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FRACTIONAL MULTIPLICATIVE OSTROWSKI-TYPE

INEQUALITIES FOR MULTIPLICATIVE DIFFERENTIABLE

CONVEX FUNCTIONS

BADREDDINE MEFTAH (1), HAMID.BOULARES(2), AZIZ KHAN(3) AND THABET

ABDELJAWAD(4)

Abstract. In this manuscript, we propose a new fractional identity for multi-

plicative differentiable functions, based on this identity we prove some fractional

Ostrowski-type inequalities for multiplicative convex functions. Some applications

of the obtained results are given.

1. Introduction

Convexity theory plays a central role in several branches of applied mathematics.

In particular in the classical theory of optimization where the convexity makes it

possible to obtain necessary and sufficient global optimality conditions. This concept

has a strong relationship in the development of the theory of inequalities, which

is an important tool in the study of certain qualitative properties of the solutions

of differential and integro-differential equations as well as in the error estimates of

quadrature formulas.

In [22], Ostrowski showed the following inequality

(1.1)

∣∣∣∣∣∣
ϕ (κ)− 1

r2−r1

r2∫

r1

ϕ (u) du

∣∣∣∣∣∣
≤

M((r2−κ)2+(κ−r1)
2)

2(r2−r1)
,

where ϕ : [r1, r2] ⊂ R → R is a differentiable function and ϕ′ ∈ L1 [r1, r2] with

|ϕ′| ≤ M.
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Since its discover several paper in connection with inequality (1.1) via different

types of convexity, have been appeared, we refer readers to [2, 6, 7, 12, 14, 15, 16, 17,

18, 19].

Grossman and Katz, introduced and studied the first non-Newtonian calculation

system, called geometric calculation. Over the next few years they had reached an

infinite family of non-Newtonian calculus, thus modifying the classical calculus intro-

duced by Newton and Leibniz in the 17 th century each of which differed Known style

from the usual calculus of Newton and Leibniz known today as the non-Newtonian

calculus or the multiplicative calculus, where the ordinary product and ratio are

used respectively as sum and exponential difference over the domain of positive real

numbers see [13]. This calculation is useful for dealing with exponentially varying

functions. It is worth noting that the complete mathematical of multiplicative calcu-

lus was given by Bashirov et al. [8].

Recently, Ali et al. [3], established the following result.

Theorem 1.1. Let ϕ be a positive and multiplicative convex function on interval

[r1, r2], hen the following double inequality holds

(1.2) ϕ
(
r1+r2

2

)
≤




r2∫

r1

ϕ (κ)dκ




1
r2−r1

≤
√

ϕ (r1)ϕ (r2).

In [5] Ali et al. gave the following Ostrowski type inequalities for multiplicative

convex functions.

Theorem 1.2. For all multiplicative differentiable and positive map ϕ on [r1, r2] with

r1 < r2 satisfying |lnϕ∗| ≤ lnM , we have

∣∣∣∣∣∣∣
(ϕ (κ))





r2∫

r1

ϕ (u)du





1
r1−r2

∣∣∣∣∣∣∣
≤ M

(r2−r1)


1

4
+
(κ− r1+r2

2 )
2

(r2−r1)
2




.

Theorem 1.3. Let ϕ : [r1, r2] → R+ be a multiplicative differentiable map on [r1, r2]

with r1 < r2. If ϕ is increasing on [r1, r2] and ϕ∗ is multiplicative convex function on
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[r1, r2], then for all κ ∈ [r1, r2] we have the following inequality

∣∣∣∣∣∣∣
(ϕ (κ))






r2∫

r1

ϕ (u)du






1
r1−r2

∣∣∣∣∣∣∣

≤ (ϕ∗ (r1))
(κ−r1)

2

2(r2−r1)
+

(r2−κ)3−(κ−r1)
3

3(r2−r1)
2 (ϕ∗ (r2))

(r2−κ)2

2(r2−r1)
+

(κ−r1)
3
−(r2−κ)3

3(r2−r1)
2 .

