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ON TADES OF TRANSFORMED TREE AND PATH RELATED

GRAPHS

A. LOURDUSAMY (1) AND F. JOY BEAULA (2)

Abstract. Given a graph G. Consider a total labeling ξ : V
⋃
E → {1, 2, . . . , k}.

Let e = xy and f = uv be any two different edges of G. Let wt(e) 6= wt(f) where

wt(e) = |ξ(e)−ξ(x)−ξ(y)|. Then ξ is said to be edge irregular total absolute differ-

ence k-labeling of G. Then the total absolute difference edge irregularity strength

of G, tades(G), is the least number k such that there is an edge irregular total

absolute difference k-labeling for G. Here, we study the tades(G) of Tp-tree and

path related graphs.

1. Introduction

All the graphs considered here are finite, simple and undirected. The vertex set

and the edge set of a graph G are denoted by V (G) and E(G) so that the order

and size of G are |V (G)| and |E(G)| respectively. The numerous concepts that

emerge when studying graph theory, which has received great interest, particularly

in graph labeling, the labeling of graphs provides mathematical models with value for

a wide variety of applications in technology (astronomy, cryptography, data security,

telecommunication networks, coding theory, etc.). Consider the total labeling ξ :

V
⋃

E → {1, 2, . . . , k} where wt(uv) = ξ(u) + ξ(uv) + ξ(v) and all the edges have

distinct weights. Then ξ is total edge irregular k-labeling of G. The total edge

irregularity strength, tes(G), of G is the least number k for which we can construct

a total edge irregular k-labeling. It was introduced by Baca et al. [1]. To know more

about tes(G), the reader can go through [3, 4, 14, 15, 16, 18, 19]
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Ramalakshmi and Kathiresan [17] introduced the concept of total absolute differ-

ence edge irregularity strength of graphs to reduce the edge weights. Consider a total

labeling ξ : V
⋃
E → {1, 2, . . . , k}. Let e = xy and f = uv be any two different edges

of G. Let wt(e) 6= wt(f) where wt(e) = |ξ(e)−ξ(x)−ξ(y)|. Then ξ is said to be edge

irregular total absolute difference k-labeling of G. Then the total absolute difference

edge irregularity strength of G, tades(G), is the least number k such that there is a

graph G with edge irregular total absolute difference k-labeling.

Theorem 1.1. [17] The tades(G) satisfies
⌈
|E|
2

⌉
≤ tades(G) ≤ |E|+ 1.

Lourdusamy et al. [7] have computed the tades(G) for triangular snake, quadrilat-

eral snake, helm, closed helm, web graph, flower graph, gear graph, lotus inside the

circle and double fan graph. Also, they have obtained the tades of Tp-tree graphs

like TÔPn, TÔK1,n, TÔCn and T ⊙ nK1 in [8]. Lourdusamy et al. [9] discussed the

tades(G) for super subdivision of comb, super subdivision of bistar, super subdivi-

sion of ladder, Pn ⊙mK1, Ln ⊙mK1, zigzag graph and grid graph. Also they have

obtained the tades of staircase graph, disjoint union of grid graph and disjoint union

of zigzag graph in [10].

Definition 1.1. [2] Consider a tree T with two adjacent vertices u0 and v0. Assume

that there are two pendant vertices u and v in T with the property that the length of

u0−u path is equal to the length of v0−v path. An elementary parallel transformation

(ept) is defined as the removal of the edge u0v0 from T and adding the edge uv in T .

Here the edge u0v0 is called transformable edge.

If T can be transformed to a path by a sequence of ept’s, then T is called a Tp-tree

(transformed tree) and the sequence of ept’s is a composition of mappings (ept’s)

denoted by P which is called a parallel transformation of T . Here P (T ) is the path

which is nothing but the image of T under P .

Definition 1.2. [13] Assume G1 and G2 be two graphs. A graph G1ÔG2 is derived

from G1 and |V (G1)| copies of G2 with the operation that one vertex of ith copy of

G2 is identifying with ith vertex of G1.
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Figure 1. A Tp-tree and a sequence of two ept’s reducing it to a path
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Figure 2. G1 Ô G2

Definition 1.3. [12] An armed crown is a cycle attached with paths of equal length

at each vertex of the cycle. It is denoted by Cm ⊖ Pn is a path of length n− 1.
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Figure 3. C4 ⊖ P4

Definition 1.4. [12] A quadrilateral snake Qn is obtained from a path v1, v2, · · · , vn

by joining vi, vi+1 to new vertices ui, wi for every i = 1, 2, · · · , n− 1 respectively and

then joining ui and wi. That is every edge of the path is replaced by a cycle C4.

