
Jordan Journal of Mathematics and Statistics (JJMS), 16(4), 2023, pp 617 - 647

DOI: https://doi.org/10.47013/16.4.2

WELL POSEDNESS AND STABILITY FOR THE NONLINEAR

ϕ-CAPUTO HYBRID FRACTIONAL BOUNDARY VALUE

PROBLEMS WITH TWO-POINT HYBRID BOUNDARY

CONDITIONS

YAHIA AWAD

Abstract. This article investigates into the study of nonlinear hybrid fractional

boundary value problems, which involve ϕ-Caputo derivatives of fractional order

and two-point hybrid boundary conditions. The author utilizes a fixed point the-

orem of Dhage to provide evidence for the existence and uniqueness of solutions,

taking into consideration mixed Lipschitz and Caratheodory conditions. Addition-

ally, the Ulam-Hyers types of stability are established in this context. The article

concludes by introducing a class of fractional boundary value problems, which are

dependent on the arbitrary values of ϕ and the boundary conditions chosen. The re-

search presented in this article has the potential to be useful in various fields, such

as engineering and science, where fractional differential equations are frequently

used to model complex phenomena.

1. Introduction

The field of fractional calculus has gained significant attention in recent years due

to its numerous applications in engineering and applied sciences. This field deals

with integro-differential equations involving fractional derivatives in time, which are

considered more realistic than those of integer order in time for describing many

phenomena in nature. Fractional calculus has found applications in various fields

such as signal processing, control theory, bioengineering and biomedical engineering,
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viscoelasticity, finance, stochastic processes, wave and diffusion phenomena, plasma

physics, and social sciences. Further information on this topic can be found in var-

ious references including [5], [7], [10], [23], [25], [28], [30], [33], and [40]. Recently,

there has been significant interest in the quadratic perturbations of nonlinear differ-

ential equations, which are known as fractional hybrid differential equations. Many

articles on the theory of hybrid differential equations can be found in the literature,

see [11]-[16] and [39]. Investigations of hybrid differential equations are important

as they include several dynamic systems as special cases, and further information on

this topic can be found in various references including [4], [6], [12], [13], [14]-[19], [20],

[25], [27], [34], [35], [39], and [40]. Additionally, the ϕ-fractional derivative has been

considered in the literature as a generalization of the Riemann-Liouville derivative.

This type of derivative has been reconsidered recently in [5], where the Caputo-type

regularization of the existing definition and some interesting properties are provided.

The ϕ-caputo fractional derivatives have been studied in various papers, including [1],

[7], [8], [23], [24], and [29]. Moreover, the stability problem of differential equations

has been extensively studied in the literature. The concept of Ulam stability in the

case of Banach spaces was fostered by Hyers in [22], and Rassias gave an impressive

speculation of the Ulam-Hyers stability of mappings by considering variables, which

is referred to as Ulam-Hyers-Rassias stability. Recently, there has been a progression

of papers dedicated to the examination of existence, uniqueness, and (UH) stabil-

ity of solutions of fractional differential equations with different kinds of fractional

derivatives, and further information on this topic can be found in the literature such

as [37, 32].

Inspired by the above works, consider the following integral boundary fractional hy-

brid differential equations (IBFHDE for short) involving Caputo differential operators

of order 1 < α ≤ 2.

(1.1)





cDα,ϕ

(
κ(ζ)− f(ζ,κ(ζ))

g(ζ,κ(ζ))

)
= h(ζ, Iβ,ϕu(ζ,κ(ζ)), ζ ∈ [0, T ],

κ(ζ)− f(ζ,κ(ζ))

g(ζ,κ(ζ))

∣∣∣∣
ζ=0

= 1
Γ(γ)

∫ 1

0
ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 h1(s,κ(s)) ds,

κ(ζ)− f(ζ,κ(ζ))

g(ζ,κ(ζ))

∣∣∣∣
ζ=T

= 1
Γ(γ)

∫ 1

0
ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 h2(s,κ(s)) ds,
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where ϕ (ζ) is an increasing function with ϕ′ (ζ) 6= 0 ∀ ζ ∈ I = [0, T ], 1 < β < α ≤ 2,

0 < γ < 1, and cDα,ϕ is the ϕ-Caputo fractional derivative, Γ (.) is the classical

Gamma function, Iβ,ϕ is the left-sided ϕ-Riemann-Liouville fractional integral of

order β ∈ (0, 1), with g ∈ C(I×R,R \ {0}), h, u ∈ C(I×R,R), and f ∈ C(I×R,R).

This equation has been developed and studied in recent years due to its wide range of

applications in various fields of science and engineering. Here are some motivations

for using this equation:

(1) Anomalous diffusion modeling : One of the main applications of fractional dif-

ferential equations is in modeling anomalous diffusion phenomena. Anomalous

diffusion is a type of random walk where the mean-squared displacement of a

particle does not increase linearly with time, but rather exhibits a power-law

behavior. This behavior is often observed in complex systems such as biolog-

ical tissues, porous media, and disordered materials. The equation (1.1) has

been used to model anomalous diffusion in these systems by incorporating

fractional derivatives that capture the memory and long-range interactions of

the particles. For further information, refer the readers to ([36], [38]).

(2) Control and optimization: Fractional differential equations have also been ap-

plied in control and optimization problems. The equation (1.1) can be used

to model systems with memory effects and non-local interactions, which are

often encountered in control and optimization problems. The fractional de-

rivative and integral operators in the equation provide a means of controlling

and optimizing these systems by adjusting the memory and interaction pa-

rameters. For further information, refer the readers to ([21], [26]) and the

references therein.

(3) Nonlinear dynamics : The equation (1.1) has been used to study the dynamics

of nonlinear systems. Nonlinear systems often exhibit complex behaviors such

as chaos and bifurcations, which can be difficult to understand and analyze

using traditional methods. The fractional derivative and integral operators in

the equation provide a powerful tool for analyzing the dynamics of nonlinear

systems by capturing the memory and long-range interactions of the system

components. For more details, see ([2], [3]).
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In summary, the equation (1.1) has many applications in modeling anomalous

diffusion, control and optimization, and nonlinear dynamics. Its fractional derivative

and integral operators provide a powerful tool for capturing the memory and long-

range interactions of the system components, making it a useful tool for studying

complex systems in various fields of science and engineering.

The present article is structured as follows: Section 1 introduces the aim of our

research. In Section 2, we provide an overview of important background information

that will be utilized throughout this work. Moving on to Section 3, we investigate

the existence and uniqueness of solutions for the integral boundary value problem for

the hybrid differential equation (IBFHDE) (1.1) with fractional order α ∈ (0, 1) on

the closed interval [0, T ]. We consider mixed Lipschitz and Caratheodory conditions

and apply Dhage’s fixed point theorem for three operators in a Banach algebra X ,

as described in reference [16]. Furthermore, we explore the Ulam–Hyers stability for

the (IBFHDE) (1.1). Lastly, in Section 4, we introduce certain classes of fractional

derivatives by selecting appropriate values for ϕ (ζ) and taking other parameters into

account. Our methodology yields several well-known investigations.

2. Preliminaries

Within this section, we will present a series of fundamental definitions and pre-

liminary concepts that will be consistently applied throughout the entirety of our

work.

Definition 2.1. For any real number α > 0, the left-sided ϕ-Riemann-Liouville

fractional integral of order α for an integrable function u : I → R with respect to

another function ϕ : I → R, which is an increasing differentiable function such that

ϕ′ (ζ) 6= 0 for all ζ ∈ I = [0, T ] is defined by:

Iα,ϕu (ζ) =
1

Γ(α)

ζ∫

0

ϕ′(s)(ϕ(ζ)− ϕ(s))α−1u (s) ds,

where Γ is the classical Euler Gamma function.

Definition 2.2. If n ∈ N and ϕ, u ∈ Cn(I, R) are two functions such that ϕ is

increasing and ϕ′ (ζ) 6= 0 for all ζ ∈ I, then the left-sided ϕ-Caputo fractional
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derivative of a function u of order α is defined by:

cDα,ϕu (ζ) = In−α,ϕ

(
1

ϕ′ (ζ)

d

dζ

)n

u (ζ)

=
1

Γ(n− α)

ζ∫

0

ϕ′(s)(ϕ(ζ)− ϕ(s))n−α−1u[n]ϕ (s) ds

where u
[n]
ϕ (ζ) =

(
1

ϕ′(ζ)
d
dζ

)n
u (ζ) and n = [α] + 1 for α /∈ N , and n = α for α ∈ N .

For further properties of fractional calculus operators, see [28], [30], [31], and [33].

Now, denote byX = C (I, R) to be the Banach algebra of all real-valued continuous

functions from I = [0, T ] into R with the norm ‖κ‖ = sup {|κ (ζ)| : ζ ∈ I}. Moreover,

by L1 (I, R), we denote by the space of Lebesgue integrable real-valued functions on

I equipped with the L1-norm ‖κ‖L1 =
∫ T

0
|κ (s) |ds.

Definition 2.3. [15] (Normed Algebra) If A is an algebra and ‖.‖ is a norm on A

satisfying ‖κ.z‖ ≤ ‖κ‖ . ‖z‖ for all κ, z ∈ A, then ‖.‖ is called an algebra norm and

(A, ‖.‖) is called a normed algebra. A complete normed algebra is called a Banach

algebra.

