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TWO-DIMENSIONAL QUATERNIONIC FRACTIONAL MELLIN
TRANSFORM OF A PARTICULAR ORDER

KHINAL PARMAR® AND V. R. LAKSHMI GORTY®

ABSTRACT. Author introduces two-dimensional quaternionic fractional Mellin trans-
form defined for a particular order a, 8 of integrable functions on R? and prove its
inversion formula using the relation between fractional Fourier transform and frac-
tional Mellin transform. Properties like linearity, Parseval’s formula and product
theorem are obtained without any additional conditions. Applications of two di-

mensional quaternionic fractional Mellin transform are given to support the study.

1. INTRODUCTION

In 1998, O. Akay and G.F. Boudreaux-Bartels [1] developed a new fractional Mellin
transform (FrMT) and fractional concepts based on the concept of fractional Fourier
transform (FrFT). Authors in [2] studied on modified Mellin transform of generalized
functions. Generalized two-dimensional was introduced in [19]. Digital computation
of the fractional Mellin transform was analyzed in [4]. Authors in [6, 10] introduced
quaternion Fourier transform and quaternionic Fourier-Mellin transform. The finite
Mellin transform in quantum calculus and application were established in [13].
After introduction of non-commutative algebra of quaternions, many works of complex-
valued valued functions were extended to to quaternion-valued functions. In recent
study, few integral transforms have been extended to quaternion-valued functions
(15, 16, 17, 18].

The content of the paper is organized as follows: In section 2, some basic facts of
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quaternions and quaternion-valued functions are illustrated. In section 3, the two-
dimensional quaternionic fractional Mellin transform (2D-QFrMT) is defined and its
relation with two-dimensional quaternionic fraction Fourier transform (2D-QFrFT) is
derived. In Section 4, various mathematical properties of 2D-QFrMT are obtained.In
Section 5 and 6, Convolution type properties and Parseval’s theorem are established.
In section 7, the 2D-QFrMT developed during the study has been demonstrated with
several applications.

The aim of the study is to establish the fractional Mellin transform in the class of
quaternions. Majority of the properties are discussed in the study. This study will
be useful for future researchers to bridge the gap and extend the applications of

real-valued functions to quternion-valued functions.

2. PRELIMINARY RESULTS

In quaternions, every element is a linear combination of a real scalar and three
imaginary units i, j and k with real coefficients .

Let g be a quaternion defined in

(2.1) H={¢=0q +ig +Jjg +kas: q,q0,9,q € R}

be the division ring of quaternions, where i, j, k satisfy Hamilton’s multiplication rules

as in [9],
(2.2) ij=—-ji=k jk=—-kj=iki=—-ik=j, i’ =j?=k? =ijk = —1.
The quaternion conjugate of ¢ is defined by
(2.3) q=qo—iq — jo2 — kaz; o, @1, ¢2:q3 € R.
Let f,g € L*(R? H) holds its usual meaning as in [11], the inner product is given by
(24) () = [ FOTES.
R2

The norm of f € L*(R? H) is given by

1/2
(25) o = 46Dy = ( [ 1700Px)

R2



2D-QFRMT 651

Definition 2.1. For every function f as in [14], the fractional Mellin transform

(FrMT) of order « is given by
(2.6) M[f(t); sa] = /f(t)tsﬂ_ldt,
0

. 1
where s, = a — iwa such that a; < a < as.

The largest open strip (a;, az) is the domain of the definition in which the integral
converges. It is called the fundamental strip and is denoted by St(ay, az).

The inversion formula for (2.6) is

a+100

(2.7) =5 / Mo [f(1); St °ds,.

a—100

Relation between FrFT and FrMT was given in [14], for every 0 < a < 1
(2.8) Mlf();a — iws] = Zo[f(e ) wal.

Definition 2.2. Let f € L?(R? H), then two-dimensional quaternionic fractional
Fourier transform (2D-QFrFT) of particular order «, 8 is defined in [16] as

(2.9) fa,ﬁ (w1, w2) = Fop [f (z,y) w1, ws] = / / eiwlamf (2, y) ejwfydxdy

—00 —00
where wy,wy >0 and 0 < a, 5 < 1.

The inversion formula is given by

(2.10)

1 g
T _ l=a . w?
Foj [fa,ﬁ (w1, ws) o) aﬁ / / o "W, fa,p (w1, w2) €72 Pw,” dwydws.

