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CLOSED BALLS INCLUDED IN THE INVERTED MULTIBROT
AND MULTICORN SETS

DAN DUMITRU

ABSTRACT. The aim of this article is to compute a radius of a closed ball included

in the Inverted Multibrot and Multicorn sets. More exactly, for w € C* a complex

k—1

solution of the equation z = —1 we compute r > 0 such that B(w, ) is included

in the Inverted Multibrot set A}, of the the function z* + %, c € C* for every k > 2

and for w € C* a complex solution of the equation z**! = —1 we compute r > 0

such that B(w,r) is included in the Inverted Multicorn set N} of the function

Ek—i—%, c € C* for every k > 2.

1. INTRODUCTION

Dynamical systems generated by the iterations of the quadratic polynomial z? + ¢
were studied in [2] where it is proved that the well-known Mandelbrot set is con-
nected. Mandelbrot set was naturally generalized, on one hand, to the Multibrot
sets given by the iteration of the polynomial 2¢ + ¢, d > 2 and, on the other hand,
to the Multicorn sets given by the iteration of the polynomials z¢ + ¢, d > 2. The
intersections of the Multibrot set of 2 + ¢ with the rays R,w where w?! = =£1,
d > 2, were given in [1], the exact intervals of the cross section of the Multibrot set
of 22+ ¢, d > 3, d odd, were given in ([6], [7]) and the exact intervals of the cross
section of the Multibrot set of 2% + ¢, d > 2, d even, were given in ([8]). About the
Multicorn sets, we can say that the intersections of the Multicorn set of Z% + ¢ with
the rays R, w where wt! = 41, d > 2 were given in [11]. The connectedness of the

Tricorn (particular case of Multicorn) given by the functions z2 + ¢ was proven in [5].
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k—1

For w € C* a complex solution of the equation z"~' = —1 we calculate in [3] a

radius r > 0 such that B (w, ) is included in the Multibrot of z* + ¢ for every k > 2.
Moreover, for w € C* a complex solution of the equation zF*! = —1 we also calculate
in [3] a radius 7 > 0 such that B (w,r) is included in the Multicorn of Z* + ¢ for every
k> 2.

In this paper we continue the work from [3] for the Inverted Multibrot and Mul-
ticorn sets. More exactly, for w € C* a complex solution of the equation z*~1 = —1
we calculate a radius 7 > 0 such that B (w,r) is included in the Inverted Multibrot
of 2F + %, ¢ € C for every k > 2 and for w € C* a complex solution of the equation
2F+1 = —1 we calculate a radius 7 > 0 such that B (w,r) is included in the Inverted
Multicorn of Z¥ + %, c € C for every k > 2.

We recall now that the Inverted Mandelbrot sets were also studied in [9] and we

have the following well-known definitions.

Definition 1.1. Let f.(z) = z¥ + 2 with ¢ € C* and k € N, k > 2. The Inverted
Multibrot set is defined by
Ni = fe € C | {4(0)hon is bounded } = {c € C* [ {f(0)}x A o0}
which is equivalent to
Ny = {¢ € C* | {Ru}nor is bounded} = {¢ € C* | {Ru}tnsr 5 o0}
where the sequence of complex numbers (R,),>; from above is satisfying the rec-

curence R, 1 = R,’i+% for every n > 1 with Ry = % (for k = 2 we obtain the Inverted

Mandelbrot set N3).

Definition 1.2. Let f.(z) = z¥ + £ with ¢ € C* and k € N, k > 2. The Inverted
Multicorn set is defined by
k—o0
Ni={c € C [{f&(0)}i=1 is bounded} = {c € C* [ {fE(0)}x # oo}

which is equivalent to

n—o0

N ={ceC*|{R,}n>1 is bounded} = {c € C* | {R,}n>1 /A o0}
where the sequence of complex numbers (R,),>1 from above is satisfying the rec-

_k .
curence R, = R, + % for every n > 1 with Ry = %
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2. PRELIMINARY LEMMAS

In this section we prove some preliminary lemmas.

