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B-SPLINE ESTIMATE OF THE REGRESSION FUNCTION UNDER

GENERAL CENSORSHIP MODEL

ILHEM LAROUSSI (1)

Abstract. In a continuity reasoning of the different estimators proposed by de

Kebabi et al. [21] and recently Douas et al. [11] and Laroussi [26]. The con-

struction of the regression function estimator is based on three axes. The first one

is the application of the non-parametric estimate, namely, the least-squares tech-

nique. The second axis represents the general censorship which combines all the

existing types of censorship. Hence, empirical L2-error estimates are constructed

over data-dependent spaces of B-spline functions. The almost sure convergence

of the proposed estimator is studied. Essentially, two models subject to twice or

right censorship are assessed and this phenomena of censorship identified by the

simulation shows the interest of this estimator.

1. Introduction

The fitting procedure is the main purpose of linear regression. The least squares,

discovered independently by Legendre [27] and Gauss [15] and published in 1805

and 1809, is the most famous and used solution to such a problem. For parametric

methods, rich literature is available, see, for instance, Rao [34], Seber [35], Draper

and Smith [10], and the inside literature cited. The random aspect of this concept

is marked by the minimization of the risk L2 or mean squared error which in turn

results to the regression function. Interest of such minimization is to construct an

estimate with a predicted mean squared error which leads the minimum mean square

error. Many general asymptotic empirical risk minimization properties have been

proposed by influential papers such as Vapnik and Chervonenkis [39], Vapnik ( [40],

Key words and phrases. Least squares regression, B-spline function, censored data, convergence,

almost sure.

Copyright© Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Dec. 20, 2022 Accepted: Aug. 7, 2023 .

179



180 ILHEM LAROUSSI

[41]) and Haussler [19], and more recently Montanari and Saeed [31]. The necessary

conditions for the least squares estimates reliability are contained in Van de Geer

and Wegkamp [38]. Various statistical applications, for penalized modelling, can be

found, in Wahba[42] for the existence and computation concept, Green and Silver-

man [16] applied to generalized Linear Models, Eubank [13] for the L2 theory, and

Eggermont and LaRiccia [12] for the maximum likelihood estimation. Specifically,

smoothing splines date back to Whittaker [44] which by using an analytical method

called the numerical process of graduation obtains a more reliable approximation.

Recently Mariati et al. [29], apply this parametric estimation method of the regres-

sion function to study poverty in the province of Papuasie. The definition of the

penalized least squares estimates is considered by Mammen and van de Geer [28].

They using a penalty on the total variation of the function. The L2 error criterion

used throughout this item also applies to the non-parametric estimation. This esti-

mator does not limit the class of possible relations. In 1947, Tukey[36] suggest the

local mean estimate (partitioning) of the regression similar to “ histogram ” estima-

tion method (classical partitioning) of the density. The best-known techniques for

investigating non-parametric estimates are: classical local averaging including kernel,

partitioning and nearest neighbour, least-squares. The latter uses function spline

spaces, neural networks spaces, and radial basis function networks. Penalized least

squares estimates, local polynomial kernel estimates, and orthogonal series estimates

are also very famous. For an overview of these different technical estimates see, e.g.,

Györfi et al. [17] and more recently Pavel and Sadikoglu [33]. Existing survival anal-

ysis approaches can be listed, for example, in Fan and Gijbels [14]. Thus, Beran [3]

introduced, in the case of right censoring to estimate conditional survival functions.

He also proved that these estimates are consistent, for Nearest Neighbour, kernel, or

recursive partitioning weights. The latter being extended by Dabrowska ( [8], [9]).

They assumed the conditionally independence between the variables of interest and

right-censoring and the explanatory variable. In 2015, Casanova and Leconte [6] ap-

plied this result to estimate a cumulative distribution function in a finite population.

