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CLOSED BALLS INCLUDED IN THE INVERTED MULTIBROT

AND MULTICORN SETS

DAN DUMITRU

Abstract. The aim of this article is to compute a radius of a closed ball included

in the Inverted Multibrot and Multicorn sets. More exactly, for w ∈ C∗ a complex

solution of the equation zk−1 = −1 we compute r > 0 such that B(w, r) is included

in the Inverted Multibrot set Nk of the the function zk + 1

c
, c ∈ C∗ for every k ≥ 2

and for w ∈ C∗ a complex solution of the equation zk+1 = −1 we compute r > 0

such that B(w, r) is included in the Inverted Multicorn set N ∗

k of the function

zk + 1

c
, c ∈ C∗ for every k ≥ 2.

1. Introduction

Dynamical systems generated by the iterations of the quadratic polynomial z2 + c

were studied in [2] where it is proved that the well-known Mandelbrot set is con-

nected. Mandelbrot set was naturally generalized, on one hand, to the Multibrot

sets given by the iteration of the polynomial zd + c, d ≥ 2 and, on the other hand,

to the Multicorn sets given by the iteration of the polynomials zd + c, d ≥ 2. The

intersections of the Multibrot set of zd + c with the rays R+w where wd−1 = ±1,

d ≥ 2, were given in [1], the exact intervals of the cross section of the Multibrot set

of zd + c, d ≥ 3, d odd, were given in ([6], [7]) and the exact intervals of the cross

section of the Multibrot set of zd + c, d ≥ 2, d even, were given in ([8]). About the

Multicorn sets, we can say that the intersections of the Multicorn set of zd + c with

the rays R+w where wd+1 = ±1, d ≥ 2 were given in [11]. The connectedness of the

Tricorn (particular case of Multicorn) given by the functions z2+ c was proven in [5].
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For ω ∈ C∗ a complex solution of the equation zk−1 = −1 we calculate in [3] a

radius r > 0 such that B (ω, r) is included in the Multibrot of zk + c for every k ≥ 2.

Moreover, for ω ∈ C∗ a complex solution of the equation zk+1 = −1 we also calculate

in [3] a radius r > 0 such that B (ω, r) is included in the Multicorn of zk+ c for every

k ≥ 2.

In this paper we continue the work from [3] for the Inverted Multibrot and Mul-

ticorn sets. More exactly, for ω ∈ C∗ a complex solution of the equation zk−1 = −1

we calculate a radius r > 0 such that B (ω, r) is included in the Inverted Multibrot

of zk + 1
c
, c ∈ C for every k ≥ 2 and for ω ∈ C∗ a complex solution of the equation

zk+1 = −1 we calculate a radius r > 0 such that B (ω, r) is included in the Inverted

Multicorn of zk + 1
c
, c ∈ C for every k ≥ 2.

We recall now that the Inverted Mandelbrot sets were also studied in [9] and we

have the following well-known definitions.

Definition 1.1. Let fc(z) = zk + 1
c
with c ∈ C∗ and k ∈ N, k ≥ 2. The Inverted

Multibrot set is defined by

Nk = {c ∈ C∗ | {fk
c (0)}k≥1 is bounded } = {c ∈ C∗ | {fk

c (0)}k
k→∞

6→ ∞}

which is equivalent to

Nk = {c ∈ C∗ | {Rn}n≥1 is bounded} = {c ∈ C∗ | {Rn}n≥1

n→∞

6→ ∞}

where the sequence of complex numbers (Rn)n≥1 from above is satisfying the rec-

curence Rn+1 = Rk
n+

1
c
for every n ≥ 1 with R1 =

1
c
(for k = 2 we obtain the Inverted

Mandelbrot set N2).

Definition 1.2. Let fc(z) = zk + 1
c
with c ∈ C∗ and k ∈ N, k ≥ 2. The Inverted

Multicorn set is defined by

N ∗
k = {c ∈ C∗ | {fk

c (0)}k≥1 is bounded} = {c ∈ C∗ | {fk
c (0)}k

k→∞

6→ ∞}

which is equivalent to

N ∗
k = {c ∈ C∗ | {Rn}n≥1 is bounded} = {c ∈ C∗ | {Rn}n≥1

n→∞

6→ ∞}

where the sequence of complex numbers (Rn)n≥1 from above is satisfying the rec-

curence Rn+1 = R
k

n +
1
c
for every n ≥ 1 with R1 =

1
c
.
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2. Preliminary lemmas

In this section we prove some preliminary lemmas.

