(e) = 0 besides

h(un) =

n
∑

t=1

(

n

t

)

(

h+ du
)t
(u)un−t, for all u ∈ R, n > 1,

this results in the existence of an essential ideal U of R making the restriction of h

to U a direct sum, h1 ⊕ h2.

h1 denotes a homoderivation of U into R alongside with h2 that denotes an anti-

homomorphism of U into R.

Then we will extend the same result to generalized n-Jordan homoderivations under

fitting conditions by showing the following : Assuming that there exist additive

mappings Γ and h onto a n!-torsion free semi-prime ring R beside unit element

e. along with h(e) = 0 and

Γ(un) = Γ(u)un−1+
(

Γ(u)+u)

n−1
∑

t=1

(

n− 1

t

)

(h+du)
t(u)un−1−t for every u ∈ R, n > 1.

Then this results in the existence of an essential ideal U of R making the restriction

of h to U a direct sum, h1 ⊕ h2.

h1 denotes a homoderivation of U intoR alongside h2 denoting an anti-homomorphism

of U into R. Moreover, the restriction of Γ to U is a generalized homoderivation on

R associated with h1.

2. The Main Results

2.1. On n-Jordan homoderivations.
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Definition 2.1. An additive map h fromR toR is known as a Jordan homoderivation

with the condition

(2.1) h(u2) = h2(u) + h(u)u+ uh(u) holds for all u ∈ R.

Any additive map on R of the structure u 7→ g(u) − u, wherever g is a Jordan

homomorphism, will be a Jordan homoderivation.

Definition 2.2. Let n ≥ 1 considered an integer, An additive map d : R → R, that

establishes the relation

(2.2) d(un) =
n
∑

t=0

un−td(u)ut−1 for all u ∈ R

will be known as an n-Jordan derivation.

The following definition provides an analogous formula for n-Jordan homoderiva-

tions in rings.

Definition 2.3. Let n ≥ 1 considered an integer, An additive map h : R → R, that

assures the relation

(2.3) h(un) =

n
∑

t=1

(

n

t

)

(

h+ du
)t
(u)un−t for all u ∈ R

is called an n-Jordan homoderivation.

The next lemma proves that there is no problem for an n-Jordan homoderivation

to be a homoderivation.

Lemma 2.1. Each homoderivation on R is an n-Jordan homoderivation on R.
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Proof. Taking n = 1, nothing to demonstrate.

Let n be a positive integer, and suppose we have (2.3)

h(un+1) = h(u.un)

= h(u)h(un) + h(u)un + uh(un)

= h(u)

n
∑

t=1

(

n

t

)

(

h+ du
)t
(u)un−t + h(u)un + u

n
∑

t=1

(

n

t

)

(

h + du
)t
(u)un−t

=
n
∑

t=1

(

n

t

)

(

h+ du
)t+1

(u)un−t + h(u)un +
n
∑

t=1

(

n

t

)

(

h+ du
)t
(u)un+1−t

=

n
∑

t=0

(

n

t

)

(

h+ du
)t+1

(u)un−t +

n
∑

t=1

(

n

t

)

(

h+ du
)t
(u)un+1−t

=

n+1
∑

t=1

(

n

t− 1

)

(

h+ du
)t
(u)un+1−t +

n+1
∑

t=1

(

n

t

)

(

h+ du
)t
(u)un+1−t

=

n+1
∑

t=1

[

(

n

t− 1

)

+

(

n

t

)

]

(

h + du
)t
(u)un+1−t

=
n+1
∑

t=1

(

n+ 1

t

)

(

h+ du
)t
(u)un+1−t

hence the result is proved. �

Example 2.1.

h
(

u2
)

=

2
∑

t=1

(

2

t

)

(

h+ du
)t
(u)u2−t

=

(

2

1

)

(

h+ du
)

(u)u+

(

2

2

)

(

h+ du
)2
(u)

= 2h(u)u+
(

h+ du
)((

h+ du
)

(u)
)

= 2h(u)u+
(

h+ du
)(

h(u)
)

= 2h(u)u+ h2(u) + du
(

h(u)
)

= 2h(u)u+ h2(u) + uh(u)− h(u)u

= h2(u) + h(u)u+ uh(u).