3. MAIN RESuULTS

In this section, 2D-QFrMT for a quaternion-valued function is defined and the

inversion formula is derived.

Definition 3.1. For every f € L?(R? H), 2D-QFrMT of particular order «, 3 can be
defined from [14, 20] as

(3.1) Mg lf (u,0) ;54,85 = u*f (u,v) v dudy
[l
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1 1
where, s, = a—iw{; sg = b—jw, with a € St (a1, az),b € St (by,by) and 0 < o, 3 < 1.
Relationship between 2D-QFrMT and 2D-QFrFT

Using (2.8), the relation between 2D-QFrMT and 2D-QFrFT has been extended in
L?(R% H) for particular order «, 3 as follows:

1 1
Property 3.1. For every 0 < o, < 1 and s, = a —iw{, sz = b — jwy with
a € St (CLl, CLQ), be St (bl, bg),

1 1 1
(3.2) Myp [f (u,v);a — twg, b — jwf} =Fo5 [f (e‘x, e_y) e e e w)

Proof. For every a € St (ay,as),b € St (by,be) and u =e™* v =€,
and dx = —u~'du,dy = —v~'dv. Then
11 TT . oda .
Fop [f (e7",e7) e_axe_by;wf‘,wf] - / /6"”1 fe ™ eY) e e el Vdzdy

—00 —00

- / / 6_(a_iw#)mf (e7*,e7) e <b_jwf>ydxdy

—00 —00

://US“_lf(u,v)vsﬁ_ldudv
00

= Mo s [f (4,0); 54, 5]

1 1
for every 0 < o, < 1, s, = a — iwf,sg = b— jw) with a € St(ay,a2),b €
St (b, by) . 0

Theorem 3.1. The inversion formula of 2D-QFrMT can be obtained from 2D-QFrFT

as

b+joo a+1ioco

1
U Mg [f (U, ) Sa, Sglv" 0 dsadsgs.

(2m)%1;

b—joo a—1io0

33)  flu,v)=

Proof. Consider

1

101 1 1
Fos|f (e‘x, e_y) e_“xe_by; wy, w;] = M,yp [f (e‘x, e_y) ca — iwd b — jwy
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Hence
b 1—a b 1 1
—x — —ax —y_ 1w -y —axr ,—oy. a B
et = | [t [p et
—00 —O0
),
X e 2 Tw, " dwidws
7(1 1 1
_ —lw T Y\ ., _ oo _ aapnB
= 2045// U, Mg f( e )7a iwy, b — jw,
—00 —O0
szfx 6
x e 2 Tw, " dwydws.
1 1
Usingu =e % v=e"Ys,=a—iw],s5=b— juw).

1 1_

. JE . < 1
And dso = Zwidwi,dss = Fw; dw, it follows that

b+joo a+ico

21,] / / “”1 Mg f (u,0); 84, 507 wy ds adsgs

b—joo a—ico

f(u,v) u® =

b+joo a+ioco

1 w® —a ‘wzlf -
fu,v) = (2% / / U U Mg [f (U, 0) 5 Sa, 85]072 v lds,dss

b—joo a—ioco

b+joo atico

1 y -
:(27T)2ij / /u Mg [f (u,0);5q,88]0 Pdsadsg.

b—joo a—ico

The inversion formula of 2D-QFrMT can be defined as

b+joo a+ico

1
f(u,v) = )% / / U Mg If (4, 0) 5 Sq, Sglv" 0 dsadsg.

b—joo a—ico

4. PROPERTIES OF 2D-QFRMT

In this section, different characteristics and mathematical properties of 2D-QFrMT

are proved.

Property 4.1 (Linearity property). Let fi, fo € L*(R?, H) and I,,ly € R, then

(4.1) Mg [l fi + 2 fo] = LM fi] + LM fs].



654 KHINAL PARMAR AND V. R. LAKSHMI GORTY

Proof.

Mag l1f1+l2f2 //usﬂ 1 llfl +l2f2) s~ dudv
0 0

// ue fute 1dudv+l2// so=1 fou* 5 dudy
0

LM fi] + laMfo].

Thus

Mgl fi + lafa] = LMIfi] + LM f].

Property 4.2 (Scaling property). Let f € L*(R? H) and pi,ps € R, then

1 1
(4.2) M Lf (p1t1, pata) ; Sa, 35] = TaMa,B Lf (u,v)] 5
P P2

Proof.

