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A NOVEL FIXED POINT THEOREM OF REICH-PEROV TYPE

α-CONTRACTIVE MAPPINGS IN VECTOR-VALUED

METRIC SPACES

SUNARSINI(1), MAHMUD YUNUS(2) AND SUBIONO(3)

Abstract. This article discusses a novel concept of Reich-Perov type

α-contractive mappings in vector-valued metric spaces. First, we define

Reich-Perov-type contractive mappings using a novel concept in vector-valued

metric spaces. Later, we investigate the sufficient conditions for a Reich-Perov

type contractive mapping to have a unique fixed point in the spaces. By defining

an α-contractive mapping, we next show the sufficient conditions of the existence

and uniqueness of a fixed point of the Reich-Perov type α-contractive mappings in

vector-valued metric spaces.

1. Introduction

Since the first introduction of metric space by French mathematician Maurice

Fréchet in 1906, research on metric spaces has been developed, including the fixed

point theorem in the spaces. Stefan Banach, 1920, was a pioneer researcher of the

fixed point theorem in complete metric spaces, also known as the Banach fixed

point theorem [1]. In addition, the researchers conducted many studies on various

types of contractive mapping on complete metric spaces. For instance, Reich and

Kannan introduced Reich and Kannan’s types of contractive mapping (see [2], [3]).

Moreover, we refer to [4, 5] for further works in the form of contractive mappings.

In addition, Rhoades introduced several types of contractive mapping in complete

metric spaces and proved the related issues of these mappings [6].

2010 Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. Reich-Perov contractive mapping; Reich-Perov α-contractive mapping;

α-admissible; fixed point.

Copyright© Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Aug. 25, 2022 Accepted: Nov. 15, 2022 .

599



600 SUNARSINI, MAHMUD YUNUS AND SUBIONO

Meanwhile, there are various applications of the Banach fixed point theorem in

the various branches of mathematics, computer science, and engineering (see [7], [8],

[9], [10]). In computer science, De Bekker and De Vink [7] applied Banach fixed

point theorem to abstract programming languages, both linear and branched

denotations. The classical Banach fixed point theorem is the primary tool for

constructing two models and the semantic operators involved. Various semantic

definitions were justified through high-level transformations by characterization as a

unique fixed contractive point in the complete metric space. Rousseau in [8]

involved the Banach fixed point theorem on image compression. Meanwhile, Ege

and Karaca used Banach fixed point theorem for digital images [9].

Existing research development focuses not only on the type of contractive mapping

but also on its space. One of the research results is vector-valued metric spaces in R
n

introduced by a Russian mathematician A.I. Perov [11]. Perov provided a new concept

of contractive mapping in the spaces known as the Perov contractive type. Some

authors, e.g., Altun et al. (see[12], [13]), developed a Perov type fixed point theorem

in vector-valued metric spaces. They also looked into how the Perov type fixed point

theorem could be applied to vector-valued metric spaces. Also, they discussed its

application to semilinear operator systems. Meanwhile, Vetro and Radenović [10]

introduced the Perov type contractive mapping and discussed the Perov type fixed

point theorem in rectangular cone metric spaces. They are analogous to the Perov

type contractive mapping in a vector-valued metric space.

In the present paper, we show the sufficient conditions of the existence and

uniqueness of the fixed point of Reich-Perov α-contractive mapping in vector-valued

metric spaces. The novel results of this paper are the development and fusion of the

ideas of Vetro [10] and Altun [12].

We now briefly describe the content of the paper. In Section 2, we give some

notations and recall the primary results used in this paper. The main results of

this research are discussed in Section 3. First, we show sufficient conditions for

Reich-Perov type contractive mapping to have a fixed point in vector-valued metric

spaces. Then, we discuss the novel idea of Reich–Perov type α-contractive mappings

in vector-valued metric spaces. We present sufficient conditions for the mapping such
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that the fixed point exists. Furthermore, we offer a particular hypothesis to get the

uniqueness of the fixed point from the mapping. Finally, we construct an example to

illustrate the main result.

2. Preliminaries

In this section, we describe the concept of vector-valued metric spaces introduced

by Perov in 1964 [11]. Then, we define convergent sequences, Cauchy sequences,

completeness, and continuous mapping in vector-valued metric spaces. We also

describe the Perov contractive mapping in vector-valued metric spaces, which we

used in the discussion.

