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GENERALIZATION OF OSTROWSKI’S TYPE INEQUALITY VIA

RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL AND

APPLICATIONS IN NUMERICAL INTEGRATION, PROBABILITY

THEORY AND SPECIAL MEANS

FARAZ MEHMOOD ∗(1,2) AND AKHMADJON SOLEEV(1)

Abstract. We apply Riemann-Liouville fractional integral to get a new general-

ization of Ostrowski’s type integral inequality. We may prove new estimates for the

remainder term of the midpoint’s, trapezoid’s, & Simpson’s formulae as a result

of the generalization. Our estimates are generalized and recaptured some previ-

ously obtained estimates. Applications are also deduced for numerical integration,

probability theory and special means.

1. Introduction

In the development of mathematics, inequalities are one of the most powerful tools.

From two decades back, scholars researched on fractional calculus because of its

importance in inequalities.

We quote from [3],

“The subject of fractional calculus (that is, calculus of integrals and derivatives

of an arbitrary real or complex order) was planted over 300 years ago. Since that

time the fractional calculus has drawn the attention of many researchers in. In recent

years, the fractional calculus has played a significant role in many areas of science

and engineering.”
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Due to worth of fractional integral inequalities, many scholars have mentioned

certain generalizations of fractional integral inequalities (see [2, 21, 22, 23]).

In 1938, A. M. Ostrowski was a Ukrainian mathematician, who had presented an

inequality in his article [19]. Since then this inequality is called an Ostrowski inequal-

ity and this result had obtained by applying the Montgomery identity. A number of

researchers have written their articles [1, 7, 8, 15, 17] about generalizations of Os-

trowski’s inequality in the past some decades. Ostrowski’s inequality has been proved

to be a huge and remarkable tool for the enlargement of various fields of mathemat-

ics. Inequalities including integral which create bounds in the physical quantities,

are of great significant in the sense that these types of inequalities are not only used

in integral approximation theory, operator theory, nonlinear analysis, numerical in-

tegration, stochastic analysis, information theory, statistics and probability theory

but we may also see its applications in the several branches of physics, engineering

and biological sciences. We refer to the readers [4, 11, 12, 13, 16, 18] for some recent

contributions to the study of Ostrowski’s inequality.

S. S. Dragomir et. al. derived the generalization of Ostrowski’s type inequality in

[9] which is as follow:

Proposition 1.1. Let g : [j, k] → R be continuous on [j, k] and differentiable on

(j, k) & whose derivative g′ : (j, k) → R is bounded on (j, k), where ‖g′‖∞ =

supτ∈[j,k]|g
′(τ)| < ∞. Then,

∣

∣

∣

∣

∫ k

j

g(τ)dτ −

[

g(θ)(1− λ) + λ
g(j) + g(k)

2

]

(k − j)

∣

∣

∣

∣

≤

[

1

4
(k − j)2(λ2 + (1− λ)2) +

(

θ −
j + k

2

)2
]

‖g′‖∞,(1.1)

for all λ ∈ [0, 1] and j + λ(k−j

2
) ≤ θ ≤ k − λ(k−j

2
).

By applying (1.1), the scholars obtained estimates for the remainder term of the

midpoint’s, trapezoid’s, & Simpson’s formulae. They also gave applications in special

means and numerical integration.

We need here to define Riemann-Liouville fractional integral(RLFI) (see[10]) for

proving our next main result in the second section.
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Definition 1.2. The RLFI operator of order γ > 0 is stated as

Jγ
j g(θ) =

1

Γ(γ)

∫ θ

j

(θ − τ)γ−1g(τ)dτ,

J0
j g(θ) = g(θ),

and gamma function Γ(γ) is stated as

Γ(γ) =

∫

∞

0

θγ−1e−θdθ.