Kohler and Krzyzk [24] studied smoothing spline regression estimates and proved

that the defined estimates are universally consistent.
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Adaptive least squares estimates based on sample division were investigated by

Györfi et al. [17] and showed an additional result regarding the universal consistency

of the estimates. In the same year, Kohler et al. [25] simplified their proof and showed

strong consistency for the randomly right-censored case. In the survey list of works,

Wegman and Wright [43] and Agarwal [1], cite references relating to the application

of splines. Consistency of least squares splines in supremum norm was establish in

Zhu [45]. Agarwal and Studden [2] investigate the non-equidistant knots of a least-

squares spline estimate in order to minimize the expected error of the estimate for

fixed design regression.

The Kaplan-Meier method [20] or proportional regression proposed by Cox [7]

have played in most of the above studies an important role in estimating the rate of

events at any time and in the calculation of survival and hazard functions. On the

other hand, for survival data where the failure time can be censored on the left or

on the right said mixed censorship, Patilea and Rolin [32] have made great progress

by proposing competing risk models. They obtained product limit estimators for the

survival functions risks and derived the strong convergence of the proposed estimators.

Then, Messaci [30] innovates in the study of this model by proposing estimates of

local means of r(x) = E(Y |X = x). In evolution, Kebabi et al. [21] deduced least

squares estimators for which they proved the convergence of the L2 norm. Other

works followed, including those of Kitouni et al. [22] who proposed a density estimator

and established its almost complete convergence, and Boukeloua [4] where the mean

square convergence of the estimator with the density rates has been proved. As a

more general model comprising left, right, double, and twice censorship, Boukeloua

and Messaci [5] proposed a generalized censored function of the interest variable.

They also established the asymptotic normality of the density estimator. By coveting

the L2 convergence for a general censorship model similar to that of Boukeloua and

Messaci [5] within the framework of the estimation approach proposed by Kebabi et

al. [21], we propose to combine three approaches: that of Boukeloua and Messaci [5],

that of Kebabi et al. [21], and the so-called B-spline-based approach which assumes

that the base functions is as small as possible. In this case and inspired by Kohler [23],

the knot sequences of the chosen B-splines depend locally on the data. The originality
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in this idea is the exploitation of the generalized censorship function to modify the

least-squares estimate and the introduction of the B-spline estimator. This leads to

the desired L2 convergence for a general censorship model in a less complicated way.

To the best of our knowledge, this result is unprecedented. It opens the door to the

establishment of the asymptotic normality of the least-squares estimator in the case

of a general model that summarizes the four types of censorship (left, right, twice,

and double). This paper is organized as follows: In Section 2, the data model as

well as the tools used, some notations, and the construction of the estimators are

given. The concomitant result is presented in section 3 with proof of the obtained

theorem. The simulation study for estimators based on right and twice censorship

are illustrated in Section 4.

2. B-spline estimator

First, note the B-spline space as the optimization space. Let M ∈ N
∗, and let the

spline space St,M([t0, tK [) for x ∈ [t0, tK [ by

St,M([t0, tK [) =

{

f : [t0, tK [−→ R : ∃ a−M , ..., aK−1 ∈ R such as f(x) =
K−1
∑

j=−M

ajBj,M,t(x)

}

,

and t−M ≤ · · · ≤ t0 ≤ · · · ≤ tK ≤ · · · ≤ tK+M , here M is called the degree and

t = (tj)j=−M,...,K−1 is called the knot sequence of St,M , where the B-splines Bj,M,t are

defined for x ∈ R by

• for j = −M, ..., K +M − 1 and for j = −M, ...K − 1,

(2.1) Bj,0,t =







1 if tj ≤ x < tj+1

0 otherwise
.

• For j = −M, ..., K +M − l − 2, l = 0, ...,M − 1, x ∈ R.

(2.2) Bj,l+1,t(x) =
x− tj

tj+l+1 − tj
Bj,l,t(x) +

tj+l+2 − x

tj+l+2 − tj+1
Bj+1,l,t(x).

• And for x ∈ R, j = −M, ..., K − 1.