2.1. Vector-Valued Metric Spaces.

Definition 2.1. ([12], [13]). Let X be a non-empty set. A function dv : X×X → R
n,

is called a vector-valued metric if for every s, t, r ∈ X , satisfies:

(VM1) 000 � dv(s, t), 000 = (0, 0, . . . , 0) ∈ R
n,

(VM2) dv(s, t) = 0 ⇔ s = t,

(VM3) dv(s, t) = dv(t, s),

(VM4) dv(s, t) � dv(s, r) + dv(r, t).

The pair (X, dv) is called a vector-valued metric space.

Remark 1. The symbol ”�” denotes coordinate-wise ordering on R
n, i.e.,

k = (k1, k2, . . . , kn), l = (l1, l2, . . . , ln) ∈ R
n, k � l ⇔ kj ≤ lj, ∀j = 1, 2, ..., n. Also

k ≺ l ⇔ kj < lj, ∀j = 1, 2, ..., n.

Example 2.1. Let X =

{

sn =
1

2n
: n ∈ {1, 2, 3, . . .}

}

∪ {0} be a set equipped with

a function dv : X×X → R
2 defined by dv(s, t) = (ω|s− t|, ω|s− t|) for every s, t ∈ X ,

and some ω > 0. Then (X, dv) is a vector-valued metric space.

Definition 2.2. Let (X, dv) be a vector-valued metric space.

(i) A sequence (sn) in (X, dv) is said to converge to s ∈ X , denoted sn → s as

s → ∞ or lim
n→∞

sn = s, if dv(sn, s) → 0 as n → ∞; in other words, for every

ε with 0 ≺ ε and ε = (ε1, ε2, . . . , εn) ∈ R
n, there exists N ∈ N such that

dv(sn, s) ≺ ε, for every n ≥ N .
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(ii) A sequence (sn) in (X, dv) is said to be a Cauchy sequence if for every ε with

0 ≺ ε and ε = (ε1, ε2, . . . , εn) ∈ R
n, there exists K ∈ N such that dv(sm, sn) ≺ ε,

for every m,n ≥ K.

(iii) Let E ⊆ X . If every Cauchy sequence in E has a limit at E, then E is said

to be complete. If X is complete, then the pair (X, dv) is called a complete

vector-valued metric space.

Definition 2.3. Let (X, dv) be a vector-valued metric space. A mapping T : X → X

is said to be continuous at s ∈ X if whenever a sequence (sn) inX converges to s ∈ X ,

the sequence (Tsn) in X converges to Ts ∈ X .

2.2. Perov Type Contractive Mapping.

We discuss the Perov type fixed point theorem in vector-valued metric spaces.

However, we first provide the following notations:

(i) Θ is a matrix of size n× n with zero entries.

(ii) A is a matrix of size n × n with real number entries. We denote it briefly by

A = [aij], 1 ≤ i, j ≤ n.

(iii) I is an identity matrix of size n× n

(iv) A2 is a multiplication A · A.

In general, we get Am = A ·A · · ·A
︸ ︷︷ ︸

m-times

, m ∈ N.

(v) Mn×n(R
+
0 ) is the set of all matrices of size n×n with non-negative real numbers

entries.

(vi) Mn×n(R) is the set of all matrices of size n× n with real numbers entries.

We now discuss notions of matrix A ∈ Mn×n(R
+
0 ) that converges to zero, a

convergence theorem of matrices, and Perov type contractive mappings in

vector-valued metric spaces.

Definition 2.4. ([15]). Let A ∈ Mn×n(R
+
0 ) with eigenvalues λi, 1 ≤ i ≤ n. The

spectral radius of matrix A, ρ(A), is defined by ρ(A) = max1≤i≤n |λi|.

Remark 2. Let f : Rn → R
n be a linear operator. In particular, there exists a matrix

A ∈ Mn×n(R
+
0 ) such that f(x) = Ax for every x ∈ R

n. If the function f satisfies the



A NOVEL FIXED POINT THEOREM OF REICH-PEROV TYPE . . . 603

Lipschitz condition on R
n, then we can choose a positive real constant K such that

‖Ax−Ay‖ ≤ K‖x− y‖ for any x, y ∈ R
n.