We call equation (2.3) the nth-power property. For n = 2, 3, the nth-power property

generates 2-Jordan homoderivations and 3-Jordan homoderivations respectively. In
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particular, we called 2-Jordan homoderivation a Jordan homoderivation for simplicity.

Basic examples are homoderivations. However, the converse of lemma 2.4, need not

be true as shown by the following example :

Example 2.2. If R has a non-trivial central idempotent e with u2 = 0 for all u ∈ R,

but uv 6= 0 for some non-zero elements u and v in R, then the mappings of the form

u 7→ eu for all u ∈ R are Jordan homoderivations which are not homoderivations.

Now it appears legitimate requesting what supplementary presumptions the con-

trary will be correct. We should first mention that Herstein proved :

Lemma 2.2 ([7], Theorem H). Jordan homomorphisms mapping a ring onto a prime

ring with characteristic neither 2 nor 3 are one of two : homomorphisms or anti-

homomorphisms.

Smiley [9], sharpened this result by taking out the necessity of the characteristic

be different from 3. After that, Baxter and Martindale, studied a more general case

and proved the following result :

Lemma 2.3 ([1], Theorem 2.6). Suppose ϑ is a Jordan homomorphism mapping a

ring S onto a semi-prime 2-torsion free ring R. This results in the existence of an

essential ideal I of S making the restriction of ϑ to I a direct sum : α1 ⊕ α2.

α1 denoted a homomorphism of S into R besides α2 that denoted an anti-homomorphism

of S into R.

At this moment we are able to declare and show our leading main conclusion in

this paper.

Theorem 2.1. Consider h : R → R as an additive map on a unital semi-prime

n!-torsion free ring R with identity element e such that h(e) = 0 besides

h(un) =

n
∑

t=1

(

n

t

)

(

h+ du
)t
(u)un−t, for all u ∈ R, n > 1,

this results in the existence of an essential ideal U of R making the restriction of h

to U a direct sum, h1 ⊕ h2.

h1 denotes a homoderivation of U into R alongside with h2 that denotes an anti-

homomorphism of U into R.
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Proof. Let v ∈ Z(R) with h(v) = 0. Replace u by u+ v in (2.3), we attain

(2.4)

h
(

(u+ v)n
)

= h
(

n
∑

s=0

(

n

s

)

un−svs
)

=

n
∑

s=0

(

n

s

)

h(un−s)vs

=

n
∑

s=0

(

n

s

) n−s
∑

t=1

(

n− s

t

)

(

h+ du
)t
(u)un−s−tvs.

Alternatively, we get

(2.5)

h
(

(u+ v)n
)

=

n
∑

s=1

(

n

s

)

(

h+ du
)s
(u)(u+ v)n−s

=

n
∑

s=1

(

n

s

)

(

h+ du
)s
(u)

n−s
∑

t=0

(

n− s

t

)

un−s−tvt.

Combining (2.4) and (2.5) we get

(2.6)

n
∑

s=0

(

n

s

) n−s
∑

t=1

(

n− s

t

)

(

h+ du
)t
(u)un−s−tvs

=

n
∑

s=1

(

n

s

)

(

h+ du
)s
(u)

n−s
∑

t=0

(

n− s

t

)

un−s−tvt

=
n
∑

t=1

(

n

t

) n−t
∑

s=0

(

n− t

s

)

(

h+ du
)t
(u)un−t−svs.

Now let δs(u, v) be the expression of terms containing s factors of v, hence by reor-

ganizing the terms holding equal number of factors of v in (2.6), we obtain

(2.7)

n
∑

s=1

δs(u, v) = 0, u ∈ R

Replacing v in (2.7) by the terms from e to (n − 1)e yields a homogeneous system

with (n− 1) equations giving a matrix formed in the following way

V =



























1 1 · · · 1

2 22 · · · 2n−1

· · · · · ·

· · · · · ·

· · · · · ·

(n− 1) (n− 1)2 · · · (n− 1)n−1



























.
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The related system to this Van Der Monde matrix could exclusively have a trivial

solution. Particularly, one has

(2.8)

δn−2(u, v) =

(

n

n− 2

) 2
∑

t=1

(

2

t

)

(

h+ du
)t
(u)u2−t

−

(

n

n− 2

) 2
∑

t=0

(

2

t

)