Lemma 2.1. Let k > 4 and the recurrence R,y = RF + % be satisfied for every
n > 1 where Ry = L with ¢ € C*. We suppose that |¢c — w| < o with o € (0,1) where

w s a solution of the equation zF~1 = —1. Then |Ry| < %

Proof. From the hypothesis we obtain that |¢] < « + 1 and \_il < ﬁ Let also
{w, w1, ...,wr_2} C C be the set of all the solutions of the equation 2*~! = —1. We
have that |w| = |w;| =1 for every i € {1, ...,k — 2} and from Viete’s relations ([10])
we obtain:

W1 + W + ...+ Wg—2 = —W

WL W + WWs + ... Wy gWp—o = W

W WeWs 4+ W WaWy + ... Wi g Wh_3Wh—g = — W
WiWa... Wh_3 + ... Wows.. Wg_g = (—1)F3k=3
G Vs
. wiwa... Wr—o = w
Then we have
k=141
|[Rol = [RY + 1| = |F + 1 I%:

ael(c = w)(e—wn)...(c = wi )| = =8| (c = wi)(c = wn)...(c — wy )| =
Ic‘;:ﬂ k24 (_1)1wck—3+(_1)2w26k—4+m+(_1)k—3wk—3c+ (—ll)u’“2 <

S (e 2 el + 4 e +1) <

o [la+ D)2+ (a+ 1)+ L+ (a+1)+1] =

(1-a)*
a (atDF 11 _ (atDF -1
(1—a)* (at+1)—1 (1—a)k

O

Lemma 2.2. Let k > 4 and the recurrence R,y = RF + % be satisfied for every

n > 1 where Ry = + with ¢ € C*. We suppose that |c — w| < o with o € (0,1)

where w s a solution of the equation zF~' =

—1. In the hypothesis of Lemma 2.1 we
suppose that there exists R > 1 such that |Ry| < a+DPL — 1 +. Then:

(1—a)*
E | (o417l —2
o). |Ral < (5 + )" + i
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a k a k—1 _
b) ]f |R4| < ( + RL) ‘l‘% < 5 then |R2n| < (% + %) +H(11)_7a);€2 <

E for every n > 2.

Proof. a). From the hypothesis we obtain that |¢| < o+ 1 and ﬁ < L. We denote
by CF = ™~ for every k =0,1,...,n and we have

(73

Rl = RS+ 4| = | -
\wW+@wW‘m+qwﬂ m+—+wvw> R
\R’;\kjtc,ﬂRz\’f tL +Ck\R2\k 2%+ A+ G| RS = =t |E L =
O&wa——+F+H=
(R81) [ (1814 ) e (124 ) b | 1 8] <
(a+DF1 —1

k—1
() [ (e + 55 +-+@+1>0W2+(y4+ ot =

(at+ ) —1 (1 1\k |, (a+1)k—t —2
+ = (et ) + T O—aF

b). We have that |Ry| < (= + i)k 4D =2 o 1ig trye by the assumption

(1—a)k R
in the hypothesis. We suppose that |Rs,| < (= + ﬁ)k + % < % and we
will prove by mathematical induction that | R, o] < %a + ﬁ)k + % < %.

We have that

Rl = Ry + 1] = | (RS, + 1) + 1] <

[

==

taking into consideration that ‘R’;n‘ < % and making the same computations as in

point a) from above. Hence, by mathematical induction, we have that

‘R2n‘§(ﬁ+}%) +((1Jr(1)7a)1€2<

o=

for every n > 2. O

Lemma 2.3. For everyn € N, n > 2 and x,a € C we have 2" = (x—a)"+Cla(x —
a)" 1+ C2a?(z — a)" 2 + ..+ O 'a" N (z — a) + a™ where C* = ﬁlk), for every
k=0,1,...n

Proof. For n = 2 we have 2? = (r—a)*+2a(r—a)+a* = 2* —2ar+a*+2ax—2a*+a* =

x2. We suppose now that

"= (z—a)"+ Cla(z —a)" ' + C?a*(x —a)" % + ..+ C" 'a" Hz — a)+ a”
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and we prove, by mathematical induction, that
" = (z —a)"" + C}a(z —a)"+ C2a*(x —a)" 4+ o+ Clya™(z — a)+ o™t
We have that

l.n—i—l

=z-z"=z[(x —a)"+Cla(x —a)" '+ ..+ C" la" Nz —a)+a"] =
(—a+a)|[(x—a)"+Cla(x —a)" '+ ...+ C"ra" Yz —a)+a"] =
(z—a)"™ +Cla(x —a)" + ...+ C"'a" (z —a)* +a"(x —a)+
a(zr —a)"+ Cla*(z —a)" 1 + ...+ C" a"(z —a) + a" =
(x—a)" "+ (C+C%alx —a)"+ (C2+CHa*(x —a)" P + ... +
(Crt+Cr e Y ae—a)+(Cr+C Y a*(x —a) +a" ™ =
(x —a)""t + C}a(z — a)"+ .+ CMa(x — a) + o™