In the same paper the authors proved some Simpson type inequalities for multi-

plicative convex functions. In [4], Ali et al. studied the Hermite-Hadamard type

inequalities for multiplicative φ-convex and log-φ-convex functions. Özcan [24] gave

generalization of the Hermite-Hadamard inequality for h-convex functions. In [23],

Özcan established the Hermite-Hadamard type inequalities for multiplicative peinvex

functions. In [25], the author has discussed the Hermite-Hadamard type inequalities

for multiplicative h-peinvex functions. Meftah [20], showed the Maclaurin type in-

equalities for multiplicative convex functions. Boulares et al. [9], gave the multiplica-

tive Bullen type inequalities. Chasreechai et al. [11], studied Simpson and Newton

type inequalities for multiplicative convex functions.

Recently, Abdeljawad and Grossman [1] introduced the multiplicative Riemann-

Liouville fractional integrals as follows:

Definition 1.1. The relation with the multiplicative left and right Riemann-Liouville

fractional integral of order α ∈ C where Re (α) > 0, and the left and right Riemann-

Liouville fractional integral is as follows:

(r1I
α
∗ ϕ) (κ) = e

(
Jα

r
+
1

(ln ◦ϕ)

)
(κ)

and

(
∗I

α
r2
ϕ
)
(κ) = e

(
Jα

r
−

2

(ln ◦ϕ)

)
(κ)

,

where Jα

r
+
1

and Jα

r
−

2

is the left and right Riemann-Liouville fractional integral, defined

by

(
Jα

r
+
1
ϕ
)
(ξ) = 1

Γ(α)

ξ∫

r1

(ξ − µ)α−1 ϕ (µ) dµ, r1 < ξ
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and
(
Jα

r
−

2
ϕ
)
(ξ) = 1

Γ(α)

r2∫

ξ

(µ− ξ)α−1 ϕ (µ) dµ, ξ < r2.

The above relations can be considered as definitions of the multiplicative the

Riemann-Liouville fractional integral by abuse of language.

Budak and Özçelik [10], used the above operator and prove some Hermite-Hadamard

type inequalities for multiplicative fractional integrals. Moumen et al.[21], established

the multiplicative Simpson type inequalitie.

Motivated by paper [10, 21] and some existing litarature, in this study we propose

a new fractional identity for multiplicative differentiable functions, based on this

identity we establish some fractional Ostrowski type inequalities for multiplicative

convex functions. Some applications of the obtained results are provided at the end.

2. Preliminaries

In this section we begin by recalling some definitions, properties and notions of

derivation as well as multiplicative integration.

Definition 2.1. [8] The multiplicative derivative of the function ϕ, where ϕ : R →

R
+, noted by ϕ∗ is defined as follows:

d∗ϕ

dt
= ϕ∗

(
ξ̃
)
= lim

h→0

{
ϕ(ξ̃+h)
ϕ(ξ̃)

} 1
h

.

Remark 1. For positive and differentiable function ϕ we have the following relation

ϕ∗

(
ξ̃
)
= e(lnϕ(ξ̃))

′

= e
ϕ′(ξ̃)
ϕ(ξ̃) ,

where ϕ′ is the ordinary derivative.

The multiplicative derivative admits the following properties:

Theorem 2.1. [8] Let ϕ and ϑ be two multiplicative differentiable functions. Then

functions cϕ, ϕϑ, ϕ+ ϑ, ϕ/ϑ and ϕϑ, where c is an arbitrary constant, are ∗ differen-

tiable and we have

• (cϕ)∗
(
ξ̃
)
= ϕ∗

(
ξ̃
)
,
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• (ϕϑ)∗
(
ξ̃
)
= ϕ∗

(
ξ̃
)
ϑ∗

(
ξ̃
)
,

• (ϕ+ ϑ)∗
(
ξ̃
)
= ϕ∗

(
ξ̃
) ϕ(ξ̃)

ϕ(ξ̃)+ϑ(ξ̃) ϑ∗ (t)
ϑ(ξ̃)

ϕ(ξ̃)+ϑ(ξ̃) ,

•
(
ϕ

ϑ

)∗ (
ξ̃
)
=

ϕ∗(ξ̃)
ϑ∗(ξ̃)

,

•
(
ϕϑ
)∗ (

ξ̃
)
= ϕ∗

(
ξ̃
)ϑ(ξ̃)

ϕ
(
ξ̃
)ϑ′(ξ̃)

.