(2.3) Bj,M,t(x) ≥ 0, and

K−1
∑

j=−M

Bj,M,t = 1.
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Second, let X be a real co-variable, the response variable Y is non-negative and

bounded by C < ∞. We estimate r(x) = E(Y |X = x) starting from one sample

shaped by i. i. d. observations Dn = {Xi, Zi, δi ; 1 ≤ i ≤ n} with same law

for (X,Z, δ) where δ = 1 if the observation of Y is censored. If δ = 0, the data

Y is observed. Let g(y) = P (δ = 0|Y = y) the probability of the uncensored

data. We write Z = max(min(Y,R), L), when Y is right censored by real random

variable R and min(Y,R) is left censored by L. Under the assumption that Y, L

and R are positive and independent and that δ = 1{L<R<Y } + 2 × 1{min(Y,R)≤L},

Patilea and Rolin [32] obtained that g(t) = FL(t)SR(t), it is a twice censored data

model. If we assuming that L = 0 a.s., we come down to the right censored data

model and we get g(t) = SR(t). Turnbull’s [37] suggests doubly censored data model,

where the lifetime Y is independent of the pair (L,R) and P (0 ≤ L ≤ R) = 1 and

δ = 1{Y >R} + 2× 1{Y <L}. It is easy to see that g(t) = SR(t)− SL(t).

Finally, according to the estimator proposed by Kebabi et al. [21], for twice censorship

model and for a general censored model proposed by Laroussi [26], the least squares

B-spline estimator of r(x) is first given by

(2.4) r̃n = arg min
f∈St,M

1

n

n
∑

i=1

1{δi=0}
|f(Xi)− Zi|2

g(Zi)

(

0

0
:= 0

)

.

We identify the hypothesis H that includes the following conditions

• H : ∃ I > 0 such that

– ∀n ∈ N, ∀i, (1 ≤ i ≤ n), δi = 0 =⇒ I ≤ Zi ≤ C a.s,

– g(I) = inf
y∈R+

g(y) > 0.

As Y is bounded, the estimator of r(x) is given by its truncated version

(2.5) rn(x) = T[0,Mn](r̃n(x)),

where Mn := max{Z1, . . . , Zn} with Mn →
n→∞

C < βn p.s. And we need the notation

(2.6) r̄n(x) = Tβn
(r̃n(x)).
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Where the truncation operator is defined for 0 ≤ t < ∞ and x ∈ R, by

T[0,t](x) =























t if x > t

x if 0 ≤ x ≤ t

0 if x < 0

.

The following theorem is the same obtained in Györfi et al. [17] for the complete

data case, but our theorem wraps up the three types of censoring (right, twice and

double) also our proof is less complicated that of mixed censorship introduced in

Kebbabi et al. [21] since it just needs the hypothesis H.

3. Result

Theorem 3.1. [?] For n ∈ N, Kmax(n) ∈ N
∗ and Mmax(n) ∈ N

∗. Lets K,M ∈

N
∗, t−M , ..., tK+M ∈ R, such that K ≤ Kmax(n), M ≤ Mmax(n) and t−M ≤ ... ≤

t0 < ...tK ≤ ... ≤ tK+M , with rn who checks (2.5)

and we assume that

(3.1) βn −→
n→+∞

+∞.

(3.2)
β4
n

n1−σ
−→

n→+∞
0, ∀σ > 0.

(3.3)
(Kmax(n)Mmax(n) +Mmax(n)

2)β4
n log(n)

n
−→
n→∞

0.

In addition for each C, γ > 0 the distribution µ of X checked

(3.4) µ























(−∞, t0)
⋃

k=1,...,K
tk−tk−M−1>γ

[tk−1, tk) ∪ [tk,∞)















∩ [−C,C]









−→
n→∞

0 a.s.

∀ C, γ > 0. The empirical distribution µn de X1, ..., Xn checked

(3.5) µn























(−∞, t0)
⋃

k=1,...,K
tk−tk−M−1>γ

[tk−1, tk) ∪ [tk,∞)















∩ [−C,C]









−→
n→∞

0 a.s.
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∀ C, γ > 0, then for EY 2 < ∞, we have
∫

|rn(x)− r(X)|2µ(dx) −→
n→∞

0 a.s.