In the given article, we would prove a perturbation via RLFI of (1.1). Using ob-

tained inequality, we would get some tighter error bounds for the midpoint’s, trape-

zoid’s and Simpson’s quadrature formulae and for probability theory. Similar per-

turbed inequalities without RLFI are also considered in [5, 6]. In section 3, 4 and 5,

we would give applications in numerical integration, probability theory and special

means respectively.

2. Generalization of Ostrowski’s Type Inequality Via RLFI

Under present section we would give our results about Ostrowski’s type inequality

via RLFI which are as follow:

Theorem 2.1. Let J ⊂ R and j, k ∈ J, j < k. If g : J → R is differentiable function

such that M ≤ g′(τ) ≤ N, ∀ τ ∈ [j, k], for some constants M,N ∈ R, then

∣

∣

∣

∣

∣

(1− λ)g(θ)−
(k − θ)1−γ

(k − j)
Γ(γ)Jγ

j g(k) +
λ(k − θ)1−γ

2(k − j)1−γ
J0
j g(j) + Jγ−1

j (P (θ, k)g(k))

−
(N+M)

2
(1− λ)

(

θ −
j + k

2

)

(k − θ)1−γ

∣

∣

∣

∣

∣

≤ (k − θ)1−γ

(

(k − j)γ−1
N

−
N+M

2

)(

(k − j)

4
[λ2 + (1− λ)2] +

1

(k − j)

(

θ −
j + k

2

)2
)

,

(2.1)

holds. Where j + λ(k−j

2
) ≤ θ ≤ k − λ(k−j

2
) and λ ∈ [0, 1].
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Proof. For the sake of proof we state the fractional Peano kernel as;

P (θ, τ) =
(k − θ)1−γ

(k − j)
Γ(γ)



























τ −

(

j + λ
k − j

2

)

, if τ ∈ [j, θ),

τ −

(

k − λ
k − j

2

)

, if τ ∈ [θ, k].

(2.2)

Applying RLFI operator and by parts formula of integration, obtain

Jγ
j (P (θ, k)g(k)) =

1

Γ(γ)

∫ k

j

(k − τ)γ−1P (θ, τ)g′(τ)dτ

= (1− λ)g(θ)−
(k − θ)1−γ

(k − j)
Γ(γ)Jγ

j g(k)

+
λ(k − θ)1−γ

2(k − j)1−γ
J0
j g(j) + Jγ−1

j (P (θ, k)g(k)).(2.3)

It is clear that

1

Γ(γ)

∫ k

j

P (θ, τ)dτ = (1− λ)

(

θ −
j + k

2

)

(k − θ)1−γ.(2.4)

Suppose C = N +M

2
. From (2.3) and (2.4), it follows that

1

Γ(γ)

∫ k

j

P (θ, τ)[(k − τ)γ−1g′(τ)− C]dτ

= (1− λ)g(θ)−
(k − θ)1−γ

(k − j)
Γ(γ)Jγ

j g(k)

+
λ(k − θ)1−γ

2(k − j)1−γ
J0
j g(j) + Jγ−1

j (P (θ, k)g(k))

− C(1− λ)

(

θ −
j + k

2

)

(k − θ)1−γ .(2.5)

Another way we have

(2.6)

∣

∣

∣

∣

∣

1

Γ(γ)

∫ k

j

P (θ, τ)[(k − τ)γ−1g′(τ)− C]dτ

∣

∣

∣

∣

∣

≤
1

Γ(γ)
max
τ∈[j,k]

|(k − τ)γ−1g′(τ)− C| ·

∫ k

j

|P (θ, τ)|dτ.