In [8], Bashirov et al. introduced the concept of the ∗ integral called multiplicative

integral which is written as
r2∫
r1

(
ϕ
(
ξ̃
))dξ̃

. It is clear that the sum in the classical

Riemann integral of ϕ over [r1, r2], is replaced in the multiplicative integral of ϕ over

[r1, r2] by the product. However, the product is represented by the raising to power.

The relationship between the Riemann integral and the multiplicative integral is

as follows:

Proposition 2.1 ([8]). If ϕ is Riemann integrable on [r1, r2], then ϕ is multiplicative

integrable on [r1, r2] and

r2∫

r1

(
ϕ
(
ξ̃
))dξ̃

= exp






r2∫

r1

ln
(
ϕ
(
ξ̃
))

dξ̃




 .

Moreover, Bashirov et al. showed that multiplicative integral has the following

results and properties:

Theorem 2.2. [8] Let ϕ be a positive and Riemann integrable on [r1, r2], then ϕ is

multiplicative integrable on [r1, r2] and

•
r2∫
r1

((
ϕ
(
ξ̃
))p)dξ̃

=

(
r2∫
r1

(
ϕ
(
ξ̃
))dξ̃

)p

,

•
r2∫
r1

(
ϕ
(
ξ̃
)
ϑ
(
ξ̃
))dξ̃

=
r2∫
r1

(
ϕ
(
ξ̃
))dξ̃ r2∫

r1

(
ϑ
(
ξ̃
))dξ̃

,

•
r2∫
r1

(
ϕ(ξ̃)
ϑ(ξ̃)

)dξ̃

=

r2∫
r1

(ϕ(ξ̃))
dξ̃

r2∫
r1

(ϑ(ξ̃))
dξ̃
,

•
r2∫
r1

(
ϕ
(
ξ̃
))dξ̃

=
c∫
r1

(
ϕ
(
ξ̃
))dξ̃ r2∫

c

(
ϕ
(
ξ̃
))dξ̃

, r1 < c < r2,

•
r1∫
r1

(
ϕ
(
ξ̃
))dξ̃

= 1 and
r2∫
r1

(
ϕ
(
ξ̃
))dξ̃

=

(
r1∫
r2

(
ϕ
(
ξ̃
))dξ̃

)−1

.
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Lemma 2.1. [8, Multiplicative Integration by Parts] Let ϕ : [r1, r2] → R be mul-

tiplicative differentiable, let ϑ : [r1, r2] → R be differentiable so the function ϕϑ is

multiplicative integrable, and

r2∫

r1

(
ϕ∗

(
ξ̃
)ϑ(ξ̃))dξ̃

= ϕ(r2)
ϑ(r2)

ϕ(r1)
ϑ(r1)

× 1
r2∫
r1

(
ϕ(ξ̃)

ϑ′(ξ̃)
)dξ̃

.

Lemma 2.2. [5] Let ϕ : [r1, r2] → R be multiplicative differentiable, let ζ : [r1, r2] → R

and let ϑ : J ⊂ R → R be two differentiable functions. Then we have

r2∫

r1

(
ϕ∗

(
ζ
(
ξ̃
))ζ′(t)ϑ(ξ̃))dξ̃

= ϕ(ζ(r2))
ϑ(r2)

ϕ(ζ(r1))
ϑ(r1)

× 1
r2∫
r1

(
ϕ(ζ(ξ̃))

ϑ′(ξ̃)
)dξ̃

.

Definition 2.2. [10] Let ϕ : I → [0,+∞) , κ, y ∈ I and t ∈ [0, 1], if

ϕ (tκ + (1− t) y) ≤ [ϕ (κ)]t [ϕ(y)]1−t .

Then ϕ is called multiplicative convex or log-convex function.