O

Lemma 2.4. Let k > 4 and the recurrence R, 1 = R_nk + % be satisfied for every
n > 1 where Ry = % with ¢ € C*. We suppose that |c —w| < o with o € (0,1) where

w is a solution of the equation 2Kt = —1. Then |Ry| < %

Proof. i). Let k = 2p > 4, w be a solution of the equation 2R = z2p+1 = —1 and
lc —w| < a with a € (0,1). Then |c|] < a+1, 2 oS Ta = w] =1, 0" = (W) =
(—i)zp = 4 =—w,c—w=C¢—w=c¢—(—w?) =c+w” and thus [c—w| = [c— U

= [¢ + w*| < a. Hence we obtain the following

P4

Bal = (R 4 4] = | + 2| = 15 =
() [+ . G 1) w2 ) o] <
<\0|2T> [|C+w2p‘2p+01 N 1‘C+w2p|+|c_w‘] _
(W) [(\c+w2p| +1)2p 1+ |c—w|} =
(Hzﬁ) {(|6+w2p|) [(|c+w2p| + )P (e w| 1) + 1} + |c—w|} <
e {a 0+ )P+ e+ 1) +1] +a) =

e [l | o] — (P _ e e

(1_a)2p+1 - (1_a)k+1
ii). Let k = 2p+ 1 > 5, w be a solution of the equation 2l = 22+2 — _1 and
lc—w| < awith a € (0,1). Then |¢] < a+1, & o S 1Ta L w| =1, wh = (w2t =
(—%)2“1 =——%=—(-w =w,c—w=¢—w==¢— (—w*") =+ w*" and

thus |c — w| = |[¢ — w| = |[¢ + w? ! < a. Hence we obtain the following
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et

|Ry| = ‘EkJrl = | + 2] = L =
(\cwlw) ’(C F w0 (1) () (4wt — w + c‘ <
e+ w2p+1|2p+1 + C’leJrl |+ w2p+1|2p NI 022;)“ [ w2p+1‘ +le— w\] _
(W) [(|c+ w4+ )P 14 e - w|] -
(W%’”) {(|C+ W) [(|E+ w4 )T 1} +|c— w|} <
e {a e+ )T+ @+ 1) +1] +a} =

1 a(a+1)21’+1—1 (e —14a (a+D)F - 1+a
(1—a)2p+2 (at+1)—1 - (1—a)2p+2 T (1—a)kt?

/N
o
=
I
1]
N—
[ —|

k+1

Hence we conclude that if w is a solution of the equation z*t!' = —1 and |c — w|

< a € (0,1) then |Ry| < (O‘J(’l)i)_kff for every k > 4. O
Lemma 2.5. Let k > 4 and the recurrence R, 1 = R_nk + % be satisfied for every
n > 1 where Ry = ¢ with ¢ € C*. We suppose that |c — w| < a with o € (0,1)
where w is a solution of the equation z**' = —1. In the hypothesis of Lemma 2.4 we
suppose that there exists R > 1 such that |Ry| < L)k_jfa < . Then:

o). |Ri] < (5 + &)" + el e

b). If |Ril < (s + )" + CHE2PY < Lothen |Ro| < (s + )"+

k _
%<%for@verynz2.

Proof. a). We have that

Rl = [ 4] = (R + "+ -
(RS)* + O (R (2) + o+ O () () 4 &+ 2
|RE|* +01\R’5}k P +02}R2\ L+ o+ OB +\Eik+% -

b). The proof is similar to point b) from Lemma 2.2. O
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3. MAIN RESULTS

In this section we will denote by B(a,r) = {z € C | |z — a| < r} where a € C and
r > 0 a closed ball (disk) in the complex plane. In Theorem 3.1 we consider w € C a

solution of the equation z#~1 =

= —1, k > 2 and we compute 7 > 0 such that B(w,r)
is included in the Inverted Multibrot set N} for every k > 2 and in Theorem 3.2 we
consider w € C a solution of the equation z¥*' = —1, k > 2 and we compute r > 0

such that B(w,r) is included in the Inverted Multicorn set N} for every k > 2.

Theorem 3.1. Let N be the Inverted Multibrot set of f.(z) = 2 + %, c e C* for
every k> 2. Then

a). E( ,11) C N,

b). B (w

i4) C N5 where w is a solution of the equation z*> = —1
c). F( ik) C Ny, where w is a solution of the equation zF~' = —1 for every k > 4.