Definition 2.4. [15] Let X be a normed vector space. A mapping T : X → X is

said to be Lipschitzian over a normed vector space X if there exists a constant k ≥ 0

such that for all κ, z ∈ X , the following inequality holds: ‖Tκ − T z‖ ≤ k(‖κ − z‖).
In other words, T is Lipschitzian if its Lipschitz constant k is finite.

Definition 2.5. [15] A mapping f : I × R → R is said to satisfy a condition of

L1-Caratheodory or simply is called L1-Caratheodory if

(1) ζ → f (ζ,κ) is measurable for each κ ∈ R,

(2) κ → f (ζ,κ) is continuous almost everywhere for ζ ∈ I, and

(3) for each real number r > 0 there exists a function g ∈ L1(I, R) such that

|f(ζ,κ)| ≤ g(ζ) a.e. ζ ∈ I for all κ ∈ R with |κ| ≤ r.

Lemma 2.1. [5] Consider the real number α ∈ (0, 1], and let f ∈ L1(0, 1), Then,

(1) cDα,ϕIα,ϕf(ζ) = f(ζ) for all ζ ∈ I.

(2) cIα,ϕ cDα,ϕf(ζ) = f(ζ)− I(1−α),ϕf(ζ)|ζ=0

Γ(α)
(ϕ (ζ)− ϕ (0))α−1 almost everywhere

ζ ∈ I.
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Lemma 2.2. Let f ∈ C (0, R) and α > 0. Then, the differential equation cD
α,ϕ
a+ f(ζ) =

0 has a solution

f(ζ) = c0 + c1 (ϕ(ζ)− ϕ(0)) + c2 (ϕ(ζ)− ϕ(0))2 + ...+ cn−1 (ϕ(ζ)− ϕ(0))n−1 ,

where ci ∈ R, for all i = 0, 1, 2, ..., n− 1, such that n = [α] + 1.

Lemma 2.3. [5] Let α, β ∈ R+, and f(ζ) ∈ L1(I). Then, I
α,ϕ
a+ I

β,ϕ
a+ f(ζ) = I

β,ϕ
a+ I

α,ϕ
a+ f(ζ) =

I
α+β,ϕ
a+ f(ζ), and (Iα,ϕ

a+ )nf(ζ) = I
nα,ϕ
a+ f(ζ), where n ∈ N .

Definition 2.6. [7] Let X be any space and let f : X → X . A point κ ∈ X is called

a fixed point for mapping f if κ = f(κ).

Theorem 2.1. [16] Assume that S is a nonempty, closed, convex, and bounded subset

of a Banach algebra X . Moreover, let A : X → X , B : S → Y , and C : X → X be

three operators satisfying the following conditions:

(1) A and C are Lipschitzian with Lipschitz constants µ and σ, respectively,

(2) B is completely continuous.

(3) κ = AκBz + Cκ implies that κ ∈ S, for all z ∈ S.

(4) κN +R < ρ for ρ > 0, where N = ‖B(S)‖.

Then the operator equation AκBz+ Cκ = κ has a solution in S.

Definition 2.7. The solution to the integral boundary value problem (IBFHDE)

(1.1) is a continuous function κ ∈ C (I, R) that satisfies the boundary value problem

(1.1) and such that ζ → κ(ζ)− f(ζ,κ(ζ))

g(ζ,κ(ζ))
is continuous for each κ ∈ R.

3. Main Results

This section is focused on investigating the existence of solutions for the inte-

gral boundary value problem for hybrid differential equation with fractional order

α ∈ (0, 1) (IBFHDE) (1.1) over the closed interval [0, T ] under mixed Lipschitz and

Caratheodory conditions on the nonlinearities involved in it. To accomplish this ob-

jective, we utilize a fixed point theorem for three operators in a Banach algebra X ,

originally presented by Dhage[16].

To begin our analysis, we consider the following set of assumptions:
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(A0) For almost every ζ ∈ I, the function κ → κ(ζ)− f(ζ,κ(ζ))

g(ζ,κ(ζ))
is continuous and

increasing in R.

(A1) The functions g : I ×R → R \ {0}, and f : I ×R → R are continuous. There

exist two positive functions µ(ζ), σ(ζ), with bounds ‖µ‖ = sup {µ (ζ) |ζ ∈ I}
and ‖σ‖ = sup {σ (ζ) |ζ ∈ I} such that for all ζ ∈ I, κ, z ∈ R

|g(ζ,κ)− g(ζ, z)| ≤ µ(ζ) |κ − z|, and |f(ζ,κ)− f(ζ, z)| ≤ σ(ζ) |κ − z|.

(A2) The functions h : [0, T ]×R → R and u : [0, T ]×R → R satisfy Caratheodory

conditions, i.e, if h and u are measurable in ζ for any κ ∈ R and continuous in

κ for almost all ζ ∈ [0, T ], then there exist three functions ζ → a(ζ), ζ → b(ζ)

and ζ → m(ζ) such that

|h(ζ,κ)| ≤ a(ζ)+ b(ζ) |κ|, ∀ (ζ,κ) ∈ I ×R,

|u(ζ,κ)| ≤ m(ζ), ∀ (ζ,κ) ∈ I ×R,

where a(.),m(.) ∈ L1 and b(.) are measurable and bounded, and Iγ,ϕ
c m(.) ≤

M, ∀γ ≤α, c ≥ 0.

(A3) There exists a positive number ρ such that for 0 < γ < β < 1,

(3.1) ρ ≥ Γ(γ + 1)

2 (2k1 + k2) ‖µ‖ (ϕ (1)− ϕ (0))γ

(
1− ‖σ‖ − ℜ −

√
∆
)

such that

ℜ =
‖µ‖ℵΓ(γ + 1) + (2H1 +H2) ‖µ‖+ G̃ (2k1 + k2)

Γ(γ + 1)
(ϕ (1)− ϕ (0))γ,

ℵ = G0 (ϕ (T )− ϕ (0))

[
‖a‖+M‖b‖ (ϕ (T )− ϕ (0))β−γ

Γ (β − γ + 1)

]
,

G̃ = sup
ζ∈I

|g(ζ, 0)|,

∆ = χ2 − η,

χ = (ℜ+ ‖σ‖ − 1) ,

η =
4 (2k1 + k2) ‖µ‖ (ϕ (1)− ϕ (0))γ

(
F + (2H1+H2)G̃(ϕ(1)−ϕ(0))γ

Γ(γ+1)
+ G̃(ϕ (1)− ϕ (0))γ

)

Γ(γ + 1)
.
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(A4) The functions hi : I × R → R for i = 1, 2 are continuous and there exist

constants ki ∈ [0, 1) such that |hi(ζ,κ)− hi(ζ, z)| ≤ ki |κ− z| for every ζ ∈ I,

and κ, z ∈ R.

(A5) There exist a positive number G0 = max {|G (ζ, s)| , for every (ζ, s) ∈ I × I} .
(A6) hi : I × R → R, i = 1, 2 are continuous and there exist constants ki ∈ [0, 1)

such that |hi(ζ, u (ζ))− hi(ζ, v (ζ))| ≤ ki|u− v|.

Remark 3.1. From assumptions (A1) and (A4), we deduce that for every i = 1, 2 :

|hi(ζ,κ)| ≤ Hi + ki|κ (ζ) |, where Hi = sup
ζ∈I

|hi(ζ, 0)|,

|g(ζ,κ)| ≤ G̃+ |µ(ζ)| |κ (ζ) |, where G̃ = sup
ζ∈I

|g(ζ, 0)|,

|f(ζ,κ)| ≤ F + |σ(ζ)| |κ (ζ) |, where F = sup
ζ∈I

|f(ζ, 0)|.

Lemma 3.1. Let h
(
ζ, Iβ,ϕu (ζ,κ (ζ))

)
∈ C (I, R). Then, the (IBFHDE) (1.1) is

equivalent to the following integral equation

(3.2) κ(ζ) = v(ζ,κ(ζ)) + g (ζ,κ (ζ))

∫ T

0

ϕ′ (s)G(ζ, s) h
(
s, Iβ,ϕu (s,κ (s))

)
ds,

where v (ζ,κ (ζ)) is a continuous function in X such that

v (ζ,κ (ζ)) = f (ζ,κ (ζ)) +
g (ζ,κ (ζ))

Γ (γ)

[∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1
h1 (s,κ (s)) ds+

Θ (ζ)

Θ (T )

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h2 (s,κ (s))− h1 (s,κ (s))] ds

]
,

where Θ (ζ) = ϕ (ζ)− ϕ (0), and G (ζ, s) is the Green’s function defined by

G(ζ, s) =





(ϕ (ζ)− ϕ (s))α−1

Γ(α)
− Θ (ζ) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)
, 0 ≤ s ≤ ζ ≤ T

−Θ (ζ) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)
, 0 ≤ ζ ≤ s ≤ T,

Proof. Applying operation Iα,ϕ on the (IBFHDE) (1.1) and by Lemma (2.2), we

obtain that

κ(ζ)− f(ζ,κ(ζ))

g(ζ,κ(ζ))
= I

α,ϕ

0+ h(ζ, Iβ,ϕ u(ζ,κ(ζ)) + c0 + c1 (ϕ (ζ)− ϕ (0)) ,

where c0, c1 ∈ R.
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Hence, the integral solution of (1.1) is

κ(ζ) = f(ζ,κ(ζ))

+ g (ζ,κ (ζ))




1
Γ(α)

∫ ζ

0
ϕ′ (ζ) (ϕ (ζ)− ϕ (s))α−1

h
(
s, Iβ,ϕu (s,κ (s))

)
ds

+c0 + c1 (ϕ (ζ)− ϕ (0))


 .