Lemma 2.1. Let k ≥ 4 and the recurrence Rn+1 = Rk
n + 1

c
be satisfied for every

n ≥ 1 where R1 =
1
c
with c ∈ C∗. We suppose that |c− w| ≤ α with α ∈ (0, 1) where

w is a solution of the equation zk−1 = −1. Then |R2| ≤
(α+1)k−1 − 1

(1−α)k
.

Proof. From the hypothesis we obtain that |c| ≤ α + 1 and 1
|c|

≤ 1
1−α

. Let also

{w,w1, ..., wk−2} ⊂ C be the set of all the solutions of the equation zk−1 = −1. We

have that |w| = |wi| = 1 for every i ∈ {1, ..., k − 2} and from Viète’s relations ([10])

we obtain:


















































w1 + w2 + ...+ wk−2 = −w

w1w2 + w1w3 + ...+ wk−3wk−2 = w2

w1w2w3 + w1w2w4 + ...+ wk−4wk−3wk−2 = −w3

......................................................

w1w2...wk−3 + ...+ w2w3...wk−2 = (−1)k−3wk−3

w1w2...wk−2 =
(−1)k−2

w

Then we have

|R2| =
∣

∣Rk
1 +

1
c

∣

∣ =
∣

∣

1
ck

+ 1
c

∣

∣ =
|ck−1+1|

|c|k
=

1
|c|k

|(c− w)(c− w1)...(c− wk−2)| =
|c−w|
|c|k

|(c− w1)(c− w2)...(c− wk−2)| =

|c−w|
|c|k

∣

∣

∣
ck−2 + (−1)1wck−3 + (−1)2w2ck−4 + ... + (−1)k−3wk−3c+ (−1)k−2

w

∣

∣

∣
≤

|c−w|
|c|k

(

|c|k−2 + |c|k−1 + ... + |c|+ 1
)

≤

α

(1−α)k

[

(α + 1)k−2 + (α + 1)k−1 + ...+ (α + 1) + 1
]

=
[

α

(1−α)k

] [

(α+1)k−1−1
(α+1)−1

]

= (α+1)k−1−1
(1−α)k

�

Lemma 2.2. Let k ≥ 4 and the recurrence Rn+1 = Rk
n + 1

c
be satisfied for every

n ≥ 1 where R1 = 1
c
with c ∈ C∗. We suppose that |c − w| ≤ α with α ∈ (0, 1)

where w is a solution of the equation zk−1 = −1. In the hypothesis of Lemma 2.1 we

suppose that there exists R > 1 such that |R2| ≤
(α+1)k−1 − 1

(1−α)k
< 1

R
. Then:

a). |R4| ≤
(

1
1−α

+ 1
Rk

)k
+ (α+1)k−1 − 2

(1−α)k
.
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b). If |R4| ≤
(

1
1−α

+ 1
Rk

)k
+ (α+1)k−1 − 2

(1−α)k
< 1

R
then |R2n| ≤

(

1
1−α

+ 1
Rk

)k
+ (α+1)k−1 − 2

(1−α)k
<

1
R
for every n ≥ 2.

Proof. a). From the hypothesis we obtain that |c| ≤ α+ 1 and 1
|c|

≤ 1
1−α

. We denote

by Ck
n = n!

k!(n−k)!
for every k = 0, 1, ..., n and we have

|R4| =
∣

∣Rk
3 +

1
c

∣

∣ =
∣

∣

∣

(

Rk
2 +

1
c

)k
+ 1

c

∣

∣

∣
=

∣

∣

∣

(

Rk
2

)k
+ C1

k

(

Rk
2

)k−1 (1
c

)

+ C2
k

(

Rk
2

)k−2 (1
c

)2
+ ... + Ck−1

k Rk
2

(

1
c

)k−1
+ 1

ck
+ 1

c

∣

∣

∣
≤

∣

∣Rk
2

∣

∣

k
+ C1

k

∣

∣Rk
2

∣

∣

k−1 1
|c|

+ C2
k

∣

∣Rk
2

∣

∣

k−2 1
|c|2

+ ... + Ck−1
k

∣

∣Rk
2

∣

∣

1
|c|k−1 +

∣

∣

1
ck

+ 1
c

∣

∣ =
(

∣

∣Rk
2

∣

∣ + 1
|c|

)k

− 1
|c|k

+
∣

∣

1
ck

+ 1
c

∣

∣ =

(
∣

∣Rk
2

∣

∣

)

[

(

∣

∣Rk
2

∣

∣+ 1
|c|

)k−1

+ ... +
(

∣

∣Rk
2

∣

∣+ 1
|c|

)

1
|c|k−2 +

1
|c|k−1

]

+
∣

∣

1
ck

+ 1
c

∣

∣ <

(

1
Rk

)