Since

max
τ∈[j,k]

|(k − τ)γ−1g′(τ)− C| ≤ (k − j)γ−1
N− C,(2.7)



GENERALIZATION OF OSTROWSKI’S INEQUALITY WITH APPLICATIONS 165

further we have
∫ k

j

|P (θ, τ)|dτ = (k − θ)1−γΓ(γ)

×

(

(k − j)

4
[λ2 + (1− λ)2] +

1

(k − j)

(

θ −
j + k

2

)2
)

(2.8)

Using (2.6) to (2.8) we may written as
∣

∣

∣

∣

∣

1

Γ(γ)

∫ k

j

P (θ, τ)

[

(k − τ)γ−1g′(τ)−
N+M

2

]

dτ

∣

∣

∣

∣

∣

≤ (k − θ)1−γ

(

(k − j)γ−1
N−

N+M

2

)

×

(

(k − j)

4
[λ2 + (1− λ)2] +

1

(k − j)

(

θ −
j + k

2

)2
)

.(2.9)

Using (2.5) to (2.9) we easily obtain our required result (2.1). �

Remark 2.2. If put γ = 1 in Theorem 2.1, then we recapture the Theorem 2 of [24].

Remark 2.3. If put λ = 0 in (2.3) of Theorem 2.1 and after some rearrangements,

then we recapture the Montgomery fractional identity (see Lemma 3.1 of [2]).

Remark 2.4. If put γ = 1 in (2.3) of Theorem 2.1, then we recapture the Montgomery

identity with parameter (see equation (2.2) of Theorem 2 of [9]).

Corollary 2.5. Let the supposition of Theorem 2.1 be true, then
∣

∣

∣

∣

∣

g(θ)−
(k − θ)1−γ

(k − j)
Γ(γ)Jγ

j g(k) + Jγ−1
j (P (θ, k)g(k))

−
(N +M)

2

(

θ −
j + k

2

)

(k − θ)1−γ

∣

∣

∣

∣

∣

≤ (k − θ)1−γ

(

(k − j)γ−1
N−

N+M

2

)

×

(

(k − j)

4
+

1

(k − j)

(

θ −
j + k

2

)2
)

,(2.10)

holds and specially

(2.11)

∣

∣

∣

∣

∣

g(
j + k

2
)−

(k−j

2
)1−γ

(k − j)
Γ(γ)Jγ

j g(k) + Jγ−1
j (P (

j + k

2
, k)g(k))

∣

∣

∣

∣

∣

≤
(k − j)

4

(

k − j

2

)1−γ
(

(k − j)γ−1
N−

N+M

2

)

.
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Proof. By putting λ = 0 in (2.1) we obtain (2.10) and θ = j+k

2
in (2.10) we obtain

(2.11). �

Remark 2.6. If put γ = 1 in (2.10) of Corollary 2.5, then we recapture the result

(2.10) of Corollary 1 of [24].

Remark 2.7. If put γ = 1 in (2.11) of Corollary 2.5, then we recapture the result

(2.11) of Corollary 1 of [24].

Corollary 2.8. Let the supposition of Theorem 2.1 be true, then

(2.12)

∣

∣

∣

∣

∣

−
(k−j

2
)1−γ

(k − j)
Γ(γ)Jγ

j g(k) +
(k−j

2
)1−γ

2(k − j)1−γ
J0
j g(j) + Jγ−1

j (P (
j + k

2
, k)g(k))

∣

∣

∣

∣

∣

≤
(k − j)

4

(

k − j

2

)1−γ
(

(k − j)γ−1
N−

N+M

2

)

.

Proof. By putting λ = 1 and θ = j+k

2
in (2.1) we obtain (2.12). �

Remark 2.9. If put γ = 1 in (2.12) of Corollary 2.8, then we recapture the result

(2.12) of Corollary 2 of [24].

Corollary 2.10. Let the supposition of Theorem 2.1 be true, then
∣

∣

∣

∣

∣

g(θ)

2
−

(k − θ)1−γ

(k − j)
Γ(γ)Jγ

j g(k) +
(k − θ)1−γ

4(k − j)1−γ
J0
j g(j) + Jγ−1

j (P (θ, k)g(k))

−
(N +M)

4

(

θ −
j + k

2

)

(k − θ)1−γ

∣

∣

∣

∣

∣

≤ (k − θ)1−γ

(

(k − j)γ−1
N

−
N +M

2

)(

(k − j)

8
+

1

(k − j)

(

θ −
j + k

2

)2
)