Ma,ﬁ [f (U,U) ) Sa78ﬁ:| = //usa_lf (U,’U) Usﬂ_ldud’u.
0 0

Let uw = pit1, v = poty; du = pidty, dv = padts. Then

Mg [f (pit1, pata) ; Sas 58] = //tlsa L (pity, pata) t2°0 7 dt dts

77( )Sa—l <v)5ﬁ—1dudv
f(u,v) | — e e
b2 P1 D2

0 0

1
usﬂ_lf (u,v)v
1 1
= Maglf (u,0)] =5
251 2

Thus

Mg [f (pit1, pata) i 5a, 58] = FMa,ﬁ Lf (u,v)] =5
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Property 4.3 (Multiplication by (uv)’). Let f € L?*(R? H), then

(4.3) Ma g [(u0)"f (u,v); 50, 55] = Mag[f (u,0); 50 +p, 55+ 1]

Proof.
Mg [(w0)? f (u,v) 5 5q, 55 = //u8“ Yuv)? f (u,v) v*~  dudv
0 0

/us‘*“’_lf (u, v) V¥ P dudv

= Mas[f (u,v);84+p,s5+ D).
Thus
Mg [(u0)’ f (1, 0) 5 S0, 58] = Mag[f (u,0) ;50 + D, 55+ D]

O
Property 4.4 (Multiplication by a power). Let f € L*(R?* H) and 0 < q < 1, then

Mo (o5 00)"F 0:0): 500551 = (1= (1) Mo [F 00 550,55

(4.4)
+ (1 —¢q)! <di

Sp

) Mas [f (1, ) 50, 55].

Proof. As given in [14], we have (£)? (u*™!) = (1_1q)!u5_1(10gu)q;0 < ¢ < 1. Then
Mg [(loguv)' f (u,v); 5q; 5]

//us‘* Y"logu)f (u,v) v~ 1dudv+//u8“ Ylog v)?f (u,v) v** ' dudv
0 0 0 0

- [ o s

q
+ (1 —gq)! (%) //us“_lf (u, v) v dudv
S
d

= (0= (55 ) Mo 7 000550551+ (1= 00 (5 ) Mo 1) 50,53]




656 KHINAL PARMAR AND V. R. LAKSHMI GORTY

Thus
d q
Mo [(loguv)” f (u,v) ; 50, 55] = (1 = Q)!(E) Maglf (U, 0); 50, 54]
+ (1 - Q)' (d;jg) Moe,ﬁ [f (u,v) 3 Sa SB] :

Property 4.5. (2D-QFrMT of derivatives)
1. Let f € L*(R?, H), then

of (u, v)

(4.5) Mg [ o

; Sas SB:| = (1 - Sa) Moc,ﬁ [f (uav) 1 8a — 1, 85]

exists only if lim u* ' f (u,v) vanishes.
U—r00
Also

of (u, v)

(4.6) Mg { 5

wm%}zﬂuﬁummm%ﬁﬁ—uu—ﬁm

sg—1

exists only if lim f (u,v)v vanishes.
V—>00

2. Let f € L*(R? H), then

47 Mo | L o] = (1 50) Moo [ )5~ Loss = 111 =),
3. For f € L2(R% H), then
(4.8) Mas -UW;S«MS&- = —saMag [f (u,v); 50, s5] -
Similarly we c-an write as -
(19) Map |20 ] = Mo [F () 50,3555

4. In general, we may write

o"f (u, v) ['(sa)

BN ;Sa,85:| = (—1)"m/\/{aﬁ [f (u,v) ;84 —m, s3]

(4.10) (i.) Mas [

(4.11)  (di.) Mag [u"%, SQ,Sﬁ:| = (—1)"%/\4(% [f (u,v); 84, s8] -
And also
(4.12) o -
(i13.) Mag [%, S, 8ﬁ:| = (=1)"Magslf (u,v);Sa,s5 —m] %
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am r
(413) (ZU) Ma,ﬁ [Um#; Sas Sg:| = (—1)mMa,ﬁ [f (U,U) 3 Say Sﬁ] ((;B(f_;;n)
And finally obtain
an am
(v.) Mg, [&m 8vmf(u v);sa,SB}
(4.14) = (1= 54) (2= 5a) o (N — 50) Mag[f (4,0); S — 1, 55 — m]

X (1 —s5)(2—83).....(m —sp) .