Definition 1.5. [12] Duplication of a vertex vk by a new edge e = ukwk in a graph

G produces a new graph G
′

such that N(uk) ∩N(wk) = vk.
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Figure 5. Duplication of a vertex by an edge

Definition 1.6. [11] Duplication of an edge e = uv by a new vertex w in a graph G

produces a new graph G
′

such that N(w) = {u, v}.
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Figure 6. Duplication of an edge by a vertex

Definition 1.7. [5] The key graph is a graph obtained from K2 by appending one

vertex of Cm to one end point and comb graph Pn ⊙K1 to the other end of K2. It is

denoted as KY (m,n).
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Definition 1.8. [6] The H-graph of a path Pn is the graph obtained from two copies

of Pn with vertices v1, v2, · · · , vn and u1, u2, · · · , un by joining the vertices if vn+1

2

and

un+1

2

by an edge if n is odd and the vertices vn

2
+1 and un

2
by an edge if n is even.
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Figure 8. H graph

2. Main Results

In this section, we discuss the total absolute difference edge irregularity strength

of Tp-tree related graphs and H graph.

Theorem 2.1. Let m be an even integer. Let T be a Tp-tree on m vertices. Then

tades(T ) = m
2
.

Proof. Let T be a Tp-tree T on even m vertices. We can find a parallel transformation

P of T which will satisfy the following

(i) V (P (T )) = V (T )

(ii) E(P (T )) = (E(T )− Ed)
⋃

Ep.

Here P (T ) is the path; Ed is a collection of edges removed from T ; The Ep is a

collection of edges newly introduced by the sequence P = (P1, P2, · · · , Pk) of epts

P that have been used to reach path P (T ). Obviously, Ed and Ep have the same

number of edges. We use the label α1, α2, · · · , αm successively beginning at a pendant

vertex of P (T ) and proceeding to the right up to the other pendant vertex to write

the vertices of P (T ).

By Theorem 1.1, we have tades(T ) ≥ m

2
. Let us now prove the converse part. De-

fine ξ : V
⋃

E → {1, 2, 3, . . . , m
2
} as follows:



134 A. LOURDUSAMY AND F. JOY BEAULA

For 1 ≤ r ≤ m ξ(αr) =





r+1
2

if r is odd

r

2
if r is even; .

ξ(αrαr+1) = 2, 1 ≤ r ≤ m− 1.

For 1 ≤ r < s ≤ m, αrαs be a transformed edge in T . Consider P1 to be the ept ob-

tained by removing αrαs and including αr+tαs−t where t = d(αr, αr+t) = d(αs, αs−t).

Take P as a parallel transformation of T where P1 as one of the constituent epts.

Obviously the edge αr+tαs−t is in P (T ). So r+ t+1 = s− t and thus s = r+2t+1.

Clearly, s and t have opposite parity.

The weight of αrαs is

wt(αrαs) = wt(αrαr+2t+1)

= |ξ(αrαr+2t+1)− ξ(αr)− ξ(αr+2t+1)|

= r + t− 1.

The weight of αr+tαs−t is

wt(αr+tαs−t) = wt(αr+tαr+t+1)

= |ξ(αr+tαr+t+1)− ξ(αr+t)− ξ(αr+t+1)|

= r + t− 1.

The above argument implies that wt(αrαs) = wt(αr+tαs−t).

The edge weight is

wt(αrαr+1) = r − 1, 1 ≤ r ≤ m− 1;

So, tades(T ) ≤ m
2
. Note that the edge weights are distinct. Hence tades(T ) = m

2
. �

Theorem 2.2. For a Tp-tree T on m vertices, we have tades(TÔQn) =
⌈
4mn+m−1

2

⌉
.

Proof. Consider a Tp-tree with m vertices. Then there is a parallel transformation P

in T ,

(i) V (P (T )) = V (T )

(ii) E(P (T )) = (E(T )− Ed)
⋃

Ep.