,(2.13)

holds and specially
∣

∣

∣

∣

∣

g( j+k

2
)

2
−

(k−j

2
)1−γ

(k − j)
Γ(γ)Jγ

j g(k) +
(k−j

2
)1−γ

4(k − j)1−γ
J0
j g(j) + Jγ−1

j (P (
j + k

2
, k)g(k))

∣

∣

∣

∣

∣

≤
(k − j)

8

(

k − j

2

)1−γ
(

(k − j)γ−1
N−

N+M

2

)

.(2.14)

Proof. By putting λ = 1
2
in (2.13) we obtain (2.13) and θ = j+k

2
in (2.13) we obtain

(2.14). �
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Remark 2.11. If put γ = 1 in (2.10) of Corollary 2.10, then we recapture the result

(2.13) of Corollary 3 of [24].

Remark 2.12. If put γ = 1 in (2.14) of Corollary 2.10, then we recapture the result

(2.14) of Corollary 3 of [24].

Corollary 2.13. Let the supposition of Theorem 2.1 be true, then
∣

∣

∣

∣

∣

2

3
g(θ)−

(k − θ)1−γ

(k − j)
Γ(γ)Jγ

j g(k) +
(k − θ)1−γ

6(k − j)1−γ
J0
j g(j) + Jγ−1

j (P (θ, k)g(k))

−
(N+M)

3

(

θ −
j + k

2

)

(k − θ)1−γ

∣

∣

∣

∣

∣

≤ (k − θ)1−γ

(

(k − j)γ−1
N

−
N+M

2

)(

5(k − j)

36
+

1

(k − j)

(

θ −
j + k

2

)2
)

,(2.15)

holds and specially
∣

∣

∣

∣

∣

2g( j+k

2
)

3
−

(k−j

2
)1−γ

(k − j)
Γ(γ)Jγ

j g(k) +
(k−j

2
)1−γ

6(k − j)1−γ
J0
j g(j) + Jγ−1

j (P (
j + k

2
, k)g(k))

∣

∣

∣

∣

∣

≤
5(k − j)

36

(

k − j

2

)1−γ
(

(k − j)γ−1
N−

N+M

2

)

.(2.16)

Proof. By putting λ = 1
3
in (2.1) we obtain (2.15) and θ = j+k

2
in (2.15) we obtain

(2.16). �

Remark 2.14. If put γ = 1 in (2.15) of Corollary 2.13, then we recapture the result

(2.15) of Corollary 4 of [24].

Remark 2.15. If put γ = 1 in (2.16) of Corollary 2.13, then we recapture the result

(2.16) of Corollary 4 of [24].

Remark 2.16. Inequalities (2.11), (2.12), (2.14) and (2.16) are generalized and better

estimates than the corresponding estimates presented in [9] and further that above

said estimates are generalization of the corresponding estimates which are obtained

in [24]. For example, consider the following inequality, obtained in [9]:
∣

∣

∣

∣

∣

k − j

6

[

g(j) + 4g

(

j + k

2

)

+ g(k)

]

−

∫ k

j

g(τ)dτ

∣

∣

∣

∣

∣

≤
5

36
(k − j)2‖g′‖∞.(2.17)



168 FARAZ MEHMOOD AND AKHMADJON SOLEEV

If choose

N = sup
τ∈[j,k]

g′(τ), and M = inf
τ∈[j,k]

g′(τ)

then (N −M )
2

≤ ‖g′‖∞ when γ = 1. Therefore, (2.16) is generalized and better than

(2.17). In fact, if sgnM = sgnN and M ≈ N, then (2.16) may be much better than

(2.17). It is also generalized and better than a corresponding inequality got in [20].

Remark 2.17. Note that the simple three-point quadrature rule that is given in (2.14)

has a better estimate of error than the well known three-point Simpson’s quadrature

rule is given in (2.16).

3. Applications to Numerical Integration

We restrict further considerations to the trapezoidal quadrature rule. We also

emphasize that similar considerations may be done for all quadrature rules considered

in the previous section.