Applying the boundary conditions of (1.1), we get

c0 =
1

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1
h1 (s,κ (s)) ds,

and

c1 =
1

Θ (T )

{
1

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h2 (s,κ (s))− h1 (s,κ (s))] ds

− 1

Γ (α)

∫ T

0

ϕ′ (s) (ϕ (T )− ϕ (s))α−1
h
(
s, Iβ,ϕu (s,κ (s))

)
ds

}
,

where Θ (ζ) = ϕ (ζ)− ϕ (0).

This implies that

κ (ζ) = f (ζ,κ (ζ))

+ g (ζ,κ (ζ))

{
1

Γ (α)

∫ ζ

0

ϕ′ (s) (ϕ (ζ)− ϕ (s))α−1
h
(
s, Iβ,ϕu (s,κ (s))

)
ds

+
1

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1
h1 (s,κ (s)) ds

+
Θ (ζ)

Θ (T )

{
1

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h2 (s,κ (s))− h1 (s,κ (s))] ds

− 1

Γ (α)

∫ T

0

ϕ′ (s) (ϕ (T )− ϕ (s))α−1
h
(
s, Iβ,ϕu (s,κ (s))

)
ds

}

= f (ζ,κ (ζ)) +
g (ζ,κ (ζ))

Γ (γ)

[∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1
h1 (s,κ (s)) ds

+
Θ (ζ)

Θ (T )

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h2 (s,κ (s))− h1 (s,κ (s))] ds

]

+
g (ζ,κ (ζ))

Γ (α)

[∫ ζ

0

ϕ′ (s) (ϕ (ζ)− ϕ (s))α−1
h
(
s, Iβ,ϕu (s,κ (s))

)
ds

− Θ (ζ)

Θ (T )

(∫ T

0

ϕ′ (s) (ϕ (T )− ϕ (s))α−1
h
(
s, Iβ,ϕu (s,κ (s))

)
ds

]

= v(ζ,κ(ζ)) + g (ζ,κ (ζ))

∫ T

0

ϕ′ (s)G(ζ, s) h
(
ζ, Iβ,ϕu (ζ,κ (ζ))

)
ds.
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�

3.1. Existence of Solutions. From Lemma (3.1), we obtain the following definition

Definition 3.1. By a mild solution of the (IBFHDE) (1.1), we mean a function

κ ∈ C(I, R) satisfying integral equation (3.2) for all ζ ∈ I.

Theorem 3.1. Assume that hypotheses (A0)−(A3) and (A6) hold. Then, the integral

equation (3.2) has at least one mild solution defined in I.

Proof. Set X = C(I, R) and define a subset S of X as S = {κ ∈ X, ‖κ‖ ≤ ρ}, where
ρ satisfies inequality (3.1). It is clear that S is a closed, convex, and bounded subset

of the Banach space X . Define the following three operators: A : X → X, B : S → X

and C : X → X as follows:

(3.3) Aκ(ζ) = g(ζ,κ(ζ)), for ζ ∈ I

(3.4) Bκ(ζ) =
∫ T

0

ϕ′ (s)G (ζ, s) h(s, Iβ,ϕu(s,κ(s)) ds, for (ζ, s) ∈ I × I,

(3.5) Cκ(ζ) = v(ζ,κ(ζ)), for ζ ∈ I.

Thus, the integral equation (3.2) is transformed into the following integral operator

equation:

(3.6) κ(ζ) = Aκ(ζ) · Bκ(ζ) + Cκ(ζ), for all ζ ∈ I.

In the following, we show that the operators A, B, and C satisfy all the conditions of

Lemma 2.1. The proof is accomplished in the following steps:

Step 1. Operators A and C are Lipschitzian on X .

From assumption (A1), it is obtained that for any κ, z ∈ X ,

|Aκ(ζ)−Az(ζ)| = |g(ζ,κ(ζ))− g(ζ, z(ζ))|

≤ µ(ζ) |κ(ζ)− z(ζ)| ≤ ‖µ‖ ‖κ − z‖

Thus, ‖Aκ − Az‖ ≤ ‖µ‖ ‖κ − z‖ for all κ, z ∈ X and this implies that A is a

Lipschitzian on X with Lipschitz constant µ.

Moreover, |Cκ(ζ)− Cz(ζ)| = |v(ζ,κ(ζ))− v(ζ, z(ζ))| where;

v (ζ,κ (ζ))− v (ζ, z (ζ))
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= f (ζ,κ (ζ))− f (ζ, z (ζ))

+
g (ζ,κ (ζ))

Γ (γ)

[∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1
h1 (s,κ (s)) ds

+
Θ (ζ)

Θ (T )

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h2 (s,κ (s))− h1 (s,κ (s))] ds

]

− g (ζ, z (ζ))

Γ (γ)

[∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1
h1 (s, z (s)) ds

+
Θ (ζ)

Θ (T )

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h2 (s, z (s))− h1 (s, z (s))] ds

]

= f (ζ,κ (ζ))− f (ζ, z (ζ)) + E1 (ζ) +
Θ (ζ)

Θ (T )
E2 (ζ) ,

where E1 (ζ) and E2 (ζ) are given as follows:

E1 (ζ)

=
g (ζ,κ (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1
h1 (s,κ (s)) ds

− g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1
h1 (s, z (s)) ds

=
g (ζ,κ (ζ))− g (ζ, z (ζ)) + g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1
h1 (s,κ (s)) ds

− g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1
h1 (s, z (s)) ds

=
g (ζ,κ (ζ))− g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1
h1 (s,κ (s)) ds

+
g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h1 (s,κ (s))− h1 (s, z (s))] ds,

and

E2 (ζ)

=
g (ζ,κ (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h2 (s,κ (s))− h1 (s,κ (s))] ds

− g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h2 (s, z (s))− h1 (s, z (s))] ds

=
g (ζ,κ (ζ))− g (ζ, z (ζ)) + g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1


 h2 (s,κ (s))

−h1 (s,κ (s))


 ds
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− g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h2 (s, z (s))− h1 (s, z (s))] ds

=
g (ζ,κ (ζ))− g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h2 (s,κ (s))− h1 (s,κ (s))] ds

+
g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1



 h2 (s,κ (s))− h1 (s,κ (s))

−h2 (s, z (s)) + h1 (s, z (s))



 ds

=
g (ζ,κ (ζ))− g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h2 (s,κ (s))− h1 (s,κ (s))] ds

+
g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h2 (s,κ (s))− h2 (s, z (s))] ds

+
g (ζ, z (ζ))

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [h1 (s, z (s))− h1 (s,κ (s))] .

By assumptions (A1), (A6), and Remark 3.1, it is obtained that

|E1 (ζ)| ≤
|g (ζ,κ (ζ))− g (ζ, z (ζ))|

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 |h1 (s,κ (s))| ds

+
|g (ζ, z (ζ))|

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 |h1 (s,κ (s))− h1 (s, z (s))| ds

≤ µ(ζ) |κ − z|
Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 (H1 + k1|κ|) ds

+
G̃+ µ(ζ) |z (ζ) |

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 k1 |κ − z| ds

≤




µ(ζ) (H1 + k1|κ|) + k1

(
G̃+ ‖µ‖ |z|

)

Γ (γ + 1)
(ϕ (1)− ϕ (0))γ



 |κ − z|

≤ c1(ζ) |κ − z| ,

and

|E2 (ζ)|

≤ |g (ζ,κ (ζ))− g (ζ, z (ζ))|
Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1


 |h2 (s,κ (s))|

+ |h1 (s,κ (s))|


 ds

+
|g (ζ, z (ζ))|

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 {|h2 (s,κ (s))− h2 (s, z (s))|} ds

+
|g (ζ, z (ζ))|

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 {|h1 (s, z (s))− h1 (s,κ (s))|} ds
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≤ µ(ζ) |κ − z|
Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [(H1 +H2) + (k1 + k2) |κ|] ds

+
G̃+ µ(ζ) |z (ζ) |

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 [k2 |κ − z|+ k1 |z− κ|] ds

≤ µ(ζ) |κ − z|
Γ (γ + 1)

(ϕ (1)− ϕ (s))γ ((H1 +H2) + (k1 + k2) |κ|)

+
G̃+ µ(ζ) |z (ζ) |

Γ (γ + 1)
(ϕ (1)− ϕ (s))γ (k1 + k2) |z− κ|

≤


 µ(ζ) ((H1 +H2) + (k1 + k2) |κ|)

+
(
G̃+ µ(ζ) |z (ζ) |

)
(k1 + k2)




Γ (γ + 1)
(ϕ (1)− ϕ (s))γ |κ − z|

≤ c2(ζ) |κ − z|.

Hence, by assumption (A1), we obtain that

|v (ζ,κ (ζ))− v (ζ, z (ζ))| ≤ |f (ζ,κ (ζ))− f (ζ, z (ζ))|+ |E1 (ζ)|+
Θ (ζ)

Θ (T )
|E2 (ζ)|

≤
(
σ(ζ) + c1 (ζ) +

Θ (ζ)

Θ (T )
c2 (ζ)

)
|κ − z|.