Here Ed is the collection of edges deleted from T ; Ep is the collection of edges newly

added using the sequence P = (P1, P2, · · · , Pk) of the epts P which have been used
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to form P (T ). Obviously, we have the same number of edges for Ed and Ep. We take

b1, b2, · · · , bm successively beginning at a pendant vertex of P (T ) and ending at other

pendant vertex as the vertices of P (T ). Let as1, a
s
2, · · · , a

s
n, a

s
n+1(1 ≤ s ≤ m) be the

vertices of sth copy of Qn with asn+1 = bs. Then V (TÔQn) = {asr : 1 ≤ r ≤ n+1, 1 ≤

s ≤ m}
⋃
{xs

r, y
s
r : 1 ≤ r ≤ n, 1 ≤ s ≤ m} and E(TÔQn) = E(T )

⋃
E(Qn). Note

that
∣∣∣V (TÔQn)

∣∣∣ = 3nm+m and
∣∣∣E(TÔQn)

∣∣∣ = 4mn+m− 1.

By Theorem 1.1, we have tades(TÔQn) ≥
⌈
4mn+m−1

2

⌉
. For the reverse inequal-

ity, we show that tades(TÔQn) ≤
⌈
4mn+m−1

2

⌉
. Define ξ : V (TÔQn)

⋃
E(TÔQn) →

{
1, 2, 3, . . . ,

⌈
4mn+m−1

2

⌉}
as follows:

ξ(a1r) =




1 if r = 1

(r − 1)2 if 2 ≤ r ≤ n+ 1;

For 1 ≤ r ≤ n+ 1,

ξ(asr) =





(4n+1)(s−1)
2

+ 2(r − 1) if s is odd and 2 ≤ s ≤ m

(4n+1)s
2

− 2(r − 1) if s is even and 2 ≤ s ≤ m.

ξ(bs) = ξ(asn+1).

For 1 ≤ r ≤ n,

ξ(xs
r) =





(4n+1)(s−1)
2

+ 2r for s odd and 1 ≤ s ≤ m

(4n+1)s
2

− 2r for s even and 1 ≤ s ≤ m;

ξ(ysr) =





(4n+1)(s−1)
2

+ 2(r − 1) + 1 if s is odd and 1 ≤ s ≤ m

(4n+1)s
2

− 2r + 1 if s is even and 1 ≤ s ≤ m;

ξ(bsbs+1) = 1, 1 ≤ s ≤ m− 1;

ξ(a1rx
1
r) =




2 if r = 1

1 if 2 ≤ r ≤ n;

ξ(asrx
s
r) = 1, 2 ≤ s ≤ m and 1 ≤ r ≤ n;

ξ(a1ry
1
r) =




2 if r = 1

1 if 2 ≤ r ≤ n

ξ(asry
s
r) = 1, 2 ≤ s ≤ m and 1 ≤ r ≤ n ;

ξ(xs
ra

s
r+1) = ξ(ysra

s
r+1) = 1, 1 ≤ s ≤ m and 1 ≤ r ≤ n.
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Let brbs be an edge which is transformed in T , 1 ≤ r < s ≤ m. Let P1 be the ept

obtained by deleting brbs and adding br+tbs−t where t = d(br, br+t) = d(bs, bs−t). Let

P be a parallel transformation in T which has P1 as one of the constituent epts. Note

that the edge br+tbs−t is in P (T ). So r+ t+ 1 = s− t and so s = r+ 2t+ 1. Clearly,

r and s have opposite parity.

The weight of brbs is given by

wt(brbs) = wt(brbr+2t+1)

= |ξ(brbr+2t+1)− ξ(br)− ξ(br+2t+1)|

= (4n+ 1)(r + t)− 1.

The weight of edge br+tbs−t is given by

wt(br+tbs−t) = wt(br+tbr+t+1)

= |ξ(br+tbr+t+1)− ξ(br+t)− ξ(br+t+1)

= (4n+ 1)(r + t)− 1.

Therefore, wt(brbs) = wt(br+tbs−t).