Suppose Im = {j = θ0 < θ1 < ... < θm−1 = k} be given sub-division of the [j, k],

where θi+1 − θi = h. If we apply Theorem 2.1 to the [θi, θi+1] with λ = 1 & sum over

i from 0 to m− 1, then we acquire the composite trapezoidal rule

(3.1)

(

h

2

)1−γ

Γ(γ)Jγ
j g(k) = QT (g, Im) + ET (g),

where

QT (g, Im) =

m−1
∑

i=0

h

[

(

h
2

)1−γ

2(h)1−γ
J0
θi
g(θi) + Jγ−1

θi
(P (

θi + θi+1

2
, θi+1)g(θi+1))

]

.

Using triangle inequality then get

(3.2) |ET (g)| ≤
m−1
∑

i=0

h2

4

(

h

2

)1−γ
(

hγ−1
N i −

N i +M i

2

)

≤
(k − j)2

4m

(

k − j

2

)1−γ
(

(k − j)γ−1
N−

N+M

2

)

,

where we choose N i = maxτ∈[θi,θi+1] g
′(τ), M i = minτ∈[θi,θi+1] g

′(τ), M ≤ g′(τ) ≤ N,

∀ τ ∈ [j, k]. The following classical estimation is given by [24]

(3.3) |ET (g)| ≤
‖g′′‖∞
12m2

(k − j)3.
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The following inequality is the fractional form of (3.3) .

(3.4) |ET (g)| ≤
‖g′′‖∞(k − j)2

6m2

(

k − j

2

)1−γ
(

(k − j)γ−1
N−

N+M

2

)

Note that we can apply (3.4) only if g ∈ C2[j, k], while we may apply (3.2) if g ∈

C1[j, k]. Hence, the above obtained result enlarges the applicability of the trapezoidal

rule.

Moreover, we may find a consequence of Theorem 5.3.2 of [14] which for the trape-

zoidal formula gives

(3.5) lim
m→∞

m2

[

QT (g, Im)−

(

h

2

)1−γ

Γ(γ)Jγ
j g(k)

]

=
(k − j)

6m2

(

k − j

2

)1−γ
(

(k − j)γ−1
N−

N+M

2

)

[g′(k)− g′(j)],

if g ∈ C2[j, k]. This consequence characterizes the order of convergence of the com-

posite trapezoidal rule. From (3.5), it follows

(3.6) lim
m→∞

m

[

QT (g, Im)−

(

h

2

)1−γ

Γ(γ)Jγ
j g(k)

]

= 0,

if g ∈ C2[j, k]. Using inequality (3.2), we may acquire a stronger consequence.

Namely, we may derive that (3.6) holds for functions which belong to C1[j, k].

Theorem 3.1. Let g ∈ C1[j, k]. Then (3.6) holds.

Proof. Let N i = maxτ∈[θi,θi+1] g
′(τ), M i = minτ∈[θi,θi+1] g

′(τ). Since g ∈ C1[j, k], it

follows that there exist ζi, ςi ∈ [θi, θi+1] such that N i = g′(ζi) and M i = g′(ςi). From

(3.1) and (3.2) we get

(3.7) m

[

QT (g, Im)−

(

h

2

)1−γ

Γ(γ)Jγ
j g(k)

]

≤
1

4

(

k − j

2

)1−γ
(

(k − j)γ−1
N−

N+M

2

)

m−1
∑

i=0

(k − j)

m
[g′(ζi)− g′(ςi)].

Since ((k − j)/m)
∑m−1

i=0 g′(ζi) and ((k − j)/m)
∑m−1

i=0 g′(ςi) are Riemann sums, we

have

(3.8) lim
m→∞

(k − j)

m

m−1
∑

i=0

g′(ζi) = lim
m→∞

(k − j)

m

m−1
∑

i=0

g′(ςi) =

(

h

2

)1−γ

Γ(γ)Jγ
j g

′(k).
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Thus, (3.6) holds. �

The consequence obtained in the above theorem characterizes the order of conver-

gence of the composite trapezoidal quadrature formula for functions which belong to

C1[j, k].