Proof. Let’s introduce the following set

Tβn
St,M = {g : R → R : ∃f ∈ St,M , ∀x ∈ R g(x) = T[0,βn]f(x)}.

The proof of our theorem is based on the following inequality

(3.6)

∫

|rn(x)− r(X)|2µ(dx)

(3.7) ≤ 2 sup
f∈TβnSt,M

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1{δi=0}
|f(Xi)− Zi|

g(Zi)
− E|f(X)− Y |2

∣

∣

∣

∣

∣

(3.8) + inf
f∈St,M ,‖f‖∞<βn

∫

|f(x)− r(X)|2µ(dx).

We start by showing this inequality.

• On one side, we have
∫

|rn(x)− r(X)|2µ(dx)

=

{

E( |rn(x)− Y |2|Dn) − inf
f∈St,M ,‖f‖∞<βn

E|f(X)− Y |2
}

+

{

inf
f∈St,M ,‖f‖∞<βn

E( |f(X)− Y |2 − E( |r(X)− Y |2
}

.

• Moreover, the regression function checks

inf
f∈St,M ,‖f‖∞<βn

E( |f(X)−Y |2−E( |r(X)−Y |2 = inf
f∈St,M‖f‖∞<βn

∫

|f(x)−r(X)|2µ(dx).

• On another side

= E( |rn(x)− Y |2|Dn) − inf
f∈St,M‖f‖∞<βn

E|f(X)− Y |2

≤ sup
f∈St,M ,‖f‖∞<βn

{

E( |rn(x)− Y |2|Dn)−
1

n

n
∑

i=1

1{δi=0}
|rn(Xi)− Zi|2

g(Zi)

+
1

n

n
∑

i=1

1{δi=0}
|rn(Xi)− Zi|2

g(Zi)
−

1

n

n
∑

i=1

1{δi=0}
|r̄n(Xi)− Zi|2

g(Zi)

+
1

n

n
∑

i=1

1{δi=0}
|r̄n(Xi)− Zi|

2

g(Zi)
−

1

n

n
∑

i=1

1{δi=0}
|f(Xi)− Zi|

2

g(Zi)
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+
1

n

n
∑

i=1

1{δi=0}
|f(Xi)− Zi|2

g(Zi)
− E|f(X)− Y |2

}

≤
4

∑

i=1

Qn,i.

Qn,i are explained below.

The fact that r̄n ∈ Tβn
St,M , rn ∈ Tβn

St,M , it’s clear that

Qn,1 = sup
f∈St,M ,‖f‖∞<βn

E( |rn(x)− Y |2|Dn)−
1

n

n
∑

i=1

1{δi=0}
|rn(Xi)− Zi|2

g(Zi)

≤ sup
f∈TβnSt,M

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1{δi=0}
|f(Xi)− Zi|2

g(Zi)
− E|f(X)− Y |2

∣

∣

∣

∣

∣

,

and

Qn,4 = sup
f∈St,M ,‖f‖∞<βn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1{δi=0}
|f(Xi)− Zi|2

g(Zi)
−E|f(X)− Y |2

∣

∣

∣

∣

∣

.

Since rn(Xi) ≤ βn, we obtain

1{δi=0}|r̄n(Xi)− Zi| ≥ 1{δi=0}|rn(Xi)− Zi|,

which implies

Qn,2 =
1

n

n
∑

i=1

1{δi=0}
|rn(Xi)− Zi|2

g(Zi)
−

1

n

n
∑

i=1

1{δi=0}
|r̄n(Xi)− Zi|2

g(Zi)
≤ 0.

According to the definition of r̃n, it’s obvious that

Qn,3 = sup
f∈St,M ,‖f‖∞<βn

{

1

n

n
∑

i=1

1{δi=0}
|r̄n(Xi)− Zi|2

g(Zi)
−

1

n

n
∑

i=1

1{δi=0}
|f(Xi)− Zi|2

g(Zi)

}

≤ 0.

The inequality (3.6) is therefore demonstrated.