Proof. 1. Let f € L*(R? H), then the transform of f partially differentiated w.r.t.

can be obtained as

M s {8fé ySas S ] //US“_1 sﬁ_ldudv.
0 0

This integral exists only if u®~1f (u,v) vanishes at u = 0 and as u — oo

=—(Sa—1) //us‘"Qf (u, v) v¥  dudv
00

= (1= 5a) Mag[f (u,v) ;50 =1, 58]

Thus

of (u,v)

8u 7Sa>SB:| - (1 - Sa) Moz,ﬁ [f (u,v) ySa — 1a SB] .

(4.15) Map [

Similarly if partially differentiated w.r.t. v , we get

Of (u,v)

(4.16) M { 50

1 Sas Sﬁ} = Ma,ﬁ [f (ua U) 1 Sas S8 — 1] (1 - Sﬁ) :

2. Let f € L*(R? M), then the transform of f partially derivative w.r.t. v and u

respectively can be obtained as

2
Mo | FIE ) = s [ (2D ]
of (u,v
{%?8&‘1784

= (1= 8a) Mag [f (u,0); 80 — 1,558 = 1] (1 = s5).

= (1 — Sa) Maﬁ
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Thus

(4.17) M,z [%, Sers 8ﬁ:| =(1—84) Mop|f (u,v);5,— 1,85 —1] (1 — s5).

3. Let f € L?(R? M), then the transform of f partially differentiated w.r.t u and

multiplied with v can be obtained as

of (u,v) [ [ .0f (o)
Ma,ﬁ |i a ySas S B:| / / u 8u -V dud’U
0 0

This integral exists only if u®* f (u,v) vanishes at u = 0 and as u — c©

= —sa//us‘*_lf(u,v)vsﬂ_ldudv
(4.18) 5 0

= —SaMag[f (u,v); 54,58
Similarly if partially differentiated w.r.t. v and multiplied with v, we get

(4.19) M [v%; Sas 55} = Mg [f (u,v); 84, 5] 5p

4.(i.) For n = 1, the result is true from (4.5)

For n = 2, we get

2 T T 2
Mas {8 ) Sa,sﬁ] - //“SQ_L T30 st gy
0 0

Ou? Ou?
=— (84— 1) / / uS“_QWUSB‘ldudU
0 0

= (sq — 1) —2// s f (u,v) v* dudv

= (8q — 1) (Sa = 2) Mo |f (u,v);54, — 2, 5].

Assume the result is true forn =k — 1

O f (u,0)
Ouk—1)

Mas 1Sarsg| = (=1 (sa = 1) (50 = 2) (50 = (k= 1))

X Mo [F (,0) 50 — (k= 1), 5]
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By method of induction for n = k, we get

Mo | L0 5] = (1 (50 = 1) (50 = D) (0= )

Thus the result is true V n.
Hence proved.
(i1.) For n = 1, the result is true from (4.8).

For n = 2, we get

2a2f (uv U)

o0 00 an (u U) )
. — Sa+1 ? S 1
./\/laﬁ u W,SQ,SB} = //u + 78112 v dudv
0 0

= (Sa + 1) (sa) Mag[f (w,v); 84, 5] -

Assume the result is true forn =k — 1

Y O F=1) f (u,v)
Juk—1D)

Mas [ S Sa 86] = (=1)® (0 + (k = 2)) (50 + (k= 1)) -+~ (s)

X Maglf (u,0); 50, 55] .

By method of induction for n = k, we get

kakf (u> 'U)

Mas {u ouk

;sa,sﬁ} (1) (50 (k= 1) (50 4 k) (s0)

X Ma,ﬁ [f (u7 U) 3 Sas Sﬁ]

_ (_l)kr(sa + n)

['(sa) Mg [f (u,0) ;50 85] -

Thus the result is true V n.

Hence proved.
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Similarly, the results (7i7.) and (iv.) can be proved.

(v.) For n =1 and m = 1, we have

8 a [ Sa—1 86—1
%8_.f(u v SO!7SB:| //u %%f u, U) dudv
0 0

—1)//u8“_2 ,v) v dudv
00

(1 — 54 //us“_2 (u, v) v**2dudv (1 — s5)
00

=(1—54) Mopg|f(u,v);8, — 1,55 —1] (1 — sp)

For n =2 and m = 2, we get

9* o?
Ma.p {%w (u,v); Sa, 36]

2 52
// 3a_1§2§2 (u, v) v** dudv
u? Qv
> o0 9
—1)// _288 ((fv? (u, v) v dudv
u
00
=(1—54)(2—$4) // f (u,v) v**  dudv
=(1—54)(2—$4) //u f (u,v) v 2dudv (1 — s3)
00

=(1—54)(2—$4) /us“_?’f (u,v) v 3dudv (1 — s5) (2 — s5)

= (1= 5a) (2 = 8a) Mag [f (u,0); 80 — 2,55 = 2] (1 = 55) (2 — s)

Assume the result is true for n — 1 and m — 1.