Remark 3.2. If put γ = 1 in Theorem 3.1, then we recapture the result of Theorem

3 of [24].

4. Applications to Probability Theory

Suppose random variable ‘Z’ be continuous with probability density function g :

[j, k] → [0, 1] & cumulative distribution function Φ is introduced and defined by us,

i.e,

Φ(θ) = Γ(γ)Jγ
j g(θ) =

∫ θ

j

(θ − τ)γ−1g(τ)dτ, j + λ
k − j

2
≤ θ ≤ k − λ

k − j

2
,

and

Ef1(Z) = Γ(γ)Jγ−1
j (kg(k)) =

∫ k

j

τ(k − τ)γ−2g(τ)dτ,

Ef2(Z) = Γ(γ)Jγ
j (kg

′(k)) =

∫ k

j

τ(k − τ)γ−1g′(τ)dτ,

if γ = 1, then E(Z) =

∫ k

j

τg(τ)dτ

are the fractional expectation of random variable ‘Z’ in interval [j, k]. Then we can

write the following theorem as:

Theorem 4.1. Let the suppositions of Theorem 2.1 be true. Then get the following
∣

∣

∣

∣

∣

(1− λ)Φ(θ)−
(k − θ)1−γ

(k − j)

(

(γ − 1)Ef1(Z)− Ef2(Z)

)

+
λ(k − θ)1−γ

2(k − j)1−γ
J0
jΦ(j)

+ Jγ−1
j (P (θ, k)Φ(k))−

(N+M)

2
(1− λ)

(

θ −
j + k

2

)

(k − θ)1−γ

∣

∣

∣

∣

∣

≤ (k − θ)1−γ

×

(

(k − j)γ−1
N−

N+M

2

)(

(k − j)

4
[λ2 + (1− λ)2] +

1

(k − j)

(

θ −
j + k

2

)2
)

,

(4.1)

where j + λ(k−j

2
) ≤ θ ≤ k − λ(k−j

2
) and λ ∈ [0, 1].
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Proof. Put g = Φ we obtain (4.1), by applying the identity

Γ(γ)Jγ
j g(k) =

∫ k

j

(k − τ)γ−1g(τ)dτ = (γ − 1)Ef1(Z)− Ef2(Z)

and Φ(j) = 0, Φ(k) = 1.

�

Corollary 4.2. Select γ = 1 in Theorem 4.1. Then get the following

∣

∣

∣

∣

∣

(k − j)

[

λ

2
+ (1− λ)Φ(θ)−

(N+M)

2
(1− λ)

(

θ −
j + k

2

)]

− k + E(Z)

∣

∣

∣

∣

∣

≤
N−M

2

(

(k − j)2

4
[λ2 + (1− λ)2] +

(

θ −
j + k

2

)2
)

,(4.2)

where j + λ(k−j

2
) ≤ θ ≤ k − λ(k−j

2
) and λ ∈ [0, 1].

Before application to special means, we would present some special means and

these means will apply in the 5th section.

Special Means: These means can be found in [25].

(a) The Arithmetic Mean

A =
j + k

2
; j, k ≥ 0.

(b) The Geometric Mean

G = G(j, k) =
√

jk; j, k ≥ 0.

(c) The Harmonic Mean

H = H(j, k) =
2

1
j
+ 1

k

; j, k > 0.

(d) The Logarithmic Mean

L = L(j, k) =











j, if j = k
k − j

ln k − ln j
, if j 6= k;

j, k > 0.
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(e) Identric Mean

I = I(j, k) =























j, if j = k

ln







(

kk

jj

)
1

k−j

e






, if j 6= k;

j, k > 0.