(

h+ du
)n−2

(u)u2−t = 0

We can rewrite (2.8) as

(2.9)
n(n− 1)

2
h(u2) =

(

n

1

)(

n− 1

n− 2

)

h(u)u+

(

n

2

)(

n− 2

n− 2

)

(

h2(u) + uh(u)− h(u)u
)

or more explicitly

(2.10)
n(n− 1)

2
h(u2) = n(n− 1)h(u)u+

n(n− 1)

2

(

h2(u) + uh(u)− h(u)u
)

which in turn gives

(2.11)
n(n− 1)

2
h(u2) =

n(n− 1)

2

(

h2(u) + uh(u) + h(u)u
)

.

Considering the n!-torsion freeness of R, the precedent equation gives

(2.12) h(u2) = h2(u) + uh(u) + h(u)u for all u ∈ R.

Thus, h is a Jordan homoderivation. By putting g(u) = h(u) + u

g(u2) = h(u2) + u2

= h2(u) + uh(u) + h(u)u+ u2

= h(u)
(

h(u) + u
)

+ u
(

h(u) + u
)

=
(

h(u) + u
)(

h(u) + u
)

= g(u)g(u) for all u ∈ R.

Thus g is a Jordan homomorphism and the theorem follows from Lemma 2.3. This

proves the theorem completely. �
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2.2. On generalized n-Jordan homoderivations. Analogously to generalized deriva-

tions definition in rings, we define a generalized homoderivation.

Definition 2.4. Let h be a homoderivation on R. A generalized homoderivation

Γ associated to h is an additive mapping on R that for any u, v ∈ R, verifies

Γ(uv) = Γ(u)h(v) + Γ(u)v + uh(v).

Example 2.3. Let a ∈ R be an invertible element. Since for every u ∈ R the

additive mapping u 7→ aua−1 is a homomorphism of R, then the mapping ha defined

by ha(u) = aua−1 − u for all u ∈ R determines a homoderivation on R. We call

ha the inner homoderivation on R. Now, let b ∈ R be an invertible element. The

additive mapping Γa,b defined by Γa,b(u) = aub−1 − u for any u ∈ R represents a

generalized homoderivation on R associated to hb. Indeed, let u, v ∈ R, we obtain

Γa,b(u)hb(v) + Γa,b(u)v + uhb(v)

= (aub−1 − u)(bvb−1 − v) + (aub−1 − u)v + u(bvb−1 − v)

= auvb−1 − aub−1v − ubvb−1 + uv + aub−1v − uv + ubvb−1 − uv

= auvb−1 − uv

= Γa,b(uv).

Moreover, if a 6= b, then Γa,b is not a homoderivation.

Definition 2.5. Let h be a Jordan homoderivation on R. A generalized Jordan

homoderivation η associated to h is the additive mapping on R having for each

u ∈ R, the identity η(u2) = η(u)h(u) + η(u)u+ uh(u).

Example 2.4. Let a ∈ R be an invertible element along with an involution σ on R.

Since for any u ∈ R the additive mapping u 7→ aσ(u)a−1 is a homomorphism of R

and σ(u2) = σ2(u) then the mapping ha defined by ha(u) = aσ(u)a−1−u for each u ∈

R determines a Jordan homoderivation on R.

Now, let b ∈ R be an invertible element. The additive mapping ηa,b defined by

ηa,b(u) = aσ(u)b−1 − u for each u ∈ R is a generalized Jordan homoderivation on R

associated to hb which is not a Jordan homoderivation if a 6= b.
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Furthermore, ηa,b is not a generalized homoderivation as shown below.

Let u, v ∈ R, one has

ηa,b(u)hb(v) + ηa,b(u)v + uhb(v)

= (aσ(u)b−1 − u)(bσ(v)b−1 − v) + (aσ(u)b−1 − u)v + u(bσ(v)b−1 − v)

= aσ(uv)b−1 − aσ(u)b−1v − ubσ(v)b−1 + uv + aσ(u)b−1v − uv + ubσ(v)b−1 − uv

= aσ(u)σ(v)b−1 − uv

6= aσ(v)σ(u)b−1 − uv = ηa,b(uv).