[

(

1
Rk + 1

1−α

)k−1
+ ...+

(

1
Rk + 1

1−α

)

1

(1−α)k−2 +
1

(1−α)k−1

]

+ (α+1)k−1 − 1
(1−α)k

=

(

1
Rk

)

[

( 1
1−α

+ 1

Rk )
k
− 1

(1−α)k

( 1
1−α

+ 1

Rk ) − 1
1−α

]

+ (α+1)k−1 − 1
(1−α)k

=
(

1
1−α

+ 1
Rk

)k
+ (α+1)k−1 − 2

(1−α)k

b). We have that |R4| ≤
(

1
1−α

+ 1
Rk

)k
+ (α+1)k−1 − 2

(1−α)k
< 1

R
is true by the assumption

in the hypothesis. We suppose that |R2n| ≤
(

1
1−α

+ 1
Rk

)k
+ (α+1)k−1 − 2

(1−α)k
< 1

R
and we

will prove by mathematical induction that |R2n+2| ≤
(

1
1−α

+ 1
Rk

)k
+ (α+1)k−1 − 2

(1−α)k
< 1

R
.

We have that

|R2n+2| =
∣

∣Rk
2n+1 +

1
c

∣

∣ =
∣

∣

∣

(

Rk
2n +

1
c

)k
+ 1

c

∣

∣

∣
< 1

R

taking into consideration that
∣

∣Rk
2n

∣

∣ < 1
Rk and making the same computations as in

point a) from above. Hence, by mathematical induction, we have that

|R2n| ≤
(

1
1−α

+ 1
Rk

)k
+ (α+1)k−1 − 2

(1−α)k
< 1

R

for every n ≥ 2. �

Lemma 2.3. For every n ∈ N, n ≥ 2 and x, a ∈ C we have xn = (x−a)n+C1
na(x−

a)n−1+ C2
na

2(x − a)n−2 + ...+ Cn−1
n an−1(x − a) + an where Ck

n = n!
k!(n−k)!

for every

k = 0, 1, ..., n.

Proof. For n = 2 we have x2 = (x−a)2+2a(x−a)+a2 = x2−2ax+a2+2ax−2a2+a2 =

x2. We suppose now that

xn = (x− a)n + C1
na(x− a)n−1 + C2

na
2(x− a)n−2 + ...+ Cn−1

n an−1(x− a)+ an
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and we prove, by mathematical induction, that

xn+1 = (x− a)n+1 + C1
n+1a(x− a)n+ C2

n+1a
2(x− a)n−1 + ...+ Cn

n+1a
n(x− a)+ an+1

We have that

xn+1 = x · xn = x [(x− a)n + C1
na(x− a)n−1 + ...+ Cn−1

n an−1(x− a) + an] =

(x− a+ a) [(x− a)n + C1
na(x− a)n−1 + ...+ Cn−1

n an−1(x− a) + an] =

(x− a)n+1 + C1
na(x− a)n + ...+ Cn−1

n an−1(x− a)2 + an(x− a)+

a(x− a)n + C1
na

2(x− a)n−1 + ...+ Cn−1
n an(x− a) + an+1 =

(x− a)n+1 + (C1
n + C0

n) a(x− a)n + (C2
n + C1

n) a
2(x− a)n−1 + ...+

(Cn−1
n + Cn−2

n ) an−1(x− a)2 + (Cn
n + Cn−1

n ) an(x− a) + an+1 =

(x− a)n+1 + C1
n+1a(x− a)n+ ...+ Cn

n+1a
n(x− a) + an+1

�

Lemma 2.4. Let k ≥ 4 and the recurrence Rn+1 = Rn
k
+ 1

c
be satisfied for every

n ≥ 1 where R1 =
1
c
with c ∈ C

∗. We suppose that |c−w| ≤ α with α ∈ (0, 1) where

w is a solution of the equation zk+1 = −1. Then |R2| ≤
(α+1)k −1+α

(1−α)k+1 .

Proof. i). Let k = 2p ≥ 4, w be a solution of the equation zk+1 = z2p+1 = −1 and

|c − w| ≤ α with α ∈ (0, 1). Then |c| ≤ α + 1, 1
|c|

≤ 1
1−α

, |w| = 1, wk2 = (w2p)
2p

=
(

− 1
w

)2p
= 1

w2p = −w, c− w = c−w = c− (−w2p) = c+w2p and thus |c−w| = |c−w|

= |c + w2p| ≤ α. Hence we obtain the following

|R2| =
∣

∣

∣
R1

k
+ 1

c

∣

∣

∣
=

∣

∣

1
c2p

+ 1
c

∣

∣ =
|c2p+c|
|c|2p+1 =

(

1
|c|2p+1

)
∣

∣

∣
(c+ w2p)