3. Main results

We now list the following lemma that is necessary to reach the desired results.

Lemma 3.1. Let ϕ : [r1, r2] → R+ be a multiplicative differentiable mapping on [r1, r2]

with r1 < r2. If ϕ
∗ is multiplicative integrable on [r1, r2], then we have

(ϕ (κ))
(r2−κ)α+(κ−r1)

α

r2−r1 ((∗I
α
κ
ϕ) (r1) (∗I

α
κ
ϕ) (r2))

Γ(α+1)
r1−r2

=




1∫

0

(
ϕ∗ ((1− t) r1 + tκ)t

α
)dt




(κ−r1)
α+1

r2−r1



1∫

0

(
ϕ∗ ((1− t)κ + tr2)

(1−t)α
)dt



−

(r2−κ)α+1

r2−r1

.

Proof. Let

I1 =




1∫

0

(
ϕ∗ ((1− t) r1 + tκ)t

α
)dt




(κ−r1)
α+1

r2−r1

and

I2 =




1∫

0

(
ϕ∗ ((1− t)κ + tr2)

(1−t)α
)dt



−

(r2−κ)α+1

r2−r1

.
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Using the integration by parts for multiplicative integrals and Lemma 2.2, I1 gives

I1 =




1∫

0

(
ϕ∗ ((1− t) r1 + tκ)t

α
)dt



(κ−r1)
α+1

r2−r1

=




1∫

0

(
ϕ∗ ((1− t) r1 + tκ)

(κ−r1)
(κ−r1)

α

r2−r1
t
α

)dt





= (ϕ(κ))
(κ−r1)

α

r2−r1

1
. 1

1∫
0

(
ϕ(((1−t)r1+tκ))

α(κ−r1)
α

r2−r1
tα−1

)dt

=(ϕ (κ))
(κ−r1)

α

r2−r1
1

exp

{
1∫
0

α(κ−r1)
α

r2−r1
tα−1 ln(ϕ((1−t)r1+tκ))dt

}

=(ϕ (κ))
(κ−r1)

α

r2−r1
1

exp

{
Γ(α+1)
r2−r1

(
1

Γ(α)

κ∫
r1

(u−r1)
α−1 ln(ϕ(u))du

)}

=(ϕ (κ))
(κ−r1)

α

r2−r1


exp







 1

Γ(α)

κ∫

r1

(u− r1)
α−1 ln (ϕ (u)) du












Γ(α+1)
r1−r2

=(ϕ (κ))
(κ−r1)

α

r2−r1 ((∗I
α
κ
ϕ) (r1))

Γ(α+1)
r1−r2 .

Similarly, we obtain

I2 =




1∫

0

(
ϕ∗ ((1− t)κ + tr2)

(1−t)α
)dt



−
(r2−κ)α+1

r2−r1

=




1∫

0

(
ϕ∗ ((1− t)κ + tr2)

−(r2−κ)
(r2−κ)α

r2−r1
(1−t)α

)dt




= 1

(ϕ(κ))
−

(r2−κ)α

r2−r1

. 1

1∫
0

(
ϕ((1−t)κ+tr2)

α(r2−κ)α

r2−r1
(1−t)α−1

)dt

= (ϕ (κ))
(r2−κ)α

r2−r1 . 1

exp

{
α(r2−κ)α

r2−r1

1∫
0

(1−t)α−1 lnϕ((1−t)κ+tr2)dt

}

= (ϕ (κ))
(r2−κ)α

r2−r1 . 1

exp

{
α(r2−κ)α−1

r2−r1

r2∫
κ

(
1− u−κ

r2−κ

)α−1
lnϕ(u)du

}

= (ϕ (κ))
(r2−κ)α

r2−r1 . 1

exp

{
Γ(α+1)
r2−r1

(
1

Γ(α)

r2∫
κ

(r2−u)α−1 lnϕ(u)du

)}
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= (ϕ (κ))
(r2−κ)α

r2−r1 .


exp







 1

Γ(α)

r2∫

κ

(r2 − u)α−1 lnϕ (u) du












Γ(α+1)
r1−r2

= (ϕ (κ))
(r2−κ)α

r2−r1 . ((∗I
α
κ
ϕ) (r2))

Γ(α+1)
r1−r2 .