It is obvious that every generalized homoderivation Γ associated to a homoderiva-

tion h on R is a generalized n-Jordan homoderivation i.e. it has the following nth

power property

Γ(un) = Γ(u)un−1 +
(

Γ(u) + u)
n−1
∑

t=1

(

n− 1

t

)

(h+ du)
t(u)un−1−t for all u ∈ R.

Next, we will show, under mild conditions, that the converse is also true by providing

an extended version of theorem 2.1.

Theorem 2.2. Assuming that there exist additive mappings Γ and h on a n!-torsion

free prime ring R beside unit element e along with h(e) = 0, Γ(e) 6= e, h+ idR is an

onto mapping that is not an anti-homomorphism and

(2.13)

Γ(un) = Γ(u)un−1+
(

Γ(u)+u)
n−1
∑

t=1

(

n− 1

t

)

(h+du)
t(u)un−1−t for every u ∈ R, n > 1.

Then Γ is a generalised homoderivation associated with the homoderivation h on R.

Proof. Our statement indicates that

(2.14)

Γ(un)− Γ(u)un−1 −
(

Γ(u) + u)
n−1
∑

t=1

(

n− 1

t

)

(h+ du)
t(u)un−1−t = 0 for all u ∈ R.

Let α be an integer. Changing u by u+ αv in (2.14) we get

(2.15)

n
∑

t=1

αtTt(u, v) = 0 for all u, v ∈ R.
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Where Tt(u, v) express the number of quantities containing t elements of v in the

expression

(2.16)

Γ
(

(u+ αv
)n
)− Γ(u+ αv)(u+ αv)n−1 −

[

Γ(u+ αv) + (u+ αv)
]

n−1
∑

t=1

(

n− 1

t

)

(h+ du+αv)
t(u+ αv)(u+ αv)n−1−t = 0

for all u, v ∈ R. By [[4], Lemma 1] it follows that

(2.17)

T1(u, v) = Γ(un−1v + un−2vu+ · · ·+ vun−1)− Γ(v)un−1

−Γ(u)(un−2v + un−3vu+ · · ·+ vun−2)

−
(

Γ(u) + u
)[(

h(u) + u
)n−2(

h(v) + v
)

+
(

h(u) + u
)n−3(

h(v) + v
)(

h(u) + u
)

+ . . .

· · ·+
(

h(v) + v
)(

h(u) + u
)n−2]

+
(

Γ(u) + u
)

(un−2v + un−3vu+ · · ·+ vun−2) = 0

for all u, v ∈ R. Taking u = e into (2.17) leads to

nΓ(v)− Γ(v)− (n− 1)Γ(e)v − (n− 1)
(

Γ(e) + e
)(

h(v) + v
)

+ (n− 1)
(

Γ(e) + e
)

v = 0

for each v ∈ R. Considering the n!-torsion freeness of R one gets

(2.18) Γ(v) = Γ(e)h(v) + Γ(e)v + h(v) for any v ∈ R.

Converting v into u2 in (2.18) yields

(2.19) Γ(u2) = Γ(e)h(u2) + Γ(e)u2 + h(u2) for all u ∈ R.

Also replacing v by u in (2.18) then right multiplying by u implies that

(2.20) Γ(u)u = Γ(e)h(u)u+ Γ(e)u2 + h(u)u for all u ∈ R.

Substituting v by u in (2.18) then right multiplying by h(u) yields

(2.21) Γ(u)h(u) = Γ(e)h2(u) + Γ(e)uh(u) + h2(u) for all u ∈ R.

Alternatively, taking v = e in the expression (2.16) we get

(2.22)

Γ
(

(u+ αe
)n
)− Γ(u+ αe)(u+ αe)n−1 −

[

Γ
(

(u+ αe)n−1
)

+ (u+ αe)n−1
]

n−1
∑

t=1

(

n− 1

t

)

(h+ du+αe)
t(u+ αe)(u+ αe)n−1−t = 0 for all u ∈ R.
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Extending (2.22) and using (2.13) one obtains

Γ

(

n−1
∑

t=1

(

n

t

)

αtun−t

)

= Γ(u)

(

n−2
∑

t=1

(

n− 1

t

)

αtun−1−t + αn−1e

)

+ αΓ(e)

(

n−2
∑

t=1

(

n− 1

t

)

αtun−t

)

+

(

n− 1

1

)

[

(Γ(u) + u) + α(Γ(e) + e)
]

h(u)

(

n−3
∑

i=1

(

n− 2

i

)

αixn−2−i + αn−2e

)

(2.23)

+

(

n− 1

2

)

[

(Γ(u) + u) + α(Γ(e) + e)
]

(h+ du+αe)
2(u+ αe)

(

n−4
∑

i=1

(

n− 3

i

)

αiun−3−i + αn−3e

)

...