From Definition 2.4 and Remark 2, we can compare the spectral radius and the

Lipschitz constant. Geometrically, all eigenvalues of matrix A are plotted in the

complex z-plane, then ρ(A) is the radius of the smallest disc |z| ≤ R with center at

the origin, which includes all the eigenvalues of matrix A. The spectral radius of A

is finite for the set of finite matrices A = [aij] ∈ Mn×n(R
+
0 ) and does not depend on

the norm ‖·‖. However, the Lipschitz constant depends on the norm ‖·‖.

Theorem 2.1. ([15]). A ∈ Mn×n(R
+
0 ) converges to zero if and only if ρ(A) < 1.

Definition 2.5. ([15]). Let A ∈ Mn×n(R
+
0 ). A matrix A is said to be convergent (to

zero) if the sequence of matrices (A,A2, A3, A4, . . . ) converges to Θ, denoted Am → Θ

as m → ∞.

By Definition 2.5, the matrix A =

[
1
4

1
2

0 1
4

]

∈ Mn×n(R
+
0 ) converges to zero. We

can easily show that Am =

[

(1
4
)m m

22m−1

0 (1
4
)m

]

→ Θ as m → ∞.

Theorem 2.2. ([15]). Let A ∈ Mn×n(R
+
0 ). The following statements are equivalent:

(i) A converges to zero.

(ii) The eigenvalues of A are in the open unit disc.

(iii) The matrix I − A is a non-singular matrix and (I − A)−1 = I + A + A2 +

A3 + · · ·+ Am + · · · is a matrix with non-negative real numbers entries.

Example 2.2. If c, d, and e are non-negative real numbers with max{c, d, e} < 1,

then the matrix

A =






c 0 0

d d d

0 0 e






converges to zero.
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Example 2.3. If p, q are non-negative real numbers with min{p, q} ≥ 1, then the

matrix

A =

[

p 0

0 q

]

does not converge to zero.

Definition 2.6. ([12],[13]). Let (X, dv) be a vector-valued metric space and the

mapping T : X → X . If there exists a matrix A ∈ Mn×n(R
+
0 ) that converges to zero,

and for every s, t ∈ X satisfies

(2.1) dv(Ts, T t) � Adv(s, t),

then the mapping T is said to be a Perov type contractive in X .

Example 2.4. Let X =

{

sn =
1

2n
: n ∈ N

}

∪{0} be a set equipped with a function

dv : X ×X → R
2 defined by dv(s, t) = (ω|s− t|, ω|s− t|) for each s, t ∈ X and some

ω > 0. Thus (X, dv) is a vector-valued metric space. Furthermore, if T : X → X is

defined by

Ts =







0, s = 0

ωsn+1, s = sn,

then T is not a Perov type contractive mapping in X . It can be shown via a

contradiction argument. Assume that T is a Perov type contractive mapping. So

there exists a matrix A =

[

a b

c d

]

∈ M2×2(R
+
0 ) such that for every s, t ∈ X satisfies

(2.1). Now, taking s = sn and t = 0, we obtain

dv(Ts, T t) = dv(Tsn, T0) = dv(sn+1, 0) = (ωsn+1, ωsn+1).

Adv(s, t) =

[

a b

c d

]

dv(sn, 0) =

[

a b

c d

]

(ωsn+1, ωsn+1).

By (2.1), it follows that

sn+1 ≤ (a+ b)sn

and

sn+1 ≤ (c+ d)sn.

Because lim
n→∞

sn+1

sn
= lim

n→∞

1
2(n+1)

1
2n

= 1, we get 1 ≤ a + b and 1 ≤ c+ d. Contradicting

the hypothesis that matrix A converges to zero.
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Example 2.5. Let X =

{

sn =
1

2n
: n ∈ N

}

∪{0} be a set equipped with a function

defined by dv : X × X → R
2 with dv(s, t) = (|s − t|, |s − t|) for each s, t ∈ X . We

can observe that (X, dv) is a vector-valued metric space. Furthermore, suppose that

T : X → X is defined by

Ts =







0, s = 0

sn+1, s = sn.