Multiplying above equalities, we get

I1 × I2 = (ϕ (κ))
(κ−r1)

α

r2−r1 ((∗I
α
κ
ϕ) (r1))

Γ(α+1)
r1−r2 (ϕ (κ))

(r2−κ)α

r2−r1 . ((∗I
α
κ
ϕ) (r2))

Γ(α+1)
r1−r2

=(ϕ (κ))
(r2−κ)α+(κ−r1)

α

r2−r1 ((∗I
α
κ
ϕ) (r1) (∗I

α
κ
ϕ) (r2))

Γ(α+1)
r1−r2 .

Desired result. �

Theorem 3.1. Let ϕ : [r1, r2] → R+ be a multiplicative differentiable mapping on

[r1, r2] with r1 < r2. If |lnϕ
∗| ≤ lnM on [r1, r2], then we have

∣∣∣∣(ϕ (κ))
(r2−κ)α+(κ−r1)

α

r2−r1 ((∗I
α
κϕ) (r1) (∗I

α
κϕ) (r2))

Γ(α+1)
r1−r2

∣∣∣∣ ≤ M
(r2−κ)α+1+(κ−r1)

α+1

(α+1)(r2−r1) .

Proof. From Lemma 3.1, properties of multiplicative integral and using the fact that

|ln f ∗| ≤ lnM, we get
∣∣∣∣(ϕ (κ))

(r2−κ)α+(κ−r1)
α

r2−r1 ((∗I
α
κ
ϕ) (r1) (∗I

α
κ
ϕ) (r2))

Γ(α+1)
r1−r2

∣∣∣∣

=

∣∣∣∣∣∣∣∣




1∫

0

(
ϕ∗ ((1− t) r1 + tκ)t

α
)dt



(κ−r1)
α+1

(r2−r1)

∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣




1∫

0

(
ϕ∗ ((1− t)κ + tr2)

(1−t)α
)dt



−
(r2−κ)α+1

(r2−r1)

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣




1∫

0

∣∣∣∣(ϕ
∗ ((1− t) r1 + tκ))

(κ−r1)
α+1

(r2−r1)
t
α

∣∣∣∣
dt




∣∣∣∣∣∣

×

∣∣∣∣∣∣




1∫

0

(∣∣∣∣(ϕ
∗ ((1− t)κ + tr2))

−
(r2−κ)α+1

(r2−r1)
(1−t)α

∣∣∣∣
)dt




∣∣∣∣∣∣

≤



exp





1∫

0

∣∣∣ (κ−r1)
α+1

(r2−r1)
t
α ln (ϕ∗ ((1− t) r1 + tκ))

∣∣∣ dt








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×


exp





1∫

0

∣∣∣− (r2−κ)α+1

(r2−r1)
(1− t)α ln (ϕ∗ ((1− t)κ + tr2))

∣∣∣ dt








=


exp






1∫

0

(κ−r1)
α+1

(r2−r1)
t
α |ln (ϕ∗ ((1− t) r1 + tκ))| dt









×



exp





1∫

0

(r2−κ)α+1

(r2−r1)
(1− t)α |ln (ϕ∗ ((1− t)κ + tr2))| dt









≤


exp





(κ−r1)
α+1

(r2−r1)
lnM

1∫

0

t
αdt








exp





(r2−κ)α+1

(r2−r1)
lnM

1∫

0

(1− t)α dt








=
(
exp

{
(κ−r1)

α+1

(α+1)(r2−r1)
lnM

})(
exp

{
(r2−κ)α+1

(α+1)(r2−r1)
lnM

})

=

(
exp

{
lnM

(κ−r1)
α+1

(α+1)(r2−r1)

})(
exp

{
lnM

(r2−κ)α+1

(α+1)(r2−r1)

})

=M
(κ−r1)

α+1+(r2−κ)α+1

(α+1)(r2−r1) .