It remains to prove that the two terms of the second member of the equation tend

towards zero almost surely when n → +∞. Since the equation (3.8) does not depend

on censorship and using the hypotheses (3.4) and (3.5), we proceed in the same way

as in Györfi et al. [17], p271 to obtain the result.

To show that

(3.9) lim
n→∞

sup
f∈TβnSt,M

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1{δi=0}
|f(Xi)− Zi|

2

g(Zi)
−E|f(X)− Y |2

∣

∣

∣

∣

∣

= 0 a.s.

Let Πn be the family of any partition of R formed by at least Kmax(n)+2Mmax(n)+2

intervals; and let P be the set of all polynomials of degree less than or equal to M , or

St,M ⊂ P ◦ Πn, so it suffices to show 3.9 with the elements of the set St,M generated
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by the elements of P ◦ Πn.

P linear function space of dimension M + 1 thus VP+ ≤ Mmax(n) + 2 such that

P+ = {{(z, t) ∈ R× R : t ≤ g(z) : g ∈ P}

⊆ {(z, t) ∈ R× R : at + g(z) ≥ 0, g ∈ P, a ∈ R}} .

Refer to Györfi et al. [17] (Theorem 9.5 p 152) for more details. From the example

(13.1) Györfi et al. [17] p 236, the number of partitions of Πn satisfies

∆n(Πn) ≤





n+Kmax(n) + 2Mmax(n) + 1

n





≤ (n+Kmax(n) + 2Mmax(n) + 1)Kmax(n)+2Mmax(n)+1.

For this purpose, let’s use the following notations

V = (X,Z, 1{δ=0}), V1 = (X1, Z1, 1{δ1=0}, ..., Vn = (Xn, Zn, 1{δn=0}),

n random vectors i. i. d. with the same distribution as V. Let’s pose

Hn =
{

h : R× [0, C]× {0, 1} → R
+ : ∃f ∈ Tβn

St,M

such as

h(x, z, 1{δ=0}) =
1{δ=0}|f(x)− z|2

g(z)
,

for all

(x, z, 1{δ=0}) ∈ R× [0, C]× {0, 1}
}

.

The functions of Hn are non-negative and bounded by β2
n

g(I)
, and in the same way that

Laroussi [26], we have

Eh(V ) = E

[

E

(

1{δ=0}|f(X)− Z|2

g(Z)
|X, Y

)]

= E(|f(X)− Y |2).

Under the assumptions H. In addition

sup
f∈TβnSt,M

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1{δi=0}
|f(Xi)− Zi|

2

g(Zi)
− E|f(X)− Y |2

∣

∣

∣

∣

∣
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= sup
f∈Hn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

h(V )− Eh(V )

∣

∣

∣

∣

∣

.

For all h1, h2 ∈ Hn, lets f1, f2 their corresponding functions in Tβn
St,M , then

1

n

n
∑

i=1

|h1(Vi)− h2(Vi)|

=
1

n

n
∑

i=1

∣

∣

∣

∣

1{δi=0}
|f1(Xi)− Zi|2

g(Zi)
− 1{δi=0}

|f2(Xi)− Zi|2

g(Zi)

∣

∣

∣

∣

≤
1

g(I)

1

n

n
∑

i=1

|(f1(Xi) + f2(Xi)− 2Zi)(f1(Xi)− f2(Xi))|

≤
2βn

g(I)

1

n

n
∑

i=1

|f1(Xi)− f2(Xi)|,

which implies

N (ǫ,Hn, V
n
1 ) ≤ N

(

2βn

g(I)
, Tβn

St,M , Xn
1

)

≤ N

(

2βn

g(I)
, Tβn

P ◦ πn, X
n
1

)

.

In the same way as the proof of Theorem 13.1 (p 240) of Györfi et al. [17] the relations

3.2 and 3.3 allow to apply the Borel-Cantelli lemma, to have

sup
f∈TβnSt,M

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1{δi=0}
|f(Xi)− Zi|

2

g(Zi)
− E|f(X)− Y |2

∣

∣

∣

∣

∣

→
n→∞

0 p.s.