+

(

n− 1

n− 1

)

[

(Γ(u) + u) + α(Γ(e) + e)
]

(h+ du+αe)
n−1(u+ αe) = 0 for all u ∈ R.

Collecting the terms Qi containing i factors of α in (2.2), we obtain

(2.24) αQ1(u, e) + α2Q2(u, e) + · · ·+ αnQn(u, e) = 0.

Making use again of [[4], Lemma 1] we have in particular

Qn−2(u, e) = 0 for all u ∈ R.

Which returns

(2.25)

n(n− 1)Γ(u2) = 2(n− 1)Γ(u)u

+ (n− 1)(n− 2)Γ(e)u2 + 2(n− 1)
(

Γ(u) + u
)

h(u)

+ 2(n− 1)(n− 2)
(

Γ(e) + e
)

h(u)u

+ (n− 1)(n− 2)
(

Γ(e) + e
)[

h2(u) + uh(u)− h(u)u
]

= 2(n− 1)Γ(u)u

+ (n− 1)(n− 2)Γ(e)u2 + 2(n− 1)
(

Γ(u) + u
)

h(u)

+ (n− 1)(n− 2)
(

Γ(e) + e
)[

h2(u) + uh(u) + h(u)u
]

for all u ∈ R.
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Now replacing (2.20) in (2.25) we achieve

(2.26)

n(n− 1)Γ(u2) = n(n− 1)Γ(e)u2 + n(n− 1)h(u)u+ n(n− 1)uh(u)

+ n(n− 1)Γ(e)h(u)u+ 2(n− 1)Γ(u)h(u)

+ (n− 1)(n− 2)
(

Γ(e) + e
)[

h2(u) + uh(u) + h(u)u
]

for all u ∈ R.

Next, substituting (2.21) in (2.26) and we find that

(2.27)

n(n− 1)Γ(u2) = n(n− 1)Γ(e)u2 + n(n− 1)h(u)u+ n(n− 1)uh(u)

+ n(n− 1)Γ(e)h(u)u+ n(n− 1)Γ(e)uh(u)

+ n(n− 1)
(

Γ(e) + e
)

h2(u) for all u ∈ R.

Utilizing the fact that R is a n!-torsion free semi-prime ring we arrive at

(2.28)
Γ(u2) = Γ(e)u2 + Γ(e)h(u)u+ h(u)u+ uh(u) + Γ(e)uh(u)

+
(

Γ(e) + e
)

h2(u) for all u ∈ R.

Employing again (2.20) in (2.27) we reach

(2.29) Γ(u2) = Γ(u)u+ uh(u) + Γ(e)uh(u) +
(

Γ(e) + e
)

h2(u) for all u ∈ R.

Finally, applying (2.21) in (2.29) we attain

(2.30) Γ(u2) = Γ(u)u+ uh(u) + Γ(u)h(u) for all u ∈ R.

Equating (2.19), (2.20) and (2.21) simultaneously in (2.30) we deduce that

Γ(e)h(u2) + Γ(e)u2 + h(u2) = Γ(e)h(u)u+ Γ(e)u2+

h(u)u+ Γ(e)h2(u) + Γ(e)uh(u) + h2(u) + uh(u) for all u ∈ R.

This can be reshaped in the following manner

[

Γ(e) + e
]

h(u2) =
[

Γ(e) + e
](

h(u)u+ uh(u) + h2(u)
)

for all u ∈ R.

Or equivalentely

[

Γ(e) + e
](

h(u2)− h(u)u− uh(u)− h2(u)
)

= 0 for all u ∈ R.

Consequently, since Γ(e) 6= e and by the primeness of R we arrive at

h(u2) = h2(u) + h(u)u+ uh(u) for all u ∈ R.
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Hence h is a Jordan homoderivation on R. So, according to Lemma 2.2 our result is

proved. This completes the proof. �
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