Taking supremum for all ζ ∈ [0, ζ ], we get

|Cκ(ζ)− Cz(ζ)| ≤ (‖σ‖+ ‖c1‖+ ‖c2‖) ‖κ − z‖ ,

where

‖c1‖ =
‖µ‖ (H1 + k1(‖κ‖+ ‖z‖) + k1G̃

Γ (γ + 1)
(ϕ (1)− ϕ (0))γ ,

and

‖c2‖ =
‖µ‖ (H1 +H2 + (k1 + k2) (‖κ‖ + ‖z‖)) + (k1 + k2) G̃

Γ (γ + 1)
(ϕ (1)− ϕ (s))γ .

Therefore, operator C is a Lipschitzian mapping on X with Lipschitz constant k =

‖σ‖+ ‖c1‖+ ‖c2‖.
Step 2. Operator B is continuous and compact on S.

First, operator B is continuous on X .

Let {κn} be a sequence in S that converges to point κ ∈ S. Since u (ζ,κ (ζ))

is continuous in X for all ζ ∈ T , then (by assumption (A2)) we have u (ζ,κn (ζ))
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converges to u (ζ,κ (ζ)). Applying the Lebesgue dominated convergence theorem, it

is obtained that

lim
n→∞

Iβ,ϕu(s,κn(s)) = Iβ,ϕu(s,κ(s)).

In addition, since h(ζ,κ(ζ)) is continuous in κ, then by the fractional-order integral

properties, and by applying Lebesgue dominated convergence theorem, we get

lim
n→∞

Bκn(ζ) = lim
n→∞

∫ T

0

ϕ′ (s)G (ζ, s) h(s, Iβ,ϕu(s,κn(s))ds

=

∫ T

0

ϕ′ (s)G (ζ, s) lim
n→∞

h(s, Iβ,ϕu(s,κn(s))ds

=

∫ T

0

ϕ′ (s)G (ζ, s) h(s, Iβ,ϕu(s,κ(s))ds = Bκ(ζ).

Thus, Bκn → Bκ as n → ∞ uniformly on R+. This implies that operator B is

continuous on S for all ζ ∈ I.

Next, operator B is compact on S since B(S) is uniformly bounded and equicontinuous

in X :

Let κ ∈ S be arbitrary. By assumption (A2), it is clear that

|Bκ(ζ)| =
∣∣∣∣
∫ T

0

ϕ′ (s)G (ζ, s) h(s, Iβ,ϕu(s,κ(s))ds

∣∣∣∣

≤
∫ T

0

ϕ′ (s) |G (ζ, s)|
∣∣h(s, Iβ,ϕu(s,κ(s))

∣∣ ds

≤ G0

∫ T

0

ϕ′ (s)
(
a (s) + b (s)Iβ,ϕ |u(s,κ(s))|

)
ds

≤ G0

∫ T

0

ϕ′ (s) |a (s)| ds+G0

∫ T

0

ϕ′ (s) |b (s)|Iβ,ϕ |u(s,κ(s))| ds

≤ G0 ‖a‖
∫ T

0

ϕ′ (s) ds+G0 ‖b‖
∫ T

0

ϕ′ (s) Iβ,ϕ |u(s,κ(s))| ds

≤ G0 ‖a‖ (ϕ (T )− ϕ (0)) +G0 ‖b‖
∫ T

0

ϕ′ (s) Iβ,ϕ
m (s) ds

≤ G0 ‖a‖ (ϕ (T )− ϕ (0)) +G0 ‖b‖ (ϕ (T )− ϕ (0)) Iβ−γ,ϕIγ,ϕ
m (ζ)

≤ G0 ‖a‖ (ϕ (T )− ϕ (0))

+G0 (ϕ (T )− ϕ (0)) ‖b‖ M
∫ ζ

0

ϕ′ (s)
(ϕ (ζ)− ϕ (s))β−γ−1

Γ (β − γ)
ds.
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Taking supermom over all ζ ∈ I, it is decuced that for all κ ∈ S

‖Bκ‖ ≤ G0 (ϕ (T )− ϕ (0))

(
‖a‖+ ‖b‖M(ϕ (T )− ϕ (0))β−γ

Γ(β − γ + 1)

)
.

Thus, operator B is uniformly bounded on S.

Now, B(S) is also an equicontinuous set in X .

Let ζ1, ζ2 ∈ I such that ζ1 < ζ2. Then, for all κ ∈ S it is clear that

Bκ(ζ2)− Bκ(ζ1)

=

∫ T

0

ϕ′ (s)G (ζ2, s) h(s, I
β,ϕu(s,κ(s))ds−

∫ T

0

ϕ′ (s)G (ζ1, s) h(s, I
β,ϕu(s,κ(s))ds

=

∫ ζ2

0

ϕ′ (s)

(
(ϕ (ζ2)− ϕ (s))α−1

Γ(α)
− Θ (ζ2) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

)
h(s, Iβ,ϕu(s,κ(s)))ds

+

∫ T

ζ2

ϕ′ (s)

(
−Θ (ζ2) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

)
h(s, Iβ,ϕu(s,κ(s)))ds

−
∫ ζ1

0

ϕ′ (s)

(
(ϕ (ζ1)− ϕ (s))α−1

Γ(α)
− Θ (ζ1) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

)
h(s, Iβ,ϕu(s,κ(s)))ds

−
∫ T

ζ1

ϕ′ (s)

(
−Θ (ζ1) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

)
h(s, Iβ,ϕu(s,κ(s)))

=

∫ ζ1

0

ϕ′ (s)

(
(ϕ (ζ2)− ϕ (s))α−1

Γ(α)
− Θ (ζ2) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

)
h(s, Iβ,ϕu(s,κ(s)))ds

+

∫ ζ2

ζ1

ϕ′ (s)

(
(ϕ (ζ2)− ϕ (s))α−1

Γ(α)
− Θ (ζ2) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

)
h(s, Iβ,ϕu(s,κ(s)))ds

+

∫ T

ζ2

ϕ′ (s)

(
−Θ (ζ2) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

)
h(s, Iβ,ϕu(s,κ(s)))ds

−
∫ ζ1

0

ϕ′ (s)

(
(ϕ (ζ1)− ϕ (s))α−1

Γ(α)
− Θ (ζ1) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

)
h(s, Iβ,ϕu(s,κ(s)))ds

−
∫ ζ2

ζ1

ϕ′ (s)

(
−Θ (ζ1) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

)
h(s, Iβ,ϕu(s,κ(s)))ds

−
∫ T

ζ2

ϕ′ (s)

(
−Θ (ζ1) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

)
h(s, Iβ,ϕu(s,κ(s)))ds.

Hence,

|Bκ(ζ2)− Bκ(ζ1)|

≤
∫ ζ1

0

ϕ′ (s)




(ϕ(ζ2)−ϕ(s))α−1−(ϕ(ζ1)−ϕ(s))α−1

Γ(α)

− (Θ(ζ2)−Θ(ζ1))(ϕ(T )−ϕ(s))α−1

Θ(T )Γ(α)


 ∣∣h(s, Iβ,ϕu(s,κ(s)))

∣∣ ds
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+

∫ ζ2

ζ1

ϕ′ (s)




(ϕ(ζ2)−ϕ(s))α−1

Γ(α)

− (Θ(ζ2)−Θ(ζ1))(ϕ(T )−ϕ(s))α−1

Θ(T )Γ(α)


∣∣h(s, Iβ,ϕu(s,κ(s)))

∣∣ ds

+

∫ T

ζ2

ϕ′ (s)
(Θ (ζ1)−Θ (ζ2)) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

∣∣h(s, Iβ,ϕu(s,κ(s)))
∣∣ ds

≤
∫ ζ1

0

ϕ′ (s)




(ϕ(ζ2)−ϕ(s))α−1−(ϕ(ζ1)−ϕ(s))α−1

Γ(α)

− (Θ(ζ2)−Θ(ζ1))(ϕ(T )−ϕ(s))α−1

Θ(T )Γ(α)


(|a (s)|+ |b (s)| Iβ,ϕ |u(s,κ(s))|

)
ds

+

∫ ζ2

ζ1

ϕ′ (s)




(ϕ(ζ2)−ϕ(s))α−1

Γ(α)

− (Θ(ζ2)−Θ(ζ1))(ϕ(T )−ϕ(s))α−1

Θ(T )Γ(α)



(|a (s)|+ |b (s)|Iβ,ϕ |u(s,κ(s))|
)
ds

+

∫ T

ζ2

ϕ′ (s)
(Θ (ζ1)−Θ (ζ2)) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

(
|a (s)|+ |b (s)|Iβ,ϕ |u(s,κ(s))|

)
ds

≤ ‖a‖
[∫ ζ1

0

ϕ′ (s)



 Θ (T ) [(ϕ (ζ2)− ϕ (s))α−1 − (ϕ (ζ1)− ϕ (s))α−1]

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (s))α−1





Θ (T ) Γ(α)
ds

+

∫ ζ2

ζ1

ϕ′ (s)