For 0 ≤ C < βn

P

[

sup
f∈TβnP◦Πn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1{δi=0}
|f(Xi)− Zi|2

g(Zi)
− E|f(X)− Y |2

∣

∣

∣

∣

∣

> t

]

such as t = g(I)
2β2

n

≤ 8(n+Kmax(n) + 2Mmax(n) + 1)(Kmax(n)+2Mmax(n)+1)

×

(

333eβ2
n

t

)2(Mmax(n)+2)(Kmax(n)+2Mmax(n)+2)

exp

(

−
nt2

2048β4
n

)

.

And from 3.2 and 3.3, we get the assertion by applying the Borel-Cantelli lemma.

�
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4. Simulation study

In this section, to present the performances of the studied estimator for a finite-size

sample, we carry out a simulation study. We give a visual impression of the quality

of estimation by plotting the correspondent true curve together with the curve of

the estimator, based on a sample obtained from two theoretical models: Weibull

distribution denoted by W and Bertholon distribution denoted by B. We propose

two schemes of censorship models (right and twice). To assess the efficiency of the

choice of the B-spline class of functions, the modelization of two curves is proposed,

one linear and the other non-linear. This study is achieved through three sample

sizes (n = 100, 300, 500).

4.1. Right censored case. We will specifically study the performance of the es-

timator under two different structures. We will also consider the right-censorship

model defined by Z = min(Y,R).

4.1.1. Linear Weibull model. The first model is defined by Y = 2X + 1 + ε, where

ε ≃ N (0, 0.5), X is distributed as W(0.5, 2) and R is distributed as W(3, 3.5). For

this model, the rate of right censoring is 16%. Figure 1 shows the obtained graphs for

r(x) = 2x+1 with 16% right censoring rate and Weibull model for n = 100, 300, 500.

Figure 1. r(x) = 2x + 1 with 16% right censoring rate and Weibull

model for n = {100, 300, 500}.

4.1.2. Non linear Weibull model. In the second model, Y = cos(2X + 3) + 4 + ε.

ε ≃ N (0, 0.5), X is distributed as W(0.5, 2) and R is distributed as W(5, 5.5). For
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this model, the rate of right censoring is 16%. Figure 2 shows the obtained graphs

for r(x) = cos(2x + 3) with 16% right censoring rate and Weibull model for n =

100, 300, 500.

Figure 2. r(x) = cos(2X + 3) + 4 with 16% right censoring rate and

Weibull model for n = {100, 300, 500}.

4.1.3. Linear Bertholon model. The third visualization is done for Y = 2X + 1 +

ε. Where ε ≃ N (0, 0.5), X is distributed as B(8.33, 1, 2) and R is distributed as

B(10, 7, 7). For this model, the rate of right censoring is 16%. The results for r(x) =

2x + 1 with 16% right censoring rate and Bertholon model for n = 100, 300, 500 are

shown in Figure 3.

Figure 3. r(x) = 2x+1 with 16% right censoring rate and Bertholon

model for n = {100, 300, 500}.

4.1.4. Non linear Bertholon model. For Y distributed as Y = cos(2X+3)+4+ε. ε ≃

N (0, 0.5), X is distributed as B(10, 4, 4) and R is distributed as B(20, 10, 8). For this

model, the rate of right censoring is 17%. The results for r(x) = cos(2x+1) with 17%
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right censoring rate and Bertholon model for n = 100, 300, 500 are shown in Figure

4.

Figure 4. r(x) = cos(2X + 3) + 4 with 17% right censoring rate and

Bertholon model for n = {100, 300, 500}.

4.2. Mixed censored case. In this case, we will study the performance of the

estimator under the same structures that above but with the twice-censorship model

defined by Z = max(min(Y,R), L). One consider

4.2.1. Linear Weibull model. The first model, is defined by Y = 2X + 1 + ε, where

ε ≃ N (0, 0.5), X take values 1:n
n
, R is distributed as W(3.5, 4) and the left censoring

random variable L ≃ W(0.001, 0.1). For r(x) = 2x + 1 with the rate of right (resp.

left) censoring is 16% (resp. 10%) and Weibull model for n = 100, 300, 500, we

obtained the following plots (see Figures 5).