2p
+ ...+ C

2p−1
2p (−1)2p−1 (w2p)

2p−1
(c+ w2p)− w + c

∣

∣

∣
≤

(

1
|c|2p+1

) [

|c + w2p|
2p
+ C1

2p |c+ w2p|
2p−1

+ ... + C
2p−1
2p |c+ w2p|+ |c− w|

]

=
(

1
|c|2p+1

) [

(|c + w2p|+ 1)
2p
− 1 + |c− w|

]

=
(

1
|c|2p+1

){

(|c+ w2p|)
[

(|c+ w2p|+ 1)
2p−1

+ ...+ (|c+ w2p|+ 1) + 1
]

+ |c− w|
}

≤

1
(1−α)2p+1

{

α
[

(α + 1)2p−1 + ...+ (α + 1) + 1
]

+ α
}

=

1
(1−α)2p+1

[

α
(α+1)2p−1
(α+1)−1

+ α
]

= (α+1)2p − 1+α
(1−α)2p+1 = (α+1)k − 1+α

(1−α)k+1

ii). Let k = 2p + 1 ≥ 5, w be a solution of the equation zk+1 = z2p+2 = −1 and

|c−w| ≤ α with α ∈ (0, 1). Then |c| ≤ α+1, 1
|c|

≤ 1
1−α

, |w| = 1, wk2 = (w2p+1)
2p+1

=
(

− 1
w

)2p+1
= − 1

w2p = −(−w) = w, c− w = c − w = c − (−w2p+1) = c + w2p+1 and

thus |c− w| = |c− w| = |c+ w2p+1| ≤ α. Hence we obtain the following
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|R2| =
∣

∣

∣
R1

k
+ 1

c

∣

∣

∣
=

∣

∣

1
c2p+1 +

1
c

∣

∣ =
|c2p+1+c|
|c|2p+2 =

(

1
|c|2p+2

)
∣

∣

∣
(c + w2p+1)

2p+1
+ ... + C

2p
2p+1(−1)2p (w2p+1)

2p
(c+ w2p+1)− w + c

∣

∣

∣
≤

(

1
|c|2p+2

) [

|c+ w2p+1|
2p+1

+ C1
2p+1 |c + w2p+1|

2p
+ ...+ C

2p
2p+1 |c+ w2p+1|+ |c− w|

]

=
(

1
|c|2p+2

) [

(|c+ w2p+1|+ 1)
2p+1

− 1 + |c− w|
]

=
(

1
|c|2p+2

){

(|c+ w2p+1|)
[

(|c+ w2p+1|+ 1)
2p
+ ...+ 1

]

+ |c− w|
}

≤

1
(1−α)2p+2

{

α
[

(α + 1)2p + ...+ (α + 1) + 1
]

+ α
}

=

1
(1−α)2p+2

[

α
(α+1)2p+1−1

(α+1)−1
+ α

]

= (α+1)2p+1 − 1+α
(1−α)2p+2 = (α+1)k − 1+α

(1−α)k+1

Hence we conclude that if w is a solution of the equation zk+1 = −1 and |c − w|

≤ α ∈ (0, 1) then |R2| ≤
(α+1)k − 1+α

(1−α)k+1 for every k ≥ 4. �

Lemma 2.5. Let k ≥ 4 and the recurrence Rn+1 = Rn
k
+ 1

c
be satisfied for every

n ≥ 1 where R1 = c with c ∈ C∗. We suppose that |c − w| ≤ α with α ∈ (0, 1)

where w is a solution of the equation zk+1 = −1. In the hypothesis of Lemma 2.4 we

suppose that there exists R > 1 such that |R2| ≤
(α+1)k −1+α

(1−α)k+1 < 1
R
. Then:

a). |R4| ≤
(

1
1−α

+ 1
Rk

)k
+ (α+1)k −2+2α

(1−α)k+1 .

b). If |R4| ≤
(

1
1−α

+ 1
Rk

)k
+ (α+1)k −2+2α

(1−α)k+1 < 1
R

then |R2n| ≤
(

1
1−α

+ 1
Rk

)k
+

(α+1)k −2+2α
(1−α)k+1 < 1

R
for every n ≥ 2.