 Θ (T ) (ϕ (ζ2)− ϕ (s))α−1

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (s))α−1




Θ (T ) Γ(α)
ds

+

∫ T

ζ2

ϕ′ (s)
(Θ (ζ1)−Θ (ζ2)) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)
ds

]

+ ‖b‖
[∫ ζ1

0

ϕ′ (s)



 Θ (T ) [(ϕ (ζ2)− ϕ (s))α−1 − (ϕ (ζ1)− ϕ (s))α−1]

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (s))α−1





Θ (T ) Γ(α)
Iβ,ϕ |u(s,κ(s))| ds

+

∫ ζ2

ζ1

ϕ′ (s)



 Θ (T ) (ϕ (ζ2)− ϕ (s))α−1

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (s))α−1





Θ (T ) Γ(α)
Iβ,ϕ |u(s,κ(s))| ds

+

∫ T

ζ2

ϕ′ (s)
(Θ (ζ1)−Θ (ζ2)) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)
Iβ,ϕ |u(s,κ(s))| ds

]

≤ ‖a‖


 Θ (T ) [(ϕ (ζ2)− ϕ (0))α − (ϕ (ζ1)− ϕ (0))α]

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (0))α




Θ (T ) Γ(α + 1)
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+ ‖b‖
[∫ ζ1

0

ϕ′ (s)


 Θ (T ) [(ϕ (ζ2)− ϕ (s))α−1 − (ϕ (ζ1)− ϕ (s))α−1]

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (s))α−1




Θ (T ) Γ(α)
Iβ−γ,ϕIγ,ϕ

m (s) ds

+

∫ ζ2

ζ1

ϕ′ (s)


 Θ (T ) (ϕ (ζ2)− ϕ (s))α−1

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (s))α−1




Θ (T ) Γ(α)
Iβ−γ,ϕIγ,ϕ

m (s) ds

+

∫ T

ζ2

ϕ′ (s)
(Θ (ζ1)−Θ (ζ2)) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)
Iβ−γ,ϕIγ,ϕ

m (s) ds

]

≤ ‖a‖


 Θ (T ) [(ϕ (ζ2)− ϕ (0))α − (ϕ (ζ1)− ϕ (0))α]

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (0))α




Θ (T ) Γ(α + 1)

+ ‖b‖M
[∫ ζ1

0

ϕ′ (s)



 Θ (T ) [(ϕ (ζ2)− ϕ (s))α−1 − (ϕ (ζ1)− ϕ (s))α−1]

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (s))α−1





Θ (T ) Γ(α)

×
∫ s

0

ϕ′ (τ)
(ϕ (s)− ϕ (τ))β−γ−1

Γ (β − γ)
dτds

+

∫ ζ2

ζ1

ϕ′ (s)



 Θ (T ) (ϕ (ζ2)− ϕ (s))α−1

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (s))α−1





Θ (T ) Γ(α)

×
∫ s

0

ϕ′ (τ)
(ϕ (s)− ϕ (τ))β−γ−1

Γ (β − γ)
dτds

+

∫ T

ζ2

ϕ′ (s)
(Θ (ζ1)−Θ (ζ2)) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

∫ s

0

ϕ′ (τ)
(ϕ (s)− ϕ (τ))β−γ−1

Γ (β − γ)
dτds

]

≤ ‖a‖


 Θ (T ) [(ϕ (ζ2)− ϕ (0))α − (ϕ (ζ1)− ϕ (0))α]

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (0))α




Θ (T ) Γ(α + 1)

+ ‖b‖M
[∫ ζ1

0

ϕ′ (s)



 Θ (T ) [(ϕ (ζ2)− ϕ (s))α−1 − (ϕ (ζ1)− ϕ (s))α−1]

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (s))α−1





Θ (T ) Γ(α)

× (ϕ (s)− ϕ (0))β−γ

Γ (β − γ + 1)
ds
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+

∫ ζ2

ζ1

ϕ′ (s)


 Θ (T ) (ϕ (ζ2)− ϕ (s))α−1−

(Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (s))α−1




Θ (T ) Γ(α)

(ϕ (s)− ϕ (0))β−γ

Γ (β − γ + 1)
ds

+

∫ T

ζ2

ϕ′ (s)
(Θ (ζ1)−Θ (ζ2)) (ϕ (T )− ϕ (s))α−1

Θ (T ) Γ(α)

(ϕ (s)− ϕ (0))β−γ

Γ (β − γ + 1)
ds

]

≤ ‖a‖


 Θ (T ) [(ϕ (ζ2)− ϕ (0))α − (ϕ (ζ1)− ϕ (0))α]

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (0))α




Θ (T ) Γ(α + 1)

+ ‖b‖M


 Θ (T ) [(ϕ (ζ2)− ϕ (0))α − (ϕ (ζ1)− ϕ (0))α]

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (0))α




Θ (T ) Γ(α + 1)Γ (β − γ + 1)
(ϕ (T )− ϕ (0))β−γ

Therefore,

|Bκ(ζ2)− Bκ(ζ1)| ≤ ̟

(
‖a‖+ ‖b‖M (ϕ (T )− ϕ (0))β−γ

Γ (β − γ + 1)

)
,

where

̟ =


 Θ (T ) [(ϕ (ζ2)− ϕ (0))α − (ϕ (ζ1)− ϕ (0))α]

− (Θ (ζ2)−Θ (ζ1)) (ϕ (T )− ϕ (0))α




Θ (T ) Γ(α + 1)
.

Thus, for any ε > 0, there exists a positive number δ such that |ζ2 − ζ1| < δ for all

ζ1, ζ2 ∈ I, which implies that |Bκ(ζ2) − Bκ(ζ1)| < ε for all κ ∈ S, then B(S) is an

equicontinuous set in X . Furthermore, applying the Arzela-Ascoli theorem, we can

conclude that B(S) is uniformly bounded and equicontinuous in X , and hence it is

a compact set. Consequently, we have established that the operator B is a complete

and continuous operator on S.

Step 3. We will demonstrate that the operator κ = AκBz + Cκ is bounded for all

κ ∈ X and z ∈ S. Consider ζ ∈ I, then

|κ(ζ)|

≤ |Aκ(ζ)||Bz(ζ)|+ |Cκ(ζ)|

≤ |g(ζ,κ(ζ))|
∫ T

0

ϕ′ (s) |G (ζ, s)| |h(s, Iβ,ϕu(s,κ(s))|ds+ |v(s,κ(s))|
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≤ |g(ζ,κ(ζ))|
∫ T

0

ϕ′ (s) |G (ζ, s)| |h(s, Iβ,ϕ u(s,κ (s))|ds+ |v (κ, ζ)|

≤ G0|g(ζ,κ(ζ))|
∫ T

0

ϕ′ (s) |h(s, Iβ,ϕ u(s,κ (s))|ds+ |f (κ, ζ)|

+
|g(ζ,κ(ζ))|

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 |h1 (s,κ (s))| ds

+
|g(ζ,κ(ζ))|

Γ (γ)

Θ (ζ)

Θ (T )

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 |h2 (s,κ (s))− h1 (s,κ (s))| ds

≤ G0(G̃+ |µ(ζ)| |κ (ζ) |)
∫ T

0

ϕ′ (s) |a (s) + b (s) Iβ,ϕ |u(s,κ (s))| ds

+ (F + |σ(ζ)| |κ (ζ) |)

+
(G̃+ |µ(ζ)| |κ (ζ) |)

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1 (k1|κ|+H1) ds

+
(G̃+ |µ(ζ)| |κ (ζ) |)

Γ (γ)

∫ 1

0

ϕ′ (s) (ϕ (1)− ϕ (s))γ−1


 k2|κ (ζ) |+H2

+k1|κ (ζ) |+H1


 ds

≤ G0(G̃+ |µ(ζ)| |κ (ζ) |)
∫ T

0

ϕ′ (s)G0

(
|a (s) + b (s)Iβ,ϕ

m (s)
)
ds

+ (F + ‖σ‖ |κ (ζ)|)

+ (G̃+ |µ(ζ)| |κ (ζ) |)(ϕ (1)− ϕ (0))γ

Γ (γ + 1)


 (H2 +

(
1 + Θ(ζ)

Θ(T )

)
H1)

+(k2 +
(
1 + Θ(ζ)

Θ(T )

)
k1)|κ (ζ) |




≤ (F + ‖σ‖ |κ (ζ)|)

+G0(G̃+ |µ(ζ)| |κ (ζ) |)
∫ T

0

ϕ′ (s)
(
|a (s) + b (s) Iβ−γ,ϕIγ,ϕ

m (s)
)
ds

+ (G̃+ |µ(ζ)| |κ (ζ) |)(ϕ (1)− ϕ (0))γ

Γ (γ + 1)


 (H2 +

(
1 + Θ(ζ)

Θ(T )

)
H1)

+(k2 +
(
1 + Θ(ζ)

Θ(T )

)
k1)|κ (ζ) |




≤ (F + ‖σ‖ |κ (ζ)|)

+G0(G̃+ |µ(ζ)| |κ (ζ) |)
(
‖a‖+ ‖b‖MIβ−γ,ϕ (s)

)
(ϕ (T )− ϕ (0))

+ (G̃+ |µ(ζ)| |κ (ζ) |)(ϕ (1)− ϕ (0))γ

Γ (γ + 1)



 (H2 +
(
1 + Θ(ζ)

Θ(T )

)
H1)

+(k2 +
(
1 + Θ(ζ)