Figure 5. r(x) = 2x+ 1 with the rate of right (resp. left) censoring

is 16% (resp. 10%) and Weibull model for n = {100, 300, 500}.
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4.2.2. Non linear Weibull model. In this case, Y is done by Y = 5 cos(2X + 1)2 +

1.5 + ε. Where, ε, L and X have the same distribution as the linear model and

R ≃ W(6, 6.5). The modification in the parameters values allows to have an overall

censorship rate of around 27%. Results are shown in Fgure 6.

Figure 6. r(x) = 5 cos(2X + 1)2 + 1.5 with the rate of right

(resp. left) censoring is 17% (resp. 10%) and Weibull model for

n = {100, 300, 500}.

4.2.3. Linear Bertholon model. The third model, is realized for a model defined by

Y = 2X + 1 + ε, where ε ≃ N (0, 0.5), X ≃ B(8, 1.25, 2), R is distributed as

B(23, 7, 5.5) and the left-censoring random variable L ≃ B(3.5, 1.5, 3). For this model,

the right-censorship rate is 17 % and the left-censorship rate is 10 %. Results for

r(x) = 2x+ 1, as n = 100, 300, 500, are shown in Figure 7.

Figure 7. r(x) = 2x+ 1 with the rate of right (resp. left) censoring

is 16% (resp. 10%) and Bertholon model for n = {100, 300, 500}.

4.2.4. Non linear Bertholon model. The last model is obtained for Y = 5 cos(2X +

1)2 + 1.5 + ε. Where, ε ≃ N (0, 0.5), X ≃ B(9, 1, 1), R is distributed as B(26, 2.5, 7)
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and the left-censoring random variable L ≃ B(3.5, 1.5, 3). For this model, the right-

censorship rate is 17 % and the left-censorship rate is 10 %. Figure 8 shows the

obtained plots for r(x) as n = 100, 300, 500.

Figure 8. r(x) = 5 cos(2X + 1)2 + 1.5 with the rate of right (resp.

left) censoring is 17% (resp. 10%) and Bertholon model for n =

{100, 300, 500}.

By inspecting the previous figures, as the sample sizes increase, the quality of fit

increases for all the considered models, as expected. However, it can be clearly seen

that the right censorship estimators are better than those of the mixed censorship

models under both laws (Weibull and Bertholon). This is not unexpected since the

censorship is well known for its influence on proximity of the estimators. To better

interpret the simulation results, we calculate the mean square error (MSE) between

the estimators and the real observations. Note here that, we have used the same

complete sample for all the censoring schemes to observe the effect of censoring on

the MSE. Table 1 summarizes the obtained results.

The results in Table 1 indicate that the root mean square error became smaller and

smaller than sample size increases. Moreover, the quality of fit deteriorates under

high levels of censorship in terms of higher MSE. Particularly, close inspection reveals

that right-hand censorship has given more satisfactory results than double variance

censorship. Furthermore, Bertholon and Weibull linear models perform better than

the nonlinear ones for all sample sizes and for almost all the censoring schemes (see

minimum variance values in bold in Table 1) except for the case of Bertholon non

linear model under 26% twice censorship level where we notice the opposite.
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Table 1. The mean square error MSE

Right censorship Twice censorship

Weibull Bertholon Weibull Bertholon

Models
Size

% censoring
R≃ 16% R≃ 16% L≃ 10% R≃ 16% L≃ 10% R ≃16%

100 0.0319 0.0519 0.095 0.7134

Linear 300 0.0302 0.049 0.0941 0.4777

500 0.0191 0.0481 0.0762 0.4269

Models
Size

% censoring
R≃ 16% R≃ 17% L ≃10% R≃17% L ≃10% R≃ 17%

100 0.0951 0.1561 0.4493 0.2862

Non linear 300 0.0941 0.1407 0.3529 0.2582

500 0.0762 0.1398 0.3497 0.249
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