The edge weights are calculated below.

for 1 ≤ r ≤ n,

wt(bsbs+1) = (4n+ 1)s− 1, 1 ≤ s ≤ m− 1;

wt(asrx
s
r) =




(4n+ 1)(s− 1) + 4r − 3 if s is odd and 1 ≤ s ≤ m

(4n+ 1)s− 4r + 1 if s is even and 1 ≤ s ≤ m;

wt(asry
s
r) =




(4n+ 1)(s− 1) + 4r − 4 if s is odd and 1 ≤ s ≤ m

(4n+ 1)s− 4r + 2 if s is even and 1 ≤ s ≤ m;

wt(xs
ra

s
r+1) =




(4n+ 1)(s− 1) + 4r − 1 if s is odd and 1 ≤ s ≤ m

(4n+ 1)s− 4r − 1 if s is even and 1 ≤ s ≤ m;

wt(ysra
s
r+1) =




(4n+ 1)(s− 1) + 4r − 2 if s is odd and 1 ≤ s ≤ m

(4n+ 1)s− 4r if s is even and 1 ≤ s ≤ m.

Hence tades(TÔQn)) =
⌈
4mn+m−1

2

⌉
. �

Theorem 2.3. For the H-graph G, we have tades(G) = n
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Proof. Let V (G) = {αr, βr : 1 ≤ r ≤ n} and

E(G) =




{αrαr+1, βrβr+1 : 1 ≤ r ≤ n− 1} ∪ {αn+1

2

βn+1

2

} if n is odd

{αrαr+1, βrβr + 1 : 1 ≤ r ≤ n− 1} ∪ {αn

2
+1βn

2
} if n is even .

By Theorem 1.1, tades(G) ≥ n. We now prove the reverse inequality. The labeling

ξ : V
⋃

E → {1, 2, 3, . . . , n} is defined as follows:

For 1 ≤ r ≤ n,

ξ(αr) =





r+1
2

for r odd

r

2
for r even ;

ξ(βr) = n−
⌊
r−1
2

⌋
;

ξ(αrαr+1) = 2, 1 ≤ r ≤ n− 1;

ξ(βrβr+1) = 2, 1 ≤ r ≤ n− 1;

Fix ξ(αn+1

2

βn+1

2

) = 2, for odd n.

Fix ξ(αn

2
+1βn

2
) =




2 if n 6≡ 0(mod 4)

3 if n ≡ 0(mod 4),
for even n.

The edge weights are

wt(αrαr+1) = r − 1 for 1 ≤ r ≤ n− 1;

wt(βrβr+1) = 2n− r − 1 for 1 ≤ r ≤ n− 1.

Clearly, wt(αn+1

2

βn+1

2

) = n− 1, for n odd.

And wt(αn

2
+1βn

2
) = n− 1, for n even.

Clearly, tades(G) ≤ n. Note that the edge weights are different. Hence tades(G) =

n. �

3. Main Results For Path Related Graphs

In this section, we investigate total absolute difference edge irregularity strength

of path related graphs.

Theorem 3.1. Form a graph G by duplicating each vertex by an edge in the path

Pn. Then tades(G) =
⌈
4n−1
2

⌉
.
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Proof. Let V (G) = {αr, α
′

r, α
′′

r : 1 ≤ r ≤ n} and

E(G) = {αrα
′

r, αrα
′′

r , α
′

rα
′′

r : 1 ≤ r ≤ n} ∪ {αrαr+1 : 1 ≤ r ≤ n− 1}.

By Theorem 1.1, we have tades(G) ≥
⌈
4n−1
2

⌉
. Let us now prove the reverse inequal-

ity.The labeling ξ : V
⋃

E → {1, 2, 3, . . . ,
⌈
4n−1

2

⌉
} is defined below.

For 1 ≤ r ≤ n,

ξ(αr) =




2r (when r odd)

2r − 1 (when r even) ;

ξ(α
′

r) = 2r − 1;

ξ(α
′′

r ) =




2r − 1 (when r odd)

2r (when r even) .

ξ(αrαr+1) = 2, 1 ≤ r ≤ n− 1;

for 1 ≤ r ≤ n,

ξ(αrα
′

r) = 2,

ξ(αrα
′′

r ) =




1 (when r odd)

2 (when r even) ;

ξ(α
′

rα
′′

r ) =




2 (when r odd)

1 (when r even) .