Θ(T )

)
k1)|κ (ζ) |





≤ (F + ‖σ‖ |κ (ζ)|)
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+G0(G̃+ |µ(ζ)| |κ (ζ) |)


 ‖a‖

+ ‖b‖M
∫ s

0
ϕ′ (u) (ϕ(ζ)−ϕ(u))β−γ−1

Γ(β−γ)
du


 (ϕ (T )− ϕ (0))

+ (G̃+ |µ(ζ)| |κ (ζ) |)(ϕ (1)− ϕ (0))γ

Γ (γ + 1)


 (H2 +

(
1 + Θ(ζ)

Θ(T )

)
H1)

+(k2 +
(
1 + Θ(ζ)

Θ(T )

)
k1)|κ (ζ) |




≤ (F + ‖σ‖ |κ (ζ)|)

+G0(G̃+ |µ(ζ)| |κ (ζ) |)
(
‖a‖+ ‖b‖M (ϕ(T )−ϕ(0))β−γ

Γ(β−γ+1)

)
(ϕ (T )− ϕ (0))

+ (G̃+ |µ(ζ)| |κ (ζ) |)(ϕ (1)− ϕ (0))γ

Γ (γ + 1)


 (H2 +

(
1 + Θ(ζ)

Θ(T )

)
H1)

+(k2 +
(
1 + Θ(ζ)

Θ(T )

)
k1)|κ (ζ) |




By taking the supremum over all ζ ∈ I, we obtain

‖κ‖ ≤ (F + ‖σ‖ ‖κ‖)

+G0(G̃+ ‖µ‖ ‖κ‖ |)
(
‖a‖+ ‖b‖M (ϕ(T )−ϕ(0))β−γ

Γ(β−γ+1)

)
(ϕ (T )− ϕ (0))

+ (G̃+ ‖µ‖ ‖κ‖)(ϕ (1)− ϕ (0))γ

Γ (γ + 1)
((H2 + 2H1) + (k2 + 2k1) ‖κ‖) ≤ ρ.

Accordingly,

ρ ≥ Γ(γ + 1)

2 (2k1 + k2) ‖µ‖ (ϕ (1)− ϕ (0))γ

(
1− ‖σ‖ − ℜ −

√
∆
)
,

where

ℜ =
‖µ‖ℵΓ(γ + 1) + (2H1 +H2) ‖µ‖+ G̃ (2k1 + k2)

Γ(γ + 1)
(ϕ (1)− ϕ (0))γ,

ℵ = G0 (ϕ (T )− ϕ (0))

[
‖a‖+M‖b‖ (ϕ (T )− ϕ (0))β−γ

Γ (β − γ + 1)

]
,

∆ = (ℜ+ ‖σ‖ − 1)2 − η,

so that

η =
4 (2k1 + k2) ‖µ‖ (ϕ (1)− ϕ (0))γ

(
F + (2H1+H2)G̃(ϕ(1)−ϕ(0))γ

Γ(γ+1)
+ G̃(ϕ (1)− ϕ (0))γ

)

Γ(γ + 1)
.

Therefore, κ ∈ S.

Step 4. As a last step, we show that lN + r < ρ, such that

N = ‖B(S)‖ = sup
κ∈S

{
sup
ζ∈I

|Bκ(ζ)|
}
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≤ G0 (ϕ (T )− ϕ (0))

[
‖a‖+M‖b‖ (ϕ (T )− ϕ (0))β−γ

Γ (β−γ + 1)

]
,

By assumption (A3), we have LM+K < 1,where

L = 2 ‖b‖G0 ‖µ‖Γ(γ + 1)


 (1− ‖σ‖) Γ(γ + 1)

−2G̃ (2k1 + k2) (ϕ (1)− ϕ (0))γ


 (ϕ (T )− ϕ (0))β+γ+1,

and K = 1− a0 (a1(ϕ (1)− ϕ (0))2γ + a2(ϕ (1)− ϕ (0))γΓ(γ + 1) + a3), where

a0 =
Γ(β − γ + 1)(ϕ (T )− ϕ (0))2γ

(ϕ (1)− ϕ (0))γ
,

a1 =


 4 ‖a‖G0G̃ (2k1 + k2)µ (ϕ (T )− ϕ (0)) Γ(γ + 1)

+4 (2H1 +H2) G̃ (2k1 + k2)


 ‖µ‖ ,

a2 =



 [2 ‖a‖G0 (‖σ‖ − 1) (ϕ (T )− ϕ (0))] ‖µ‖Γ(γ + 1) + 4F (2k1 + k2) ‖µ‖
+2 (2H1 +H2) ‖µ‖ (‖σ‖ − 1) + 2G̃ (2k1 + k2) (‖σ‖ − 1)



 ,

a3 = 3 (‖σ‖ − 1)2 Γ(γ + 1)2.

Hence, the last condition of Theorem 2.1 is satisfied with

l =
(
‖µ‖ ‖κ‖+ G̃

)
(ϕ (1)− ϕ (0))γ ,

and

r = (‖σ‖ ‖κ‖+ F ) +
(
‖µ‖ ‖κ‖ + G̃

)
(ϕ (1)− ϕ (0))γ

(2k1 + k2) ‖κ‖ + (2H1 +H2)

Γ (γ + 1)
.

As a result of fulfilling all the requirements stated in Theorem 2.1, the operator

equation κ = AκBz + Cκ possesses a solution in the set S. Consequently, it can be

concluded that problem (1.1) has at least one mild solution on I. This statement

serves as the conclusion of the proof. �

3.2. Uniqueness of Solutions. The succeeding text outlines the sufficient condi-

tions for the uniqueness of the solution of the quadratic functional integral equation

(3.2).

Consider the following assumption:
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(A7) Let h : [0, T ]×R → R and u : [0, T ]×R → R be a continuous functions satisfy-

ing the Lipschitz condition and there exists two positive functions w(ζ), θ(ζ)

with bounded ‖w‖ and ‖θ‖, such that

|h(ζ,κ)− h(ζ, z)| ≤ w(ζ)|κ − z|, and |u(ζ,κ)− u(ζ, z)| ≤ θ(ζ)|κ − z|,

with H = supζ∈I |h(ζ, 0)|, and U = supζ∈I |u(ζ, 0)|.

Theorem 3.2. Assume that (A0), (A1), (A3), (A6) and (A7) hold, then the solution

κ ∈ C[0, T ] of the quadratic functional integral equation (3.2) is unique, if

(3.7)


 ‖µ‖+ (G̃+‖µ‖‖κ‖)

Γ(γ+1)
(2k1 + k2) + ‖µ‖G0

[
‖w‖M Tβ−γ+1

Γ(β−γ+1)
+H T

]

+
[
‖µ‖ ‖z‖+ G̃

]
‖w‖ ‖θ‖G0

Tβ+1

Γ(β+1)


 < 1.

Proof. Suppose that κ (ζ) and z (ζ) are two solutions of (3.2), then from Theorem

3.1, we have

|κ(ζ)− z(ζ)|

≤ |v(ζ,κ(ζ))− v(ζ, z(ζ))|

+

∣∣∣∣g (ζ,κ (ζ))

∫ T

0

ϕ′ (s) |G(ζ, s)| h
(
s, Iβ,ϕu (s,κ (s))

)
ds

−g (ζ, z (ζ))

∫ T

0

ϕ′ (s) |G(ζ, s)| h
(
s, Iβ,ϕu (s, z (s))

)
ds

∣∣∣∣

≤ |v(ζ,κ(ζ))− v(ζ, z(ζ))|

+ |g (ζ,κ (ζ))− g (ζ, z (ζ))|
∫ T

0

ϕ′ (s) |G(ζ, s)|
∣∣h
(
s, Iβ,ϕ,u (s,κ (s))

)∣∣ ds

+ |g (ζ, z (ζ))|
∫ T

0

ϕ′ (s) |G(ζ, s)|
∣∣h
(
s, Iβ,ϕu (s,κ (s))

)
− h

(
s, Iβ,ϕu (s, z (s))

)∣∣ ds

≤
(
σ(ζ) + c1 (ζ) +

Θ (ζ)

Θ (T )
c2 (ζ)

)
|κ (ζ)− z (ζ) |

+ |g (ζ,κ (ζ))− g (ζ, z (ζ))|
∫ T

0

ϕ′ (s) |G(ζ, s)|




∣∣∣∣∣∣
h
(
s, Iβ,ϕu (s,κ (s))

)

−h (s, 0) + |h (s, 0)|

∣∣∣∣∣∣


 ds

+ [|g (ζ, z (ζ))− g (ζ, 0)|+ |g (ζ, 0)|]
∫ T

0

ϕ′ (s) |G(ζ, s)|


 h

(
s, Iβ,ϕu (s,κ (s))

)

−h
(
s, Iβ,ϕu (s, z (s))

)


 ds

≤
(
σ(ζ) + c1 (ζ) +

Θ (ζ)

Θ (T )
c2 (ζ)

)
|κ (ζ)− z (ζ) |
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+ |µ (ζ)| |κ(ζ)− z(ζ)|
∫ T