(f) p−Logarithmic Mean

Lp = Lp(j, k) =











j, if j = k
(

kp+1 − jp+1

(p+ 1)(k − j)

)
1

p

, if j 6= k,

where p ∈ R\{−1, 0}, j, k > 0. It is known that Lp monotonically increasing over

p ∈ R, L0 = I and L−1 = L.

5. Application to Special Means

Example no. 1: Consider

γ = 1,

g(θ) = θp, p ∈ R\{−1, 0}, then for j < k,

then
1

(k − j)

∫ k

j

g(τ)dτ = Lp
p(j, k),

g(j) + g(k)

2
= A(jp, kp),

and
j + k

2
= A,

where θ ∈ [j + λ(k−j

2
), k − λ(k−j

2
)].

Therefore, (2.1) becomes
∣

∣

∣

∣

∣

(k − j)

[

λA(jp, kp) + (1− λ)θp −
(N+M)

2
(1− λ) (θ −A)− Lp

p(j, k)

]

∣

∣

∣

∣

∣

≤
N−M

2

(

(k − j)2

4
[λ2 + (1− λ)2] + (θ −A)2

)

.(5.1)

Choose θ = A in (5.1), get

∣

∣

∣

∣

∣

(k − j)
[

λA(jp, kp) + (1− λ)Ap − Lp
p(j, k)

]

∣

∣

∣

∣

∣

≤
N−M

8
(k − j)2[λ2 + (1 − λ)2].
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Moreover for λ = 1
∣

∣

∣

∣

∣

(k − j)
[

A(jp, kp)− Lp
p(j, k)

]

∣

∣

∣

∣

∣

≤
N−M

8
(k − j)2.

Example no. 2: Consider

γ = 1,

g(θ) =
1

θ
, θ 6= 0

then
1

k − j

∫ k

j

g(τ)dτ = L−1(j, k),

g(j) + g(k)

2
=

A

G2
,

and
j + k

2
= A,

where θ ∈ [j + λ(k−j

2
), k − λ(k−j

2
)] ⊂ (0,∞).

Therefore, (2.1) becomes
∣

∣

∣

∣

∣

(k − j)

[

λ
A

G2
+ (1− λ)

1

θ
−

(N+M)

2
(1− λ) (θ − A)− L−1(j, k)

]

∣

∣

∣

∣

∣

≤
N−M

2

(

(k − j)2

4
[λ2 + (1− λ)2] + (θ −A)2

)

.(5.2)

If we choose θ = A in (5.2), we get
∣

∣

∣

∣

∣

(k − j)

[

λ
A

G2
+ (1− λ)

1

A
− L−1(j, k)

]

∣

∣

∣

∣

∣

≤
N−M

8
(k − j)2[λ2 + (1− λ)2].

For λ = 1
∣

∣

∣

∣

∣

(k − j)

[

A

G2
− L−1(j, k)

]

∣

∣

∣

∣

∣

≤
N−M

8
(k − j)2.

Example no. 3: Consider

γ = 1,

g(θ) = lnθ, θ ∈ (0,∞)

then
1

k − j

∫ k

j

g(τ)dτ = ln(I(j, k)),

g(j) + g(k)

2
= lnG,

and
j + k

2
= A,
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where θ ∈ [j + λ(k−j

2
), k − λ(k−j

2
)] ⊂ (0,∞).

Therefore, (2.1) becomes

(5.3)

∣

∣

∣

∣

∣

(k − j)

[

ln
Gλθ(1−λ)

I(j, k)
−

(N+M)

2
(1− λ) (θ − A)

]

∣

∣

∣

∣

∣

≤
N−M

2

(

(k − j)2

4
[λ2 + (1− λ)2] + (θ −A)2

)

.

If we choose θ = A in (5.3), we get

∣

∣

∣

∣

∣

ln

[

GλA(1−λ)

I(j, k)

](k−j)
∣

∣

∣

∣

∣

≤
N−M

8
(k − j)2[λ2 + (1− λ)2].