Next, we prove that T is a Perov type contractive mapping in X . In particular, we

construct a matrix A ∈ M2×2(R
+
0 ), which converges to zero such that (2.1) is satisfied.

Firstly, we consider sufficient conditions for non-negative real numbers a, b, c, and d.

Here, we observe for all possible values of s, t ∈ X : (i) s = sn, n = 1, 2, · · · and t = 0,

(ii) s 6= t 6= 0, (iii) s = t.

Case (i). For s = sn, n = 1, 2, · · · and t = 0, we obtain

dv(Ts, T t) = dv(Tsn, T0) = dv(sn+1, 0) = (sn+1, sn+1)

and

Adv(s, t) =

[

a b

c d

]

dv(sn, 0) =

[

a b

c d

]

(sn, sn).

Thus, we get

(sn+1, sn+1) �

[

a b

c d

]

(sn, sn).

It follows

sn+1 ≤ (a+ b)sn

and

sn+1 ≤ (c+ d)sn.

Because lim
n→∞

sn+1

sn
= lim

n→∞

1
2n+1

1
2n

=
1

2
, we have

1

2
≤ a + b and

1

2
≤ c + d. To get a

matrix A =

[

a b

c d

]

∈ Mn×n(R
+
0 ) that converges to zero and satisfies (2.1), we can

choose
1

2
≤ a < 1, b = 0, c = 0, and

1

2
≤ d < 1.

Case (ii). Analogous to Case (i).
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Case (iii). Analogous to Case (i).

From Case (i)–(iii), we get the matrix A =

[

a 0

0 d

]

∈ M2×2(R
+
0 ) with

1

2
≤ a < 1 and

1

2
≤ d < 1, which converges to zero and satisfies (2.1). This yields that T is a Perov

type contractive mapping.

3. Main results

3.1. Reich-Perov Type Contractive Mapping in Vector-Valued Metric

Spaces.

In this subsection, we discuss the fixed point theorem of Reich-Perov contractive

mapping in vector-valued metric spaces. Reich-Perov type contractive mapping is a

generalization of Perov contractive mapping in vector-valued metric spaces. Each of

these mappings has the property that a unique fixed point can be obtained. Now, we

recall the following definition of Reich contractive mapping in complete metric spaces

from [2].

Definition 3.1. Let (X, d) be a complete metric space and T : X → X . If there are

non-negative real numbers a, b, and c where a+ b+ c < 1 such that for every s, t ∈ X

satisfies

d(Ts, T t) ≤ ad(s, T s) + bd(t, T t) + cd(s, t),

then T is called Reich contractive mapping in X .

Inspired by Definitions 2.6 and 3.1, we introduce the novel idea of Reich-Perov

contractive mapping in vector-valued metric spaces.

Definition 3.2. Let (X, dv) be a vector-valued metric space. A mapping T : X → X

is called Reich-Perov type contractive mapping inX if there are three matrices A1, A2,

A3 ∈ Mn×n(R
+
0 ) where ρ(A1)+ρ(A2)+ρ(A3) < 1 such that for every s, t ∈ X satisfies

(3.1) dv(Ts, T t) ≤ A1dv(s, T s) + A2dv(t, T t) + A3dv(s, t).

Next, we show the sufficient conditions for a Reich-Perov type contractive mapping

to have a unique fixed point in vector-valued metric spaces. We require the following

Lemma.
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Lemma 3.1. Let (X, dv) be a vector-valued metric space. If B ∈ Mn×n(R
+
0 )

converges to zero and dv(s, t) � Bdv(s, t) for any s, t ∈ X then dv(s, t) = 0.

Proof. Based on the fact that B ∈ Mn×n(R
+
0 ) converges to zero, according to

Theorem 2.2, (I − B) is a non-singular matrix and (I − B)−1 ∈ Mn×n(R
+
0 ). Then,

from dv(s, t) � Bdv(s, t) for every s, t ∈ X , we obtain

(I − B)dv(s, t) � 0

(I −B)−1(I − B)dv(s, t) � (I − B)−10 = 0.