Proof. a). We have that

|R4| =
∣

∣

∣
R3

k
+ 1

c

∣

∣

∣
=

∣

∣

∣

(

Rk
2 +

1
c

)k
+ 1

c

∣

∣

∣
=

∣

∣

∣

(

Rk
2

)k
+ C1

k

(

Rk
2

)k−1 (1
c

)

+ ...+ Ck−1
k

(

Rk
2

) (

1
c

)k−1
+ 1

ck
+ 1

c

∣

∣

∣
≤

∣

∣Rk
2

∣

∣

k
+ C1

k

∣

∣Rk
2

∣

∣

k−1 1
|c|

+ C2
k

∣

∣Rk
2

∣

∣

k−2 1
|c|2

+ ...+ Ck−1
k

∣

∣Rk
2

∣

∣

1
|c|k−1 +

∣

∣

1
ck

+ 1
c

∣

∣ =
(

∣

∣Rk
2

∣

∣+ 1
|c|

)k

− 1
|c|k

+
∣

∣

1
ck

+ 1
c

∣

∣ =

∣

∣Rk
2

∣

∣

[

(

∣

∣Rk
2

∣

∣+ 1
|c|

)k−1

+ ... +
(

∣

∣Rk
2

∣

∣+ 1
|c|

)

1
|c|k−2 +

1
|c|k−1

]

+
∣

∣

1
ck

+ 1
c

∣

∣ ≤

(

1
Rk

)

[

(

1
Rk + 1

1−α

)k−1
+ ...+

(

1
Rk + 1

1−α

) (

1
1−α

)k−2
+
(

1
1−α

)k−1
]

+ (α+1)k −1+α
(1−α)k+1 =

(

1
Rk

)

[

( 1

Rk
+ 1

1−α)
k
− 1

(1−α)k

( 1

Rk + 1
1−α) − ( 1

1−α)

]

+ (α+1)k −1+α
(1−α)k+1 =

(

1
1−α

+ 1
Rk

)k
+ (α+1)k −2+2α

(1−α)k+1

b). The proof is similar to point b) from Lemma 2.2. �
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3. Main results

In this section we will denote by B(a, r) = {z ∈ C | |z − a| ≤ r} where a ∈ C and

r > 0 a closed ball (disk) in the complex plane. In Theorem 3.1 we consider w ∈ C a

solution of the equation zk−1 = −1, k ≥ 2 and we compute r > 0 such that B(w, r)

is included in the Inverted Multibrot set Nk for every k ≥ 2 and in Theorem 3.2 we

consider w ∈ C a solution of the equation zk+1 = −1, k ≥ 2 and we compute r > 0

such that B(w, r) is included in the Inverted Multicorn set N ∗
k for every k ≥ 2.

Theorem 3.1. Let Nk be the Inverted Multibrot set of fc (z) = zk + 1
c
, c ∈ C∗ for

every k ≥ 2. Then

a). B
(

−1, 1
11

)

⊂ N2

b). B
(

w, 1
14

)

⊂ N3 where w is a solution of the equation z2 = −1

c). B
(

w, 1
5k

)

⊂ Nk where w is a solution of the equation zk−1 = −1 for every k ≥ 4.

Proof. For this proof we will use the recurrence Rn+1 = Rk
n+

1
c
for every n ≥ 1 where

R1 =
1
c
with c ∈ C

∗ and k ≥ 2.

a). For k = 2 we have Rn+1 = R2
n +

1
c
where R1 = 1

c
and let w = −1. For |c− w|

= |c+ 1| ≤ 1
11

we have |R1| =
1
|c|

≤ 11
10
. Thus

|R2| =
∣

∣R2
1 +

1
c

∣

∣ =
∣

∣

1
c2
+ 1

c

∣

∣ = |c+1|
|c|2

≤ 1
11

(

11
10

)2
= 11

100
< 0.2 = 1

5

Moreover

|R4| =
∣

∣

∣

(

R2
2 +

1
c

)2
+ 1

c

∣

∣

∣
=

∣

∣R4
2 + 2

(

1
c

)

R2
2 +

1
c2
+ 1

c

∣

∣ ≤

|R2|4 + 2
(

1
|c|

)

|R2|2 +
∣

∣

1
c2
+ 1

c

∣

∣ <
(

1
5

)4
+ 2

(

11
10

) (

1
5

)2
+ 11

100
∼= 0.1996 < 0.2 = 1

5

Hence by Lemma 2.2, point b), we have |R2n| <
1
5
for every n ≥ 1 and thus

Rn 6→ ∞ when n −→ ∞. Thus B
(

−1, 1
11

)

⊂ N2.

b). For k = 3 we have Rn+1 = R3
n + 1

c
where R1 = 1

c
and w2 = −1 implies

w ∈ {i,−i}. Let w = −i and suppose |c− w| = |c + i| ≤ 1
14
. Then |R1| =

1
|c|

≤ 14
13

and

|R2| =
∣

∣R3
1 +

1
c

∣

∣ =
∣

∣

1
c3
+ 1

c

∣

∣ =
∣

∣

∣

c2+1
c3

∣

∣

∣
=

∣

∣

∣

(c+i)2−2i(c+i)
c3

∣

∣

∣
≤ |c+i|2+2|c+i|

|c|3
≤

(

14
13

)3 [( 1
14

)