For λ = 1
∣

∣

∣

∣

∣

ln

[

G

I(j, k)

](k−j)
∣

∣

∣

∣

∣

≤
N−M

8
(k − j)2.

Example no. 4: Consider

γ = 1,

g(θ) = eθ, θ ∈ (−∞,∞)

then
1

k − j

∫ k

j

g(τ)dτ =
ek − ej

k − j
,

g(j) + g(k)

2
= A(ej , ek),

and
j + k

2
= A,

where θ ∈ [j + λ(k−j

2
), k − λ(k−j

2
)].

Therefore, (2.1) becomes

∣

∣

∣

∣

∣

(k − j)

[

λA(ej , ek) + (1− λ)eθ −
(N+M)

2
(1− λ) (θ −A)−

ek − ej

k − j

]

∣

∣

∣

∣

∣

≤
N−M

2

(

(k − j)2

4
[λ2 + (1− λ)2] + (θ −A)2

)

.(5.4)

If we choose θ = A in (5.4), we get

∣

∣

∣

∣

∣

(k − j)

[

λA(ej, ek) + (1− λ)eA −
ek − ej

k − j

]

∣

∣

∣

∣

∣

≤
N−M

8
(k − j)2[λ2 + (1− λ)2].
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For λ = 1
∣

∣

∣

∣

∣

(k − j)A(ej, ek)− (ek − ej)

∣

∣

∣

∣

∣

≤
N−M

8
(k − j)2.

Example no. 5: Consider

γ = 1,

g(θ) = tan θ, θ 6=
π

2
± nπ

then
1

k − j

∫ k

j

g(τ)dτ = ln

[

sec k

sec j

]k−j

,

g(j) + g(k)

2
= A(tan j, tan k),

and
j + k

2
= A,

where θ ∈ [j + λ(k−j

2
), k − λ(k−j

2
)].

Therefore, (2.1) becomes
∣

∣

∣

∣

∣

(k − j)

[

λA(tan j, tan k) + (1− λ) tan θ −
(N+M)

2
(1− λ) (θ − A)

− ln

[

sec k

sec j

]k−j
]∣

∣

∣

∣

∣

≤
N−M

2

(

(k − j)2

4
[λ2 + (1− λ)2] + (θ −A)2

)

.(5.5)

If we choose θ = A in (5.5), we get
∣

∣

∣

∣

∣

(k − j)

[

λA(tan j, tan k) + (1− λ) tanA− ln

[

sec k

sec j

]k−j
] ∣

∣

∣

∣

∣

≤
N−M

8
(k − j)2[λ2 + (1− λ)2].

For λ = 1
∣

∣

∣

∣

∣

(k − j)

[

A(tan j, tan k)− ln

[

sec k

sec j

]k−j
] ∣

∣

∣

∣

∣

≤
N−M

8
(k − j)2.

6. Conclusion

We proved new Ostrowski’s type estimates for the remainder term of the mid-

point’s, trapezoid’s, & Simpson’s formulae as consequences of the generalized frac-

tional integral. Our estimates are generalized and recaptured the results of articles

[2], [9] and [24] that are previously obtained estimates. Moreover, we have given
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applications to numerical integration, probability theory and special means.
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[24] N. Ujević, A Generalization of Ostrowski’s Inequality and Applications in Numer-

ical Integration, Appl. Math. Lett. 17 (2004), 133–137.

[25] F. Zafar, Some Generalizations of Ostrowski Inequalities and Their Applications

to Numerical Integration and Special means, Bahauddin Zakariya University Multan,

Pakistan, 2010.



178 FARAZ MEHMOOD AND AKHMADJON SOLEEV

(1) Department of Mathematics, Samarkand State University, University boule-

vard 15, Samarkand 140104, Uzbekistan

Email address : faraz.mehmood@duet.edu.pk

Email address : asoleev@yandex.com/asoleev@yandex.ru

(2) Department of Mathematics, Dawood University of Engineering and Technol-

ogy, New M. A. Jinnah Road, Karachi-74800, Pakistan