Since 0 � dv(s, t) � 0, it follows that dv(s, t) = 0. �

Theorem 3.1. Let (X, dv) be a complete vector-valued metric space. If T : X → X

is a Reich-Perov type contractive mapping in X, it means there are three matrices

A1, A2, A3 ∈ Mn×n(R
+
0 ) where ρ(A1)+ρ(A2)+ρ(A3) < 1 such that for every s, t ∈ X

satisfies (3.1) and A ∈ Mn×n(R
+
0 ) converges to zero where A = (I−A2)

−1(A1+A3),

then T has a unique fixed point.

Proof. Our proof begins by forming a Picard sequence with an initial value s0 ∈ X .

We take any s0 ∈ X and let s1 = Ts0, s2 = Ts1 = TTs0 = T 2s0, . . . , sn = T ns0, . . . .

The process is continued; we get an iterative sequence

sn = T ns0, for n = 1, 2, . . . .

If sk−1 = sk for some k ∈ N, then sk = Tsk−1 = Tsk. This implies that sk is a fixed

point of T . We now turn to the case sn−1 6= sn for every n ∈ N. By using (3.1) with

s = sn−1 and t = sn, we obtain

dv(sn, sn+1) = dv(Tsn−1, T sn)

� A1dv(sn−1, T sn−1) + A2dv(sn, T sn) + A3dv(sn−1, sn)

= A1dv(sn−1, sn) + A2dv(sn, sn−1) + A3dv(sn−1, sn)

It follows that

(3.2) (I − A2)dv(sn, sn+1) � (A1 + A3)dv(sn−1, sn).

Since ρ(A2) < 1, we get A2 converges to zero based on Theorem 2.1. Furthermore,

according to Theorem 2.2, we conclude that (I − A2) is a non-singular matrix and
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(I − A2)
−1 ∈ Mn×n(R

+
0 ). Then, we can write

dv(sn, sn+1) � (I − A2)
−1(A1 + A3)dv(sn−1, sn)

� Adv(sn−1, sn)(3.3)

where A = (I − A2)
−1(A1 + A3). Moreover, by (3.3), we get

dv(sn, sn+1) � Adv(sn−1, sn)

� A2dv(sn−2, sn−1)

� A3dv(sn−3, sn−2) � · · · � Andv(s0, s1).

Thus we obtain

(3.4) dv(sn, sn+1) � Andv(s0, s1).

Then, we show (sn) is a Cauchy sequence. By using Definition 2.1(VM4) and (3.4),

for every p ∈ N, it follows that

dv(sn, sn+p) � dv(sn, sn+1) + dv(sn+1, sn+2) + · · ·+ dv(sn+p−1, sn+p)

� Andv(s0, s1) + An+1dv(s0, s1) + · · ·+ An+p−1dv(s0, s1)

= An(I + A + A2 + A3 + · · ·+ Ap−1)dv(s0, s1)

� An(I − A)−1dv(s0, s1).

Since it is known that A converges to zero, from Theorem 2.2, it follows that (I −A)

is a non-singular matrix and (I − A)−1 ∈ Mn×n(R
+
0 ). We conclude that

dv(sn, sn+p) � An(I − A)−1dv(s0, s1) → 0 as n → ∞.

Thus (sn) is a Cauchy sequence in complete vector-valued metric space (X, dv). This

implies that (sn) converges, say to s⋆ ∈ X , it means dv(sn, s
⋆) → 0 as n → ∞.

Further, we show that s⋆ is a fixed point of T . By Definition 2.1(VM4) and (3.1), we

obtain

dv(s
⋆, T s⋆) � dv(s

⋆, sn) + dv(sn, T s
⋆)

= dv(s
⋆, sn) + dv(Tsn−1, T s

⋆)

� dv(s
⋆, sn) + A1dv(sn−1, T sn−1) + A2dv(s

⋆, T s⋆) + A3dv(sn−1, s
⋆).