0

ϕ′ (s) |G(ζ, s)|
[
|w(ζ)| Iβ,ϕ |u (s,κ (s))|+H

]
ds

+
[
|µ (ζ)| |z (ζ)|+ G̃

] ∫ T

0

ϕ′ (s) |G(ζ, s)| |w(ζ)| Iβ,ϕ |u (ζ,κ (ζ))− u (ζ, z (ζ))| ds

≤
(
σ(ζ) + c1 (ζ) +

Θ (ζ)

Θ (T )
c2 (ζ)

)
|κ (ζ)− z (ζ) |

+ |µ (ζ)| |κ(ζ)− z(ζ)|
∫ T

0

|G(ζ, s)|
[
|w(ζ)|Iβ−γ,ϕIγ,ϕ

m (s) +H
]
ds

+
[
|µ (ζ)| |z (ζ)|+ G̃

] ∫ T

0

ϕ′ (s) |G(ζ, s)| |w(ζ)| |θ (ζ)|Iβ,ϕ |κ (ζ)− z (ζ)| ds

≤
(
σ(ζ) + c1 (ζ) +

Θ (ζ)

Θ (T )
c2 (ζ)

)
|κ (ζ)− z (ζ) |

+ |µ (ζ)| |κ(ζ)− z(ζ)|
∫ T

0

ϕ′ (s) |G(ζ, s)|
[
|w(ζ)|Iβ−γ,ϕM+H

]
ds

+
[
|µ (ζ)| |z (ζ)|+ G̃

] ∫ T

0

ϕ′ (s) |G(ζ, s)| |w(ζ)| |θ (ζ)|Iβ,ϕ |κ (ζ)− z (ζ)| ds.

Taking supremum over ζ ∈ I, we get

‖κ − z‖

≤ (‖σ‖+ ‖c1‖+ ‖c2‖) ‖κ − z‖

+ ‖µ‖ ‖κ − z‖G0

∫ T

0

ϕ′ (s)
[
‖w‖MIβ−γ,ϕ +H

]
ds

+
[
‖µ‖ ‖z‖+ G̃

]
‖w‖ ‖θ‖ ‖κ − z‖G0

∫ T

0

ϕ′ (s)Iβ,ϕ ds

≤ (‖σ‖+ ‖c1‖+ ‖c2‖) ‖κ − z‖

+ ‖µ‖ ‖κ − z‖G0



 ‖w‖M
∫ T

0
ϕ′ (s)

∫ s

0
ϕ′ (τ) (ϕ(s)−ϕ(τ))β−γ−1

Γ(β−γ)
dτds

+H
∫ T

0
ϕ′ (s) ds





+
[
‖µ‖ ‖z‖+ G̃

]
‖w‖ ‖θ‖ ‖κ − z‖G0

∫ T

0

ϕ′ (s)

∫ s

0

ϕ′ (τ)
(ϕ (s)− ϕ (τ))β−1

Γ (β)
dτ ds

≤ (‖σ‖+ ‖c1‖+ ‖c2‖) ‖κ − z‖

+ ‖µ‖ ‖κ − z‖G0

[
‖w‖M(ϕ (T )− ϕ (0))β−γ+1

Γ (β − γ + 1)
+H (ϕ (T )− ϕ (0))

]

+
[
‖µ‖ ‖z‖+ G̃

]
‖w‖ ‖θ‖ ‖κ − z‖G0

(ϕ (T )− ϕ (0))β+1

Γ (β + 1)
.
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Then,

‖κ − z‖




1− (‖σ‖+ ‖c1‖+ ‖c2‖)
−‖µ‖G0

[
‖w‖M (ϕ(T )−ϕ(0))β−γ+1

Γ(β−γ+1)
+H (ϕ (T )− ϕ (0))

]

−
[
‖µ‖ ‖z‖+ G̃

]
‖w‖ ‖θ‖ ‖κ − z‖G0

(ϕ(T )−ϕ(0))β+1

Γ(β+1)


 ≤ 0.

This proves the uniqueness of the solution of quadratic integral equation (3.2). �

3.3. Ulam Stability of Solutions. In the following, we study the Ulam stability

for the (IBFHDE) (1.1). Let ǫ > 0 and Φ : I → R+ be a continuous function and

consider the following inequalities:

(3.8)

∣∣∣∣
cDα,ϕ

(
κ(ζ)− f(ζ,κ(ζ))

g(ζ,κ(ζ))

)
− h(ζ, Iβ,ϕ u(ζ,κ(ζ))

∣∣∣∣ ≤ ǫ, ζ ∈ I

(3.9)

∣∣∣∣
cDα,ϕ

(
κ(ζ)− f(ζ,κ(ζ))

g(ζ,κ(ζ))

)
− h(ζ, Iβ,ϕ u(ζ,κ(ζ))

∣∣∣∣ ≤ Φ(ζ), ζ ∈ I

(3.10)

∣∣∣∣
cDα,ϕ

(
κ(ζ)− f(ζ,κ(ζ))

g(ζ,κ(ζ))

)
− h(ζ, Iβ,ϕ u(ζ,κ(ζ))

∣∣∣∣ ≤ ǫ Φ(ζ), ζ ∈ I.

Definition 3.2. The problem (IBFHDE) (1.1) is said to be Ulam-Hyers stable if

there exists a real number cf > 0 such that for each ǫ > 0 and for each solution

z∈ C(I, R) of the inequality (3.8) there exists a solution κ∈ C(I, R) of (1.1) with

|z(ζ)− κ(ζ)| ≤ ǫ cf, ζ ∈ I.

Definition 3.3. The problem (IBFHDE) (1.1) is said to be generalized Ulam-Hyers

stable if there exists cf ∈ C(R+, R+) with cf(0) = 0 such that for each ǫ > 0 and for

each solution z∈ C(I, R) of the inequality (3.8) there exists a solution κ∈ C(I, R) of

(1.1) with

|z(ζ)− κ(ζ)| ≤ cf(ǫ), ζ ∈ I.

Definition 3.4. The problem (IBFHDE) (1.1) is said to be Ulam-Hyers-Rassias

stable with respect to Φ if there exists a real number cf,Φ > 0 such that for each

ǫ > 0 and for each solution z∈ C(I, R) of the inequality (3.9) there exists a solution

κ∈ C(I, R) of (1.1) with

|z(ζ)− κ(ζ)| ≤ ǫcf,ΦΦ(ζ), ζ ∈ I.
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The problem (IBFHDE) (1.1) is said to be generalized Ulam-Hyers-Rassias stable

with respect to Φ if there exists a real number cf,Φ > 0 such that for each solution

z∈ C(I, R) of the inequality (3.10) there exists a solution κ∈ C(I, R) of (1.1) with

|z(ζ)− κ(ζ) > | ≤ cf,ΦΦ(ζ), ζ ∈ I.

3.4. Ulam-Hyers Stability of Solutions. In the following, we study the Ulam-

Hyers stability for (IBFHDE) (1.1).

Theorem 3.3. Let the assumptions of Theorem 3.2 be satisfied. Then problem

(IBFHDE) (1.1) is Ulam-Hyers stable.

Proof. Let ǫ > 0 and let ω ∈ C(I, R) be a function which satisfies inequality (3.8),

(3.11)

∣∣∣∣
cDα,ϕ

(
ω(ζ)− f(ζ, ω(ζ))

g(ζ, ω(ζ))

)
− h(ζ, Iβ,ϕ u(ζ, ω(ζ))

∣∣∣∣ ≤ ǫ, ζ ∈ I,

and let z ∈ C(I, R) be the unique solution of (IBFHDE) (1.1) which is by Lemma

3.1 is equivalent to the fractional order integral equation

z(ζ) = v(ζ, z(ζ)) + g (ζ, z (ζ))

∫ T

0

ϕ′ (s)G(ζ, s) h
(
ζ, Iβ,ϕu (ζ, z (ζ))

)
ds.

Applying Iα,ϕ on both sides of (3.11), we get

(3.12)

|ω(ζ)−v(ζ, ω(ζ))−g (ζ, ω (ζ))

∫ T

0

ϕ′ (s)G(ζ, s) h
(
s, Iβ,ϕu (s, ω (s))

)
ds| ≤ ǫ (ϕ (T )− ϕ (0))α

Γ(α + 1)
.