The proof is completed. �

Remark 2. Theorem 3.1 will be reduced to Theorem 1 from [5], if we take α = 1.

Corollary 3.1. In Theorem 3.1, if we choose κ = r1+r2

2
, we obtain

∣∣∣∣∣
(
ϕ
(
r1+r2

2

)) (r2−r1)
α−1

2α−1

((
∗I

α
r1+r2

2

ϕ
)
(r1)

(
∗I

α
r1+r2

2

ϕ
)
(r2)
)Γ(α+1)

r1−r2

∣∣∣∣∣ ≤ M
(r2−r1)

α

2α(α+1) .

Corollary 3.2. In Corollary 3.1, if we take α = 1, we obtain

∣∣∣∣∣∣∣
ϕ
(
r1+r2

2

)



r2∫

r1

ϕ (u)du




1
r1−r2

∣∣∣∣∣∣∣
≤ M

r2−r1

4 .

Theorem 3.2. Let ϕ : [r1, r2] → R+ be a multiplicative differentiable mapping on

[r1, r2] with r1 < r2. If ϕ
∗ is multiplicative convex function on [r1, r2], then we have

∣∣∣∣(ϕ (κ))
(r2−κ)α+(κ−r1)

α

r2−r1 ((∗I
α
κϕ) (r1) (∗I

α
κϕ) (r2))

Γ(α+1)
r1−r2

∣∣∣∣

≤ (ϕ∗ (r1))
(κ−r1)

α+1

(α+1)(α+2)(r2−r1) (ϕ∗ (κ))
(r2−κ)α+1+(κ−r1)

α+1

(α+2)(r2−r1) (ϕ∗ (r2))
(r2−κ)α+1

(α+1)(α+2)(r2−r1) .
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Proof. From Lemma 3.1, properties of multiplicative integral and the multiplicative

convexity of ϕ∗, we have

∣∣∣∣(ϕ (κ))
(r2−κ)α+(κ−r1)

α

r2−r1 ((∗I
α
κ
ϕ) (r1) (∗I

α
κ
ϕ) (r2))

Γ(α+1)
r1−r2

∣∣∣∣

=

∣∣∣∣∣∣∣∣




1∫

0

(
ϕ∗ ((1− t) r1 + tκ)t

α
)dt




(κ−r1)
α+1

r2−r1

∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣




1∫

0

(
ϕ∗ ((1− t)κ + tr2)

(1−t)α
)dt



−

(r2−κ)α+1

r2−r1

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣




1∫

0

∣∣∣∣(ϕ
∗ ((1− t) r1 + tκ))

(κ−r1)
α+1

r2−r1
t
α

∣∣∣∣
dt




∣∣∣∣∣∣

×

∣∣∣∣∣∣




1∫

0

(∣∣∣∣(ϕ
∗ ((1− t)κ + tr2))

−
(r2−κ)α+1

r2−r1
(1−t)α

∣∣∣∣
)dt





∣∣∣∣∣∣

≤



exp





1∫

0

∣∣∣ (κ−r1)
α+1

r2−r1
t
α ln (ϕ∗ ((1− t) r1 + tκ))

∣∣∣ dt









×


exp





1∫

0

∣∣∣− (r2−κ)α+1

r2−r1
(1− t)α ln (ϕ∗ ((1− t)κ + tr2))

∣∣∣ dt








=


exp






1∫

0

(κ−r1)
α+1

r2−r1
t
α |ln (ϕ∗ ((1− t) r1 + tκ))| dt









×



exp





1∫

0

(r2−κ)α+1

r2−r1
(1− t)α |ln (ϕ∗ ((1− t)κ + tr2))| dt









≤


exp





(κ−r1)
α+1

r2−r1

1∫

0

t
α
∣∣∣ln (ϕ∗ (r1))