Taking n → ∞ and Lemma 3.1, we conclude that dv(s
⋆, T s⋆) = 0. The consequence

is s⋆ = Ts⋆. This yields that s⋆ is a fixed point of T .
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Now, we need to show uniqueness. Suppose that s⋆⋆ ∈ X is another fixed point of

T such that s⋆⋆ = Ts⋆⋆. Then, we can write

dv(s
⋆, s⋆⋆) = dv(Ts

⋆, T s⋆⋆) � A1dv(s
⋆, T s⋆) + A2d2(s

⋆⋆, T s⋆⋆) + A3dv(s
⋆, s⋆⋆)

= A1dv(s
⋆, s⋆) + A2d2(s

⋆⋆, s⋆⋆) + A3dv(s
⋆, s⋆⋆)

= A3dv(s
⋆, s⋆⋆).

Hence, by Lemma 3.1, we conclude that dv(s
⋆, s⋆⋆) = 0. It yields that s⋆ = s⋆⋆. �

Inspired by the definition of Kannan contractive mapping in complete metric space

[2] and Definition 2.6, we introduced a novel notion of Kannan-Perov type contractive

mapping in vector-valued metric spaces.

Definition 3.3. Let (X, dv) be a vector-valued metric space. A mapping T : X → X

is said to be Kannan-Perov type contractive mapping in X if there are two matrices

A1, A2 ∈ Mn×n(R
+
0 ) where ρ(A1) + ρ(A2) < 1 such that for every s, t ∈ X satisfies

(3.5) dv(Ts, T t) ≤ A1dv(s, T s) + A2dv(t, T t).

By Definition 3.3, we get the following corollary whose proof is analogous to

Theorem 3.1.

Corollary 3.1. Let (X, dv) be a complete vector-valued space. If T : X → X is a

Kannan-Perov type contractive mapping in (X, dv), it means there are two matrices

A1, A2 ∈ Mn×n(R
+
0 ) where ρ(A1) + ρ(A2) < 1 satisfies (3.5), and C ∈ Mn×n(R

+
0 )

converges to zero where C = (I −A2)
−1A1, then T has a unique fixed point.

3.2. Reich–Perov Type Contractive Mapping in Vector-Valued Metric

Spaces.

The Reich–Perov α-contractive mapping is a generalization of the Perov and

Reich–Perov contractive mapping. In this subsection, we discuss the novel idea of

Reich–Perov type α-contractive mapping in vector-valued metric spaces. We show

sufficient conditions to derive the existence and uniqueness of a fixed point in the

spaces.

Definition 3.4. ([14]). Let X be a non-empty set. Consider T : X → X and

α : X × X → [0,∞). A function T is said to be α-admissible if for every s, t ∈ X ,

α(s, t) ≥ 1, then α(Ts, T t) ≥ 1.
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Example 3.1. Suppose that X = (0,∞). Consider T : X → X with Ts = s2, ∀s ∈

X and α : X ×X → [0,∞) is defined by

α(s, t) =







2, s ≥ t

1
2
, s < t

for every s, t ∈ X . Since Ts = s2, ∀s ∈ X is an increasing function, and it follows

that s ≥ t implies Ts ≥ T t. By Definition 3.4, it is clear that for s ≥ t, α(s, t) ≥ 1

the result is α(Ts, T t) ≥ 1. This yields that T is an α-admissible function.

Altun et al. [13] generalize the concept of the α-admissible function by replacing

the codomain of the function with Mn×n(R).

Definition 3.5. ([13]). Let X be a non-empty set, α : X × X → Mn×n(R) and

T : X → X . If every s, t ∈ X , α(s, t) ≥ I result in α(Ts, T t) ≥ I, then a function T

is called α-admissible.

Remark 3. Assume that U = [uij], V = [vij ] ∈ Mn×n(R). Then U ≥ V means

uij ≥ vij, for every i, j ∈ {1, 2, 3, . . . , n}.

Example 3.2. Suppose that X = (1,∞), α : X ×X → Mn×n(R) is defined by

α(s, t) =












s 0

0 t




 , s ≥ t






0 0

0 0




 , s < t

∀s, t ∈ X and T : X → X with Ts = 2s. It is easy to check that T is an increasing

function. By Definition 3.5, for s ≥ t, α(s, t) ≥ I result in

α(Ts, T t) =












2s 0

0 2t




 , T s ≥ T t






0 0

0 0




 , T s < Tt.

It follows α(Ts, T t) ≥ I. This implies that T is an α-admissible function.
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By Definitions 3.2 and 3.5, we introduce a novel idea of the Reich-Perov

α-contractive mapping in vector-valued metric spaces.