By method of induction, we get
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Thus the result is true V n, m.

Hence proved. O

Property 4.6. (2D-QFrMT of integrals)
Let f € L*(R? H), then

Ma,ﬁ [f (U,U);Sa+ 1,Sﬁ+ 1] .
SaSps

(4.20) Mg //f (p, @) dpdq; sa, 55| =
00
Proof. Analogous to the fundamental theorem of calculus as stated in [8]; considering
(1.21) Fi(wo) = [ .00y
0

such that F\' (u,v) = f (u,v) with Fy (0,v) = 0, can be written as

Ma,ﬁ [F/ (uav) = f(u>v);30w85] == (Sa - 1) Ma,ﬁ |:/f(p> 'U) dp; Sa — 1’85] :
0

Replace s, by s, + 1;

u

Mos [ (1,0) 50+ 1, 55) = — (50) Mas / f (9, 0) dp: 50055

0

f 1
MOMB |:/ .f (p> 'U) dp; Sa SB] - _S_Maﬁ [f (u,v) y Sa + 1, 85] .
0

Analogous to (4.21), consider
(4.22) Fi(p,v) Z/f(p, q) dq

0
such that Fy’ (p,v) = f (p,v) with F} (p,0) = 0, follows

v

Mg [FY (p,v) = f(p,0);8a,88] = = (55 — 1) Mas /f (P, q) dg; $a, 55 — 1

0
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Replace sz by sg + 1

~Mmﬂf@w%&m%+ﬂk=—®mﬂ%ﬁ‘/f@ﬂﬁwww%

0

1
Ma,ﬁ f (p, Q) dq; Say S| = __Ma,ﬁ [f (pv U) 3 Say SB + 1] :
Sg

Now,

Mas //f(p>Q)deQ;Sa>$5 =M,z /Fl (p,v) dp; 54, Sp
0 0

0

1
= — M. [F(u,v);84 + 1, 85]

67

_1 y
= S_Ma,ﬁ /f (u,q)dg; sa + 1,58
“ 0

1
= Mg |f (u,v);8,+ 1,55 +1].
Sasp

Thus

1
(4.23)  Mgyp //f q) dpdq; so, 5| = Moglf (u,v);8, + 1,55 +1].

SaSp

5. CONVOLUTION TYPE PROPERTIES

Let f, g be the quaternion-valued functions, then convolution operations associated

with 2D-QFrMT can be defined using [5, 12] as

5.) 0wwmw=f7}GJ9wnw%%
(5.2) (fo 77 f (ru, tu) g (r, t)drdt.

Property 5.1.

a) Mag[(f*g)] =
b) Mags((fog)=

Ma [fa Sa 85] Mohﬁ [g’ SOH SB] .
Ma [ 80!7]‘ _86] MOé,ﬁ [f’ SOC’SB]‘
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[ [ oo . dr dt
0/0/(r£) YFE ) ()P rde tdn// ry o
/ / gL £ (€, m) = ddny O/ O/ Pl () L

= M [f (§:1); 50, 58] Mag[g(7,1) 5 Sas S5] -

(5.3) Mag[(f *9)] = Magslfisa, s8] Mas 95 Sar Sp] -

) Mas [(f 0 9) (1,0)] = Mg { [ [ irueg drdt}

o0

/us‘*_lvsﬁ_ldudv//f ru,tv) g (r,t) drdt.
0 0

0

I
0\8

Put ru = ¢ and tv =9

— grtdrdt//ffn Salsﬁllsatlsﬁdrfdtn
0 0

0\8 0\8

riseTlg (rt) £ Mdrdt / / gt f (€, n™ " dedn
0 0

|
T S~y S —03

089 (r 1)1 — 80,1 — 5] Mag[f (€,1)5 80, s5] -

(5.4) Mg (fog)l=Maglg;l— 80,1 — 55l Mag[f;Sa,ss]-
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6. PARSEVAL THEOREM

Theorem 6.1. Let f,g € L*(R* H) and

Ma,ﬁ [f(u’ U); Say 86] = f(sow Sﬁ) ;Moc,ﬁ [g(ua U); Sas 86] =9 (Sa, SB)

then

1 b+joo a+ioco
(27T)2ij f (Saa Sﬁ)g (ta — Sa; tﬁ - 85) dSadSB.

b—joo a—1ioc0

(6.1) Mag[f (u,v)g (u,v)] =

Proof.