This implies that for each ζ∈ I, we have:

|ω(ζ)− z(ζ)|

= |ω(ζ)− v(ζ, z(ζ))− g (ζ, z (ζ))

∫ T

0

ϕ′ (s)G(ζ, s) h
(
s, Iβ,ϕu (s, z (s))

)
ds|

= |ω(ζ)− v(ζ, ω(ζ))− g (ζ, ω (ζ))

∫ T

0

ϕ′ (s)G(ζ, s) h
(
s, Iβ,ϕu (s, ω (s))

)
ds

+ v(ζ, ω(ζ)) + g (ζ, ω (ζ))

∫ T

0

ϕ′ (s)G(ζ, s) h
(
s, Iβ,ϕu (s, ω (s))

)
ds

− v(ζ, z(ζ))− g (ζ, z (ζ))

∫ T

0

ϕ′ (s)G(ζ, s) h
(
s, Iβ,ϕu (s, z (s))

)
ds|

≤ |ω(ζ)− v(ζ, ω(ζ))− g (ζ, ω (ζ))

∫ T

0

ϕ′ (s)G(ζ, s) h
(
s, Iβ,ϕu (s, ω (s))

)
ds|
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+ |v(ζ, ω(ζ))− v(ζ, z(ζ))|

+ |g (ζ, ω (ζ))− g (ζ, z (ζ))|
∫ T

0

ϕ′ (s) |G(ζ, s)|
∣∣h
(
s, Iβ,ϕu (s, ω (s))

)∣∣ ds

+ |g (ζ, z (ζ))|
∫ T

0

ϕ′ (s) |G(ζ, s)|
∣∣h
(
s, Iβ,ϕu (s, ω (s))

)
− h

(
s, Iβ,ϕu (s, z (s))

)∣∣ ds

≤ ǫ (ϕ (T )− ϕ (0))α

Γ(α+ 1)
+

(
σ(ζ) + c1 (ζ) +

Θ (ζ)

Θ (T )
c2 (ζ)

)
|ω (ζ)− z (ζ) |

+ |g (ζ, ω (ζ))− g (ζ, z (ζ))|
∫ T

0

|G(ϕ′ (s) ζ, s)|



∣∣h
(
s, Iβ,ϕu (s, ω (s))

)
− h (s, 0)

∣∣

+ |h (s, 0)|


 ds

+ |g (ζ, z (ζ))− g (ζ, 0) + g (ζ, 0)|
∫ T

0

ϕ′ (s) |G(ζ, s)|

∣∣∣∣∣∣
h
(
s, Iβ,ϕu (s, ω (s))

)

−h
(
s, Iβ,ϕu (s, z (s))

)

∣∣∣∣∣∣
ds

≤ ǫ (ϕ (T )− ϕ (0))α

Γ(α+ 1)
+

(
σ(ζ) + c1 (ζ) +

Θ (ζ)

Θ (T )
c2 (ζ)

)
|ω (ζ)− z (ζ) |

+ |µ (ζ)| |ω(ζ)− z(ζ)|
∫ T

0

ϕ′ (s) |G(ζ, s)|
[
|w(s)| Iβ,ϕ |u (s, ω (s))|+H

]
ds

+
[
|µ (ζ)| |z (ζ)|+ G̃

] ∫ T

0

ϕ′ (s) |G(ζ, s)| |w(s)| Iβ,ϕ |u (s, ω (s))− u (s, z (s))| ds

≤ ǫ (ϕ (T )− ϕ (0))α

Γ(α+ 1)
+

(
σ(ζ) + c1 (ζ) +

Θ (ζ)

Θ (T )
c2 (ζ)

)
|ω (ζ)− z (ζ) |

+ |µ (ζ)| |κ(ζ)− z(ζ)|
∫ T

0

ϕ′ (s) |G(ζ, s)|
[
|w(s)|Iβ−γ,ϕIγ,ϕ

m (s) +H
]
ds

+
[
|µ (ζ)| |z (ζ)|+ G̃

] ∫ T

0

ϕ′ (s) |G(ζ, s)| |w(s)| |θ (s)|Iβ,ϕ |ω (s)− z (s)| ds.

Taking supremum for all ζ ∈ I, we get

‖ω − z‖ ≤ ǫ (ϕ (T )− ϕ (0))α

Γ(α + 1)
+ (‖σ‖+ ‖c1‖+ ‖c2‖) ‖ω − z‖

+ ‖µ‖G0

[
‖w‖M (ϕ (T )− ϕ (0))β−γ+1

Γ (β − γ + 1)
+H (ϕ (T )− ϕ (0))

]
‖ω − z‖

+
[
‖µ‖ ‖z‖+ G̃

]
‖w‖ ‖θ‖G0

(ϕ (T )− ϕ (0))β+1

Γ (β + 1)
‖ω − z‖.

Let

η = 1− (‖σ‖+ ‖c1‖+ ‖c2‖)
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− ‖µ‖G0

[
‖w‖M (ϕ (T )− ϕ (0))β−γ+1

Γ (β − γ + 1)
+H (ϕ (T )− ϕ (0))

]

−
[
‖µ‖ ‖z‖+ G̃

]
‖w‖ ‖θ‖G0

(ϕ (T )− ϕ (0))β+1

Γ (β + 1)
,

we get

‖ω − z‖ ≤
(
ǫ (ϕ (T )− ϕ (0))α

Γ(α + 1)
η−1

)
ǫ = cf ǫ .

Therefore, problem (IBFHDE) (1.1) is Ulam-Hyers stable. This completes the proof.

�

Remark 3.2. If we put Φ(ǫ) = cf ǫ, then Φ(0) = 0 which yields that the (IBFHDE)

(1.1) is generalized Ulam-Hyers stable. Moreover, it is easy to show that if Φ is an

increasing function, λΦ > 0, such that, for each ζ ∈ I we have IαΦ ≤ λΦΦ, then the

problem (IBFHDE) (1.1) is Ulam-Hyers-Rassias stable with respect to Φ and with a

real constant cf,Φ = λΦ

η
.

4. Special Cases

Within this segment, we introduce a set of fractional derivatives that rely on the

selection of the arbitrary value for ϕ(ζ), the consideration of β, and the boundary

conditions.

• If ϕ(ζ) = ζ , then the results presented in this paper are consistent with those

found in Awad’s [9] research on implicit fractional-order differential problems:





cDα
(

κ(ζ)−f(ζ,κ(ζ))
g(ζ,κ(ζ))

)
= h(ζ, Iβu(ζ,κ(ζ)), ζ ∈ [0, T ],

κ(ζ)−f(ζ,κ(ζ))
g(ζ,κ(ζ))

∣∣∣
ζ=0

= 1
Γ(γ)

∫ 1

0
(1− s)γ−1 h1(s,κ(s)) ds,

κ(ζ)−f(ζ,κ(ζ))
g(ζ,κ(ζ))

∣∣∣
ζ=T

= 1
Γ(γ)

∫ 1

0
(1− s)γ−1 h2(s,κ(s)) ds,

• When ϕ (ζ) = ζ, f(ζ,κ(ζ)) = 0, β → 0, and hi(s,κ(s)) = 0 for i = 1, 2, then

we get the fractional hybrid differential equations involving Riemann-Liouville

differential operators Dα
(

κ(ζ)
f(ζ,κ(ζ))

)
= g(ζ,κ(ζ)) a.e. ζ ∈ I, with κ (0) = 0

studied by Sun et al. [35]:

Dα
(

κ(ζ)
−f(ζ,κ(ζ))

)
= g(ζ,κ(ζ)) a.e. ζ ∈ I,

κ (0) = 0
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• When ϕ (ζ) = ζ, f(ζ,κ(ζ)) = 0, β → 0, h1(s,κ(s)) = h2(s,κ(s)) = Γ(γ)(1 −
s)1−γ, κ(ζ)−f(ζ,κ(ζ))

g(ζ,κ(ζ))

∣∣∣
ζ=0

= − c
2a
, and κ(ζ)−f(ζ,κ(ζ))

g(ζ,κ(ζ))

∣∣∣
ζ=T

= − c
2b
, where a, b, and c

are real constants with a + b 6= 0, we obtain the boundary value problems

for hybrid differential equations with fractional orders studied by Hilal at el.

[20]:

Dα
(

κ(ζ)
f(ζ,κ(ζ))

)
= g(ζ,κ(ζ)) a.e. ζ ∈ I,

a κ(0)
−f(0,κ(0))

+ b κ(T )
−f(T,κ(T ))

= c

• When ϕ (ζ) = ζ, β → 0, T = 1, and hi(s,κ(s)) = 0 for i = 1, 2, we obtain the

the hybrid fractional differential equation studied by Ullah at el. [34]:

Dα
(

κ(ζ)−f(ζ,κ(ζ))
g(ζ,κ(ζ))

)
= h(ζ,κ(ζ)), ζ ∈ I

κ(ζ)−f(ζ,κ(ζ))
g(ζ,κ(ζ))

∣∣∣
ζ=0

= κ(ζ)−f(ζ,κ(ζ))
g(ζ,κ(ζ))

∣∣∣
ζ=1

= 0

• Finally, when ϕ (ζ) = ζ, κ (ζ) → κ(Θi(ζ)), g (0,κ (0)) = 1, and hi(s,κ(s)) =

0 for i = 1, 2, we obtain the following fractional hybrid differential equations

involving the Riemann-Liouville differential operators on the delay functions

studied by Al Issa at el. [6]:





Dα
(

κ(ζ)−k(ζ,κ(Θ1(ζ)))
g(ζ,κ(Θ2(ζ)))

)
= f(ζ, Iβu(ζ,κ(Θ3(ζ)))), forζ ∈ I = [0, T ],

κ(0) = k(0,κ(0)).

5. Conclusion

In summary, the article presents a study on nonlinear hybrid fractional boundary

value problems involving ϕ-Caputo derivatives of fractional order and with two-point

hybrid boundary conditions. The author uses a fixed point theorem of Dhage to prove

the existence and uniqueness of solutions under mixed Lipschitz and Caratheodory

conditions. Furthermore, the Ulam-Hyers types of stability is established. Lastly, the

article presents a class of fractional boundary value problems based on the choices

for the arbitrary values of ϕ and the boundary conditions.

For future work, the research may be extended to investigate more general classes of

nonlinear fractional boundary value problems with various types of boundary condi-

tions. In addition, numerical methods can be also explored for solving such problems.
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Additionally, applications of the developed mathematical results can be considered

to different areas of science and engineering, such as physics, biology, or finance.
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