Definition 3.6. Let (X, dv) be a vector-valued metric space and T : X → X . If

there exists a function α : X × X → Mn×n(R) defined by α(s, t) ≥ I and three

matrices A1, A2, A3 ∈ Mn×n(R
+
0 ) where ρ(A1) + ρ(A2) + ρ(A3) < 1, such that for

every s, t ∈ X satisfies

(3.6) dv(Ts, T t) � A1dv(s, T s) + A2dv(t, T t) + A3dv(s, t),

then T is called a Reich-Perov α-contractive mapping in X .

The following theorem is the extension of two references [10, 12], which we will later

call the fixed point theorem of Reich-Perov type α-contractive mapping in vector-

valued metric spaces. In these novel theorems, we show sufficient conditions to derive

the existence and uniqueness of a fixed point of the mapping.

Theorem 3.2. Let (X, dv) be a vector-valued metric space and T : X → X be a

Reich-Perov α-contractive mapping with respect to function α : X ×X → Mn×n(R).

Assume that (i)-(iii) hold.

(i) T is continuous,

(ii) T is α-admissible,

(iii) There exists s0 ∈ X such that α(s0, T s0) ≥ I.

Then T has a fixed point.

Proof. From (iii), it is guaranteed that there exists s0 ∈ X such that α(s0, T s0) ≥ I.

We assume s0 ∈ X as the initial point. Next, we construct the Picard sequence with

initial point s0 ∈ X . We can write

s1 = Ts0, s2 = Ts1 = TTs0 = T 2s0, . . . , sn = T ns0, . . .

The process is continued until we get the iterative sequence

sn = T ns0, n = 1, 2, 3, . . . .

If sk−1 = sk for some k ∈ N, then sk = Tsk−1 = Tsk. So, sk is a fixed point of T .

Now, we assume sn−1 6= sn for every n ∈ N. Since T is an α-admissible, it follows
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that

α(s0, s1) = α(s0, T s0) ≥ I.

Consequently, we have α(s1, s2) = α(s1, T s1) ≥ I. The process is terminated, and we

get

α(sn−1, sn) = α(sn−1, T sn−1) ≥ I

for every n ∈ N. By (3.6) with s = sn−1 and t = sn, we obtain

dv(sn, sn+1) = dv(Tsn−1, T sn)

� A1dv(sn−1, T sn−1) + A2dv(sn, T sn) + A3dv(sn, sn−1)

= A1dv(sn−1, sn) + A2dv(sn, sn+1) + A3dv(sn, sn−1)

= (A1 + A3)dv(sn−1, sn) + A2dv(sn, sn+1)

(I − A2)dv(sn, sn+1) � (A1 + A3)dv(sn−1, sn).

Since ρ(A2) < 1, it follows that A2 converges to zero. From Theorem 2.2, we obtain

(I − A2) is a non-singular matrix and (I −A2)
−1 ∈ Mn×n(R

+
0 ). Therefore, we get

(3.7)
dv(sn, sn+1) � (I − A2)

−1(A1 + A3)dv(sn−1, sn)

� Adv(sn−1, sn)

where A = (I − A2)
−1(A1 + A3).

Hence, by (3.7) we can write

dv(sn, sn+1) � Adv(sn−1, sn)

� A2dv(sn−2, sn−1) ≺ A3dv(sn−3, sn−2) � · · · � Andv(s0, s1)

� Andv(s0, s1).(3.8)

To show that (sn) is a Cauchy sequence, we use Definition 2.1(VM4) and (3.8). For

every p ∈ N, we have

dv(sn, sn+p) � dv(sn, sn+1) + dv(sn+1, sn+2) + · · ·+ dv(sn+p−1, sn+p)

� Andv(s0, s1) + An+1dv(s0, s1) + · · ·+ An+p−1dv(s0, s1)

= (An + An+1 + An+2 + · · ·+ An+p−1)dv(s0, s1)

= An(I + A + A2 + A3 + · · ·+ Ap−1)dv(s0, s1)

� An(I − A)−1dv(s0, s1).
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According to Theorem 2.2, it follows that the matrix (I − A) is a non-singular and

(I − A)−1 ∈ Mn×n(R
+
0 ). We conclude that

dv(sn, sn+p) � An(I − A)−1dv(s0, s1) → 0 as n → ∞.