(1−t) (f ∗ (κ))t
∣∣∣ dt








×


exp





(r2−κ)α+1

r2−r1

1∫

0

(1− t)α
∣∣∣ln (ϕ∗ (κ))(1−t) (f ∗ (r2))

t

∣∣∣ dt









=



exp





(κ−r1)
α+1

r2−r1

1∫

0

t
α ((1− t) ln (ϕ∗ (r1)) + t ln (ϕ∗ (κ))) dt








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×


exp





(r2−κ)α+1

r2−r1

1∫

0

(1− t)α ((1− t) ln (ϕ∗ (κ)) + t ln (ϕ∗ (r2))) dt








=


exp





(κ−r1)

α+1

r2−r1


ln (ϕ∗ (r1))

1∫

0

t
α (1− t) dt+ ln (ϕ∗ (κ))

1∫

0

t
α+1dt












×



exp





(r2−κ)α+1

r2−r1



ln (ϕ∗ (κ))

1∫

0

(1− t)α+1 dt+ ln (ϕ∗ (r2))

1∫

0

(1− t)α tdt













=
(
exp

{
(κ−r1)

α+1

r2−r1

(
1

(α+1)(α+2)
ln (ϕ∗ (r1)) +

1
α+2

ln (ϕ∗ (κ))
)})

×
(
exp

{
(r2−κ)α+1

r2−r1

(
1

α+2
ln (ϕ∗ (κ)) + 1

(α+1)(α+2)
ln (ϕ∗ (r2))

)})

= (ϕ∗ (r1))
(κ−r1)

α+1

(α+1)(α+2)(r2−r1) (ϕ∗ (κ))
(κ−r1)

α+1+(r2−κ)α+1

(α+2)(r2−r1) (ϕ∗ (r2))
(r2−κ)α+1

(α+1)(α+2)(r2−r1) .

The proof is completed. �

Corollary 3.3. In Theorem 3.2, if we choose κ = r1+r2

2
, we obtain

∣∣∣∣∣
(
ϕ
(
r1+r2

2

)) (r2−r1)
α−1

2α−1

((
∗I

α
r1+r2

2

ϕ
)
(r1)

(
∗I

α
r1+r2

2

ϕ
)
(r2)
)Γ(α+1)

r1−r2

∣∣∣∣∣

≤
(
(ϕ∗ (r1))

(
ϕ∗
(
r1+r2

2

))2
(ϕ∗ (r2))

) (r1−r2)
α

2α+1(α+1)(α+2)
.

Corollary 3.4. In Corollary 3.3, using the multiplicative convexity of ϕ∗ i.e. f ∗
(
r1+r2

2

)
≤

√
ϕ∗ (r1)ϕ∗ (r2), we obtain

∣∣∣∣∣
(
ϕ
(
r1+r2

2

)) (r2−r1)
α−1

2α−1

((
∗I

α
r1+r2

2

ϕ
)
(r1)

(
∗I

α
r1+r2

2

ϕ
)
(r2)
)Γ(α+1)

r1−r2

∣∣∣∣∣

≤ ((ϕ∗ (r1)) (ϕ
∗ (r2)))

(r2−r1)
α

2α(α+1)(α+2) .

Corollary 3.5. In Theorem 3.2, if we take α = 1, we obtain

∣∣∣∣∣∣∣
ϕ (κ)




r2∫

r1

ϕ (u)du





1
r1−r2

∣∣∣∣∣∣∣

≤ (ϕ∗ (r1))
(κ−r1)

2

6(r2−r1) (ϕ∗ (κ))
(κ−r1)

2+(r2−κ)2

3(r2−r1) (ϕ∗ (r2))
(r2−κ)2

6(r2−r1) .



124 B. MEFTAH, H. BOULARES, A. KHAN AND T. ABDELJAWAD

Corollary 3.6. In Corollary 3.5, if we choose κ = r1+r2

2
, we obtain

∣∣∣∣∣∣∣
ϕ
(
r1+r2

2

)



r2∫

r1

ϕ (u)du




1
r1−r2

∣∣∣∣∣∣∣
≤
(
(ϕ∗ (r1))

(
ϕ∗
(
r1+r2

2

))4
(ϕ∗ (r2))

) r2−r1

24
.