+ 2
(

1
14

)]

= 406
2197

∼= 0.18479745 < 0.25 = 1
4

Moreover
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|R4| =
∣

∣

∣

(

R3
2 +

1
c

)3
+ 1

c

∣

∣

∣
=

∣

∣

∣
R9

2 + 3
(

1
c

)

R6
2 + 3

(

1
c

)2
R3

2 +
1
c3
+ 1

c

∣

∣

∣
≤

|R2|9 + 3
(

1
|c|

)

|R2|6 + 3
(

1
|c|

)2

|R2|3 +
∣

∣

1
c3
+ 1

c

∣

∣ <
(

1
4

)9
+ 3

(

14
13

) (

1
4

)6
+ 3

(

14
13

)2 (1
4

)3
+ 406

2197
∼= 0.2399539266 < 0.25 = 1

4

Hence by Lemma 2.2, point b), we have |R2n| <
1
4
for every n ≥ 1 and thus

Rn 6→ ∞ when n −→ ∞. Thus B
(

−i, 1
14

)

⊂ N3. Similar proof for w = i. Hence

B
(

w, 1
14

)

⊂ N3 where w is a solution of the equation z2 = −1.

c). Let k ≥ 4 and let us we first make the following five remarks:

i). For R > 1.25 the sequence εk = k
Rk for every k ≥ 4 is decreasing. Indeed, we

have that εk+1

εk
=

(

k+1
Rk+1

)

(

Rk

k

)

= k+1
Rk

< 1 ⇐⇒ k + 1 < Rk ⇐⇒ 1 < (R − 1)k which

is true since R > 1.25 and k ≥ 4. Hence we obtain that 0 < εk ≤ ε4 =
4
R4 for every

k ≥ 4.

ii). The sequence ak = k−1
5k

for every k ≥ 4 is increasing. Indeed, we have that

ak+1

ak
= k2

k2−1
> 1 for every k ≥ 4. Thus ak < lim

n−→∞
an = lim

n−→∞

n−1
5n

= 1
5
for every k ≥ 4.

iii). The sequence ck = k
5k−1

for every k ≥ 4 is decreasing. Indeed, we have that

ck+1

ck
= 5k2+4k−1

5k2+4k
< 1 for every k ≥ 4. Thus ck ≤ c4 =

4
19

for every k ≥ 4.

iv). According to ([8]) for every r > 0 and x > −1 we have a generalized version

of Bernoulli’s inequality which is 1 + rx ≤ (1 + x)r ≤ erx.

v). For α ∈ (0, 1) we have that −α ∈ (−1, 0) and we can apply Bernoulli’s

inequality from above and we obtain (1− α)k = (1 + (−α))k ≥ 1 + k(−α) = 1− kα.

Moreover for α ∈
(

0, 1
k

)

we have 1− kα > 0 and we obtain also 1

(1−α)k
≤ 1

1−kα
.

We return now to the proof of point c). We suppose that w is a solution of the

equation zk−1 = −1 and |c− w| ≤ 1
5k

= α. Then from Lemma 2.1 we have

|R2| ≤
(α+1)k−1−1

(1−α)k
≤ e(k−1)α−1

1−kα
= e

k−1
5k −1

1−k( 1
5k)

= eak − 1
1 − 1

5

=
(

5
4

)

[eak − 1] <
(

5
4

) [

e1/5 − 1
]

∼= 0.2767 < 1
3
= 1

R

Thus we obtain R = 3 and the sequence εk = k
3k

for every k ≥ 4 verifies 0 < εk ≤

ε4 =
4
34

= 4
81
. Then from Lemma 2.2 we have

|R4| ≤
(

1
1−α

+ 1
Rk

)k
+ (α+1)k−1−2

(1−α)k
=

(

1 + α
1−α

+ 1
Rk

)k
+ (α+1)k−1−2

(1−α)k
≤

e
k( α

1−α
+ 1

Rk ) + e(k−1)α−2
1−kα

= e
ck+

k

Rk +
(

5
4

)

[eak − 2] ≤ ec4+
4
34 +

(

5
4

) [

e1/5 − 2
]

=

e
4
19

+ 4
81 +

(

5
4

) [

e1/5 − 2
]

∼= (1.2968121) + (−0.9732465) = 0.3235655 < 1
3
= 1

R
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Hence by Lemma 2.2, point b), we have |R2n| <
1
3
for every n ≥ 1 and thus