Thus (sn) is a Cauchy sequence in the complete vector-valued metric space (X, dv).

Hence, the sequence (sn) converges, say to s⋆ ∈ (X, dv), which means dv(sn, s
⋆) →

0 as n → ∞. Since T is continuous, according to Definition 2.3, any sequence (sn) in

X converges to s⋆ in X implies (Tsn) in X converges to Ts⋆ in X . In other words,

sequence (sn+1) converges to Ts⋆. So, we get Ts⋆ = s⋆. This yields that s⋆ is a fixed

point of T . �

Next, to prove the uniqueness of the fixed point, we need the following hypothesis.

(K) : Let (X, dv) be a vector-valued metric space and Fix(X) := {z ∈ X :

Tz = z}. For all v, w ∈ Fix(X), we get α(v, w) ≥ I.

Theorem 3.3. If the hypothesis (K) is given in Theorem 3.2, then the mapping T

has a unique fixed point.

Proof. Suppose that s⋆⋆ ∈ X is another fixed point of T . By the hypothesis (K), we

get α(s⋆, s⋆⋆) ≥ I. By using (3.6), we can write

dv(s
⋆, s⋆⋆) = dv(Ts

⋆, T s⋆⋆)

� A1dv(s
⋆, T s⋆) + A2dv(s

⋆⋆, T s⋆⋆) + A3dv(s
⋆, s⋆⋆).

Hence, by Lemma 3.1, we conclude that dv(s
⋆, s⋆⋆) = 0. This implies that s⋆ = s⋆⋆ �

In the following, we construct an example to illustrate Theorem 3.1, 3.2, and 3.3.

Example 3.3. Suppose that X =

{

sn =
1

5n
: n ∈ N

}

∪ {0} and dv : X × X → R
2

is defined by dv(s, t) = (|s − t|, |s − t|) for each s, t ∈ X . We can easily show that

(X, dv) is a complete vector-valued metric space. Now, let T : X → X be defined by

Ts =







0, s = 0

sn+1, s = sn.
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We show that T is a Reich-Perov contractive mapping in X . In particular, we

construct three matrices

A1 =

[

a1 b1
c1 d1

]

, A2 =

[

a2 b2
c2 d2

]

, A3 =

[

a3 b3
c3 d3

]

∈ M2×2(R
+
0 )

where ρ(A1)+ρ(A2)+ρ(A3) < 1 such that (3.1) is satisfied. The proof is analogous to

Example 2.5. Thus, we choose a1 = a2 = a3 = 1/4, b1 = b2 = b3 = 0, c1 = c2 = c3 = 0,

and d1 = d2 = d3 = 1/4.

Next, the matrix A = (I − A2)
−1(A1 + A3) ∈ M2×2(R

+
0 ) converges to zero.

Consequently, T has a unique fixed point, s = 0 (according to Theorem 3.1).

Now, we define α-contractive mapping α : X ×X → M2×2(R) where

α(s, t) =












1 0

0 1




 , s ≥ t






0 0

0 0




 , s < t

∀s, t ∈ X . By Definition 3.5, it follows that s ≥ t, α(s, t) ≥ I result in α(Ts, T t) ≥ I.

We conclude that T is an α-admissible function, and consequently, T is a Reich-Perov

α-contractive mapping. By continuity of T on X and the existence of s0 ∈ X such

that α(s0, T s0) ≥ I, it follows from Theorem 3.2, we obtain T has a fixed point,

i.e., s = 0. Finally, by applying hypothesis (K) and Theorem 3.3, we arrive at the

uniqueness of T .

4. Future Research

Since the initial or boundary value problems for nonlinear differential systems can

be represented as semilinear operator systems, such systems appear in various

applications of mathematics. For example, various fixed point theorems such as

Schauder, Leray–Schauder, Krasnoselskii, and Perov fixed point theorems were

applied in the existence of solutions of such systems [12]. The applications lead us

to a new idea for further investigation. In particular, about applying the
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Reich-Perov and Reich Perov α-contractive fixed point theorems in vector-valued

metric spaces.
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