Mg lf (u,v) g (u,v)] = //uta_lf (u,v) g (u,v) v dudv
0 0

://ut“_lg (u, v) v~ dudv
00

b+joo a+ico

1 —Sa -5
X(27r)2ij / /u *f(Sa,Sp) v Pdsadsg

b—joo a—ioco

1 b+joo a+ico
— (271’)2ij / / .f (Sa, Sﬁ)f] (ta — Sa, tg — SB) dSadSB.

b—joo a—ico

Thus

b+joo a+ioco

M [F (w0 g ) = i [ [ (50500 b = st = 55) dis

b—joo a—ioco

7. APPLICATIONS
a.) Here 2D-QFrMT is applied to the partial differential equation as in [14],

2
(7.1) u2v2%+uvf(u,v) =0(u+h,v+k)
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where § (u + h,v + k) is Dirac-delta function.
Solution. By applying 2D-QFrMT on both sides of (7.1) as given in [3], we obtain
(Sa +1)(sg+ 1) Mag[f(u,v);sq + 1,55 + 1]
2 + Mg [f(u,v); 80+ 1,55 + 1] = b1
By solving (7.2), we get

hsa—lks/g—l
14 (sa+1)(sg+1)

(7.3) Mo glf(u,v);80+ 1,855 +1] =

By using the inversion formula of 2D-QfrMT as given in (3.3), the solution is

obtained as

b+joo a+ico o 17801
a— B
1 u—(sa—i-l) h k

(2)3ij 1+ (sa+1)(sp+1)

b—joo a—ico

v dsdsg.

(7.4) flu,v) =

b.) Quaternion wave equation:

For quaternion-valued function, the wave equation can be given as follows:

(75) Ctt - A2A2C - 0
and
(76) ¢= f(uv U)v Gt = 0; when ¢t =0,
0? 0?
where A is a constant, f € L?(R? H) and A? = u2% + 02%.

Applying 2D-QFrMT on both sides of (7.5), we get
Ma, 5 [Cul = A% {(sa + 1) (sa) Ma, [¢] + Ma, 5[] (55 + 1) (s5)} = 0

Ma, g [Cu] — A* {82 + sa + S% + 55} Ma, g[¢] =0

(7.7) M, 5[Cu] — A2S* M, 5[¢] = 0.
By interchanging differentiation with 2D-QFrMT, we get general solution of (7.7) as
(7.8) M, 5[¢] = cre™ 4 cpe.

By imposing the initial conditions, we get

1

19) Mo o1 = (1 g5 ) Mo s Fu o)+ 53" Mo 2 1fu o).
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By using the inversion formula of 2D-QFrMT on (7.9), the solution of (7.5) is obtained

as

b+joo a+ioco

u—se (e‘ASt + ALS sinh(AS)t) M., 5 f(u, v)]v™°fds,dss.

1
(2m)%ij

b—joo a—ioco

(=

c.) Consider the partial differential equation with non constant coefficient as in [7],
(7.10) U2 o (1, 0) = 200 fup (1, 0) 4 0 fr(u, v) = ™),

Applying 2D-QFrMT on both sides of (7.10), we get

(7.11) (14 50)(5a) Ma, 5 [f] = 25058 Ma, 5 [f]+Ma, 5 [f] (1+55)(sp) = [(sa)I'(55).

After simplifying we obtain

['(s5a)T'(5p)
(Sa — $5)% + (Sa + 85)

(7.12) Mo, s[f] =

By using the inversion formula of 2D-QfrMT as given in (3.3), the solution is obtained

as

b+joo a+ioco
! e [(sa)T(s5)
(713) f - (27T)2ij / / (Sa — 86)2 + (Sa + Sﬁ)

b—joo a—ioco

v ds,dsg.

8. CONCLUSION

In this paper, two-dimensional quaternionic fractional Mellin transform for frac-
tional order is proposed and its inversion formula is also obtained. Different character-
istics and mathematical properties of two-dimensional quaternionic fractional Mellin
transform are derived. Convolution and Parseval’s theorem are proved. Some ppli-
cations of two-dimensional quaternionic fractional Mellin transform are also demon-

strated.
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