Rn 6→ ∞ when n −→ ∞. Thus B
(

w, 1
5k

)

∈ Nk where w is a solution of the equation

zk−1 = −1 for every k ≥ 4. �

Theorem 3.2. Let N ∗
k be the Inverted Multicorn set of fc (z) = zk + 1

c
, c ∈ C∗ for

every k ≥ 2. Then

a). B
(

w, 1
29

)

⊂ N ∗
3 where w is a solution of the equation z3 = −1

b). B
(

w, 1
31

)

⊂ N ∗
3 where w is a solution of the equation z4 = −1

c).B
(

w, 1
7(k+1)

)

⊂ N ∗
k where w is a solution of the equation zk+1 = −1 for every

k ≥ 4.

Proof. For this proof we will use the reccurence Rn+1 = Rn
k
+ 1

c
for every n ≥ 1

where R1 =
1
c
with c ∈ C∗ and k ≥ 2.

a). If k = 2 then the recurrence is Rn+1 = R
2

n + 1
c

with R1 = 1
c
. Suppose w is

a solution of the equation z3 = −1 and |c − w| ≤ 1
29
. Then |c + w2| ≤ 1

29
and |R1|

= 1
|c|

≤ 29
28
. Hence

|R2| =
∣

∣

∣
R1

2
+ 1

c

∣

∣

∣
=

∣

∣

1
c2
+ 1

c

∣

∣ =
|c2+c|
|c|3

=
(

1
|c|3

)

| (c + w2)
2
− 2w2 (c+ w2) + w2 + c| =

(

1
|c|3

)

| (c+ w2)
2
− 2w2 (c+ w2) + c− w| ≤

(

1
|c|3

)

[|c+ w2|2 + 2|c+ w2|+ |c− w|] ≤
(

29
28

)3
[

(

1
29

)2
+
(

3
29

)

]

∼= 0.114932 < 0.2 = 1
5

Moreover

|R4| =
∣

∣

∣
R3

2
+ 1

c

∣

∣

∣
=

∣

∣(R2
2 +

1
c
)2 + 1

c

∣

∣ =
∣

∣R4
2 + 2

(

1
c

)

R2
2 +

1
c2
+ 1

c

∣

∣ ≤

|R2|
4+2

(

1
|c|

)

|R2|
2+

∣

∣

1
c2
+ 1

c

∣

∣ ≤
(

1
5

)4
+2

(

29
28

) (

1
5

)2
+0.114932 ∼= 0.1993897 < 0.2 = 1

5

Hence by Lemma 2.5, point b), we obtain that |R2n| <
1
5
for every n ≥ 1 and thus

Rn 6→ ∞ when n −→ ∞. Hence B
(

w, 1
29

)

⊂ N ∗
2 where w is a solution of the equation

z3 = −1.

b). If k = 3 then the recurrence is Rn+1 = R
3

n +
1
c
with R1 =

1
c
. Suppose that w is

a solution of the equation z4 = −1 and |c− w| ≤ 1
31

= α. Then |R1| = |c| ≤ 31
30

and

|c+ w3| ≤ 1
31
. Hence we have

|R2| =
∣

∣

∣
R1

3
+ 1

c

∣

∣

∣
=

∣

∣

1
c3
+ 1

c

∣

∣ = |c3+c|

|c|4
=

(

1
|c|4

)

| (c+ w3)
3
− 3w3 (c + w3)

2
+ 3w6 (c+ w3)− w + c| ≤
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(

1
|c|4

)

[|c+ w3|3 + 3|c+ w3|2 + 3|c+ w3|+ |c− w|] ≤
(

1
|c|4

)

(α3 + 3α2 + 4α) ≤
(

31
30

)4
[

(

1
31

)3
+ 3

(

1
31

)2
+ 4

(

1
31

)

]

∼= 0.1507135 < 1
4

Moreover

|R4| =
∣

∣

∣
R3

3
+ 1

c

∣

∣

∣
=

∣

∣(R3
2 +

1
c
)3 + 1

c

∣

∣ = |R9
2 + 3

(

1
c

)

R6
2 + 3

(

1
c

)2
R3

2 +
1
c3
+ 1

c
| ≤

|R2|9 + 3
(

1
|c|

)

|R2|6 + 3
(

1
|c|

)2

|R2|3 +
∣

∣

1
c3
+ 1

c

∣

∣ ≤
(

1
4

)9
+ 3

(

31
30

) (

1
4

)6
+ 3

(

31
30

)2 (1
4

)3
+ 0.1507135 ∼= 0.2015262 < 0.25 = 1

4

Hence by Lemma 2.5, point b), we have |R2n| <
1
4
for every n ≥ 1 and thus Rn 6→ ∞

when n −→ ∞. Hence B
(

w, 1
31

)