We arrive at the weight of the edges:

wt(αrαr+1) = 4r − 1, 1 ≤ r ≤ n− 1;

for 1 ≤ r ≤ n

wt(αrα
′

r) =




4r − 3 for r odd

4r − 4 for r even ;

wt(αrα
′′

r ) =




4r − 2 if r is odd

4r − 3 if r is even ;

wt(α
′

rα
′′

r ) =




4r − 4 if r is odd

4r − 2 if r is even .

Clearly, tades(G) ≤
⌈
4n−1
2

⌉
. Hence tades(G) =

⌈
4n−1

2

⌉
as the edge weights are dis-

tinct. �
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Theorem 3.2. Form a graph G by duplicating each edge by a vertex in path Pn.

Then tades(G) =
⌈
3n−3

2

⌉
.

Proof. Let V (G) = {αr : 1 ≤ r ≤ n} ∪ {βr : 1 ≤ r ≤ n− 1} and

E(G) = {αrβr, αr+1βr, αrαr+1 : 1 ≤ r ≤ n− 1}.

Clearly tades(G) ≥
⌈
3n−3
2

⌉
(Theorem 1.1). Let us proceed to derive the reverse in-

equality. We define the labeling ξ : V
⋃
E → {1, 2, 3, . . . ,

⌈
3n−3
2

⌉
} as follows.

Case 1. n is odd.

ξ(αr) =





1 (r = 1)

3r−2
2

for r even and 2 ≤ r ≤ n

3r−3
2

for r odd and 2 ≤ r ≤ n ;

ξ(βr) =





⌈
3r−2
2

⌉
for r odd and 1 ≤ r ≤ n− 1

3r
2

for r even and 1 ≤ r ≤ n− 1 ;

ξ(αrβr) =





2 (r = 1)

2 for r even 2 ≤ r ≤ n− 1

1 for r odd and 2 ≤ r ≤ n− 1 ;

ξ(αrαr+1) =




2 (r = 1)

1 (2 ≤ r ≤ n− 1);

ξ(αrβr) = 1, 1 ≤ r ≤ n− 1

Case 2. n is even.

ξ(αr) =
⌈
3r−2
2

⌉
, 1 ≤ r ≤ n;

ξ(βr) =





⌈
3r−2
2

⌉
(r is odd and 1 ≤ r ≤ n− 1)

3r
2

(r is even and 1 ≤ r ≤ n− 1) ;

ξ(αrβr) = 2, 1 ≤ r ≤ n− 1;

ξ(αrαr+1) = 2, 1 ≤ r ≤ n− 1;

ξ(αrβr) =




1 (r is odd and 1 ≤ r ≤ n− 1)

2 (ris even and 1 ≤ r ≤ n− 1).

Below we give the calculation of the weight of the edges.

For 1 ≤ r ≤ n− 1

wt(αrαr+1) = 3r − 2;
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wt(αrβr) = 3r − 3;

wt(αr+1βr) = 3r − 1.

Clearly, tades(G) ≤
⌈
3n−3

2

⌉
. Note that the edge weights are distinct. Hence tades(G) =

⌈
3n−3

2

⌉
. �

Theorem 3.3. For Key graph KY (m,n), tades(KY (m,n)) =
⌈
m+2n

2

⌉
.

Proof. Let H1 = Cm, H2 = Pn ⊙K1. The vertex set of KY (m,n) is {vr : 1 ≤ r ≤

m}
⋃
{us, ws : 1 ≤ s ≤ n} and edge set of KY (m,n) is {vrvr+1, vmv1, vmu1 : 1 ≤ r ≤

m− 1}
⋃
{usus+1 : 1 ≤ s ≤ n− 1}

⋃
{usws : 1 ≤ s ≤ n}. The graph H1 has m edges

and H2 has 2n−1 edges. Therefore KY (m,n) has m+2n edges. By Theroem 1.1, we

have tades(KY (m,n)) ≥
⌈
m+2n

2

⌉
. We now proceed to derive the reverse inequality.

We construct ξ : V
⋃

E → {1, 2, · · ·
⌈
m+2n

2

⌉
} as follows:

for 1 ≤ r ≤ m,

ξ(vr) =





r+1
2

for r odd

r
2

for r even .

Case 1: m is odd.