Corollary 3.7. In Corollary 3.6, using the multiplicative convexity of f ∗, we get
∣∣∣∣∣∣∣
ϕ
(
r1+r2

2

)



r2∫

r1

ϕ (u)du




1
r1−r2

∣∣∣∣∣∣∣
≤ ((ϕ∗ (r1)) (ϕ

∗ (r2)))
r2−r1

8 .

4. Examples

In this section, we assume some particular functions and give mathematical exam-

ples to show the validation of the newly established inequalities.

Example 4.1. We consider the function ϕ (u) = u3 and from Corollary 3.2 for the

interval [2, 4]




r2∫

r1

ϕ (u)du





1
r1−r2

=




4∫

2

(
u3
)du



−

1
2

=

(
e

4∫
2

lnu3du

)−
1
2

≃
(
e6.4758

)− 1
2 ≃ 0.0392

and

ϕ
(
r1+r2

2

)
= ϕ (3) = 27.

Then for the left hand side of the inequality given in Corollary 3.2, we have

(ϕ (3))




4∫

2

ϕ (u)du




−
1
2

= 1.0584.

Clearly, ϕ∗ (u) = e(3 lnu)′ = e
3
u . Since 2 ≤ u ≤ 4. Then 3

4
≤ 3

u
≤ 3

2
. So we can choose

M = sup
u∈[2,4]

ϕ∗ (u) = e
3
2 = 4.8116, which gives M

1
2 = 2.1935.

Thus, the inequality given in Corollary 3.2 is valid.

Example 4.2. We consider the function ϕ (u) = u3 and from Corollary 3.7 for the

interval [2, 4], the left hand side of the inequality given in Corollary 3.7, gives

(ϕ (3))




4∫

2

ϕ (u)du




−

1
2

= 1.0584.



FRACTIONAL MULTIPLICATIVE OSTROWSKI TYPE INEQUALITIES 125

Since ϕ∗ (u) = e
3
u , then we have ϕ∗ (2) = 4.8116 = and ϕ∗ (4) = 2.1170. So the right

hand side of the inequality given in Corollary 3.7 ((ϕ∗ (2)) (ϕ∗ (4)))
1
4 = (10.1861)

1
4 =

1.7864.

Thus, the inequality given in Corollary 3.7 is valid.

5. Applications

The Arithmetic mean: A (r1, r2) =
r1+r2

2
.

The logarithmic means: L (r1, r2) =
r2−r1

ln r2−ln r1
, r1, r2 > 0 and r1 6= r2.

The p-Logarithmic mean: Lp (r1, r2) =
(

r
p+1
2 −r

p+1
1

(p+1)(r2−r1)

) 1
p

, r1, r2 > 0, r1 6= r2 and

p ∈ R8 {−1, 0}.

Proposition 5.1. Let r1, r2 ∈ R with 0 < r1 < r2, then we have

eA
−1(r1,r2)−L−1(r1,r2) ≤ e

−
r2−r1
4r22 .

Proof. To confirm that from Corollary 3.2 applied to the function ϕ (t) = e
1
t whose

ϕ∗ (t) = e−
1
t2 , M = e−

1
b2 and

(
r2∫
r1

ϕ (u)du
) 1

r1−r2

= exp {−L−1 (r1, r2)}. �

Proposition 5.2. Let r1, r2 ∈ R with 0 < r1 < r2, then we have

eA
p( 3

2
r1,

1
2
r2)−L

p
p(r1,r2) ≤

(
er

p−1
1 +20( 3r1+r2

4 )
p−1

+9rp−1
2

)p r2−r1

96
.

Proof. To confirm that from Corollary 3.5 by trying κ = 3r1+r2

4
, applied to the

function ϕ (t) = et
p

with p ≥ 2 whose ϕ∗ (t) = ept
p−1

and

(
r2∫
r1

ϕ (u)du
) 1

r1−r2

=

exp
{
−Lp

p (r1, r2)
}
. �
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[24] S. Özcan, Hermite-Hadamard type inequalities for multiplicatively h-convex functions, Konu-

ralp J. Math., 8(1) (2020), 158–164.
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