⊂ N ∗
3 where w is a solution of the equation z4 = −1.

c). Let k ≥ 4 and let us first make the following five remarks:

i). For R > 1.25, the sequence εk = k
Rk for every k ≥ 4 is decreasing. Indeed, we

have that
εk+1

εk
=

(

k+1
Rk+1

)

(

Rk

k

)

= k+1
Rk

< 1 ⇐⇒ k + 1 < Rk ⇐⇒ 1 < (R − 1)k which

is true since R > 1.25 and k ≥ 4. Hence we obtain that 0 < εk ≤ ε4 =
4
R4 for every

k ≥ 4.

ii). The sequence ak = k
7(k+1)

for every k ≥ 4 is increasing. Indeed, we have that

ak+1

ak
= k2+2k+1

k2+2k
> 1 for every k ≥ 4. Thus ak < lim

n−→∞
an = lim

n−→∞

n
7(n+1)

= 1
7
for every

k ≥ 4.

iii). The sequence ck = k
7k+6

for every k ≥ 4 is increasing. Indeed, we have that

ck+1

ck
= 7k2+13k+6

7k2+13k
> 1 for every k ≥ 4. Thus ck < lim

n−→∞
cn = lim

n−→∞

n
7n+6

= 1
7
for every

k ≥ 4.

iv). According to ([8]) for every r > 0 and x > −1 we have a generalized version

of Bernoulli’s inequality which is 1 + rx ≤ (1 + x)r ≤ erx.

v). For α ∈ (0, 1) we have that −α ∈ (−1, 0) and we can apply Bernoulli’s

inequality from above and we obtain (1− α)k = (1 + (−α))k ≥ 1 + k(−α) = 1− kα.

Moreover for α ∈
(

0, 1
k

)

we have 1− kα > 0 and we obtain also 1

(1−α)k
≤ 1

1−kα
.

We return now to the proof of point c). We suppose that w is a solution of the

equation zk+1 = −1 and |c− w| ≤ 1
7(k+1)

= α. Then from Lemma 2.4 we have

|R2| ≤
(α+1)k−1+α

(1−α)k+1 ≤ ekα−1+α
1−(k+1)α

=
(

7
6

)

[

eak − 1 + 1
7(k+1)

]

<
(

7
6

) [

e1/7 − 1 + 1
35

]

∼= 0.21249249 < 1
3
= 1

R
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Thus we obtain R = 3 and the sequence εk = k
3k

for every k ≥ 4 verifies 0 < εk ≤

ε4 =
4
34

= 4
81
. Then from Lemma 2.5 we have

|R4| ≤
(

1
1−α

+ 1
Rk

)k
+ (α+1)k −2+2α

(1−α)k+1 =
(

1 + α
1−α

+ 1
Rk

)k
+ (α+1)k−2+2α

(1−α)k+1 ≤

e
k( α

1−α
+ 1

Rk ) + ekα−2+2α
1−(k+1)α

≤ e
ck+

k

Rk +
(

7
6

)

[

eak − 2 + 2
7(k+1)

]

≤

e
1
7
+ 4

81 +
(

7
6

) [

e1/7 − 2 + 2
35

]

∼= (1.2119611) + (−0.9208408) = 0.2911203 < 1
3

Hence by Lemma 2.5, point b), we have |R2n| <
1
3
for every n ≥ 1 and thus Rn 6→ ∞

when n −→ ∞. Thus B
(

w, 1
7(k+1)

)

⊂ N ∗
k where w is a solution of the equation

zk+1 = −1 for every k ≥ 4. �

4. Conclusions

In this paper we have proved that B
(

−1, 1
11

)

⊂ N2, B
(

w, 1
14

)

⊂ N3 where w is a

solution of the equation z2 = −1 and B
(

w, 1
5k

)

⊂ Nk where w is a solution of the

equation zk−1 = −1 for every k ≥ 4 and B
(

w, 1
29

)

⊂ N ∗
2 where w is a solution of the

equation z3 = −1, B
(

w, 1
31

)

⊂ N ∗
3 where w is a solution of the equation z4 = −1 and

B
(

w, 1
7(k+1)

)

⊂ N ∗
k where w is a solution of the equation zk+1 = −1 for every k ≥ 4

where Nk and N ∗
k are the Inverted Multibrot and Multicorn sets of the functions

zk + 1
c
and zk + 1

c
, c ∈ C∗, k ≥ 2.
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