For 1 ≤ s ≤ n,

ξ(us) =





⌈
m
2

⌉
+ s− 1 for r odd

⌈
m
2

⌉
+ s for r even ;

ξ(ws) =





⌈
m

2

⌉
+ s for r odd

⌈
m
2

⌉
+ s− 1 for r even .

Case 2: m is even.

ξ(us) = ξ(ws) =
m

2
+ s, 1 ≤ s ≤ n.

In both the cases the edge labelings are,

ξ(vrvr+1) =




2 if 1 ≤ r ≤

⌈
m
2

⌉

1 if
⌈
m

2

⌉
+ 1 ≤ r ≤ m− 1 ;

ξ(vmv1) = ξ(vmu1) = 1;

ξ(usus+1) = 1, 1 ≤ s ≤ n− 1;

ξ(usws) = 1, 1 ≤ s ≤ n.

We arrive at the following edge weights.
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wt(vrvr+1) =




r − 1 if 1 ≤ r ≤

⌈
m

2

⌉

r if
⌈
m

2

⌉
+ 1 ≤ r ≤ m− 1 ;

wt(vmv1) =
⌈
m

2

⌉
;

wt(vmu1) = m;

wt(usus+1) = m+ 2s, 1 ≤ s ≤ n− 1;

wt(usws) = m+ 2s− 1, 1 ≤ s ≤ n.

Note that the edge weights are distinct. Hence tades(KY (m,n)) =
⌈
m+2n

2

⌉
. �

Theorem 3.4. For Cm ⊖ Pn, tades(Cm ⊖ Pn) =
⌈
mn

2

⌉
.

Proof. Let a1n, a2n · · ·amn be the vertices of the cycle Cn and a11a12 · · · a1n, a21a22 · · ·a2n

· · · am1am2 · · · amn be the vertices of the path Pn attached with arn by identifying ars

with arn for 1 ≤ r ≤ m, 1 ≤ s ≤ n. Therefore, Cm⊖Pn have mn edges and mn ver-

tices. By Theorem 1.1, tades(Cm ⊖ Pn) ≥
⌈
mn

2

⌉
. Define ξ : V

⋃
E → {1, 2 · · ·

⌈
mn

2

⌉
}

as follows:

Let 1 ≤ r ≤ m,

Case 1. n is odd,

ξ(ars) =





nr+1
2

−
⌈
s−1
2

⌉
for r odd and 1 ≤ s ≤ n,

⌈
n(r−1)

2

⌉
+
⌊
s
2

⌋
for r even and 1 ≤ s ≤ n;

Case 2. n is even,

ξ(ars) =





nr

2
−

⌊
s−1
2

⌋
for r odd and 1 ≤ s ≤ n,

n(r−1)
2

+
⌈
s
2

⌉
for r even and 1 ≤ s ≤ n;

Now we assign the labels for edges.

ξ(arnar+1n) = 2, 1 ≤ r ≤
⌊
m−1
2

⌋
;

ξ(arnar+1n) = 1,
⌊
m+1
2

⌋
≤ r ≤ m− 1;

ξ(amna1n) = 2;

ξ(arsars+1) = 2, 1 ≤ r ≤
⌊
m

2

⌋
and 1 ≤ s ≤ n− 1 ;

ξ(arsars+1) = 1,
⌈
m+1
2

⌉
≤ r ≤ m− 1 and 1 ≤ s ≤ n− 1.

Below we give the calculation for the weight of the edges:

wt(arnar+1n) =




nr − 1 for 1 ≤ r ≤

⌊
m−1
2

⌋

nr for
⌊
m+1
2

⌋
≤ r ≤ m− 1;



142 A. LOURDUSAMY AND F. JOY BEAULA

wt(amna1n) =





nm−n

2
for m odd

nm

2
− 1 for m even;

for 1 ≤ r ≤
⌊
m

2

⌋
and 1 ≤ s ≤ n− 1,

wt(arsars+1) =




nr − s− 1 for r odd

n(r − 1) + s− 1 for r even;

for
⌈
m+1
2

⌉
≤ r ≤ m− 1 and 1 ≤ s ≤ n− 1,

wt(arsars+1) =




nr − s for r odd

n(r − 1) + s for r even.

Hence tades(Cm ⊖ Pn) =
⌈
mn

2

⌉
as the the edge weights are distinct. �
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