Proof. For this proof we will use the recurrence R, = R¥ +% for every n > 1 where

Rlzlwithce(:*andk‘zz

a). For k =2 we have R,11 = R2 + 1 where Ry = 1 and let w = —1. For |c — w|
= |c+ 1] < & we have |R,| = Ic\ <4 Thus
_ 1| |1 1] _ let]] 1 (11N\2 _ 11 _1
[Ro| = [Ri+ 2| =z+i =% <t (f5) =m0 <02=3%

Moreover

Ral =+ 27+ 2] = R+ 2 () R+ &+ 8] <

1 1)4 11 (12 | 11 ~

Rl +2 (&) 1R + ]2+ 4 < ()" +2(8) (3)° + & 201996 < 0.2 = L

Hence by Lemma 2.2, point b), we have |Rs,| <
R,, #+ 0o when n —» oo. Thus B (-1, %) C Na.

% for every n > 1 and thus

b). For k = 3 we have R, = R + E where R; = % and w? = —1 implies
w € {i,—i}. Let w = —i and suppose |c —w| = [c+i| < g;. Then |R| = i < i

= 73
and

c+1 _ (c+i)2—2i(c+i)

C

\c+z\2+2\c+z\ <
|C\

Rl = [RI+ 2] = |5+
(

=
(4 [(4) +2(L)] = 2410967 o (.18479745 < 0.25 = L

Moreover
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R = |(R3+1)" +

‘R9+3()RS+3()R3+ +1
R2|6+3<|C‘> |Rol* + |5+ 1| <

%)2( ) +%N02399539266<025——

| Ro|” + 3 (%‘
(1) +3 (%) ()" +3

Hence by Lemma 2.2, point b), we have |Ra,| < 1 for every n > 1 and thus

—_— nl»—t

R, # oo when n — oo. Thus E(—i ﬁ) C N3. Similar proof for w = i. Hence
B ( , 14) C N5 where w is a solution of the equation 2% = —1.

c). Let k > 4 and let us we first make the following five remarks:

i). For R > 1.25 the sequence g, = % for every k > 4 is decreasing. Indeed, we

have that %2 = () () = 5 < 1 4= k+ 1< Rk <= 1 < (R — 1)k which

k
is true since R > 1.25 and k > 4. Hence we obtain that 0 < ¢, < g4 = % for every

k> 4.

ii). The sequence a; = ﬂ for every k > 4 is increasing. Indeed, we have that

Ak+1 __
ay, k2 1

n—

> 1 for every k > 4. Thus a; < lim a, = lim %= = 1 for every k > 4.

n—s 00 n—s 00 5"

iii). The sequence ¢ = for every k > 4 is decreasing. Indeed we have that

5k1

C’Z—:l = 5';2§i2;1 < 1 for every k > 4. Thus ¢;, < ¢4 = E for every k > 4.

iv). According to ([8]) for every r > 0 and x > —1 we have a generalized version
of Bernoulli’s inequality which is 1 +rx < (1 + )" < e™.
v). For a € (0,1) we have that —a € (—1,0) and we can apply Bernoulli’s

inequality from above and we obtain (1 — a)" = (14 (=a))* > 14 k(—a) = 1 — ka.

1

Moreover for o € (O, E) we have 1 — ka > 0 and we obtain also L

(1— )kglka

We return now to the proof of point ¢). We suppose that w is a solution of the

equation 27! = —1 and |¢ — w| < & = «. Then from Lemma 2.1 we have
R, < (a+)k—1-1 < elb—Da_7 e%—l €% —1 __
|Ra| < (I—a)F = "T-ka T 1k(L) T 1-1

(3) [e™ — 1] < (3) [¢/° — 1] 2 0.2767 < 1 =
Thus we obtain R = 3 and the sequence ¢, = 3% for every k > 4 verifies 0 < g5, <

€4 = 3i = ;—1. Then from Lemma 2.2 we have

R < (5 + )"+ Rl = (1 g2+ )+ SR <
o) 4 St ol (3 e o] < e 4 () 5] -
)

et tar 4 () [e!/5 — 2] 2 (1.2068121) + (—0.9732465) = 0.3235655 < 1 = 1
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Hence by Lemma 2.2, point b), we have |Rs,| < 3 for every n > 1 and thus
R,, # oo when n — oo. Thus B (w, é) € N, where w is a solution of the equation

2F=1 = —1 for every k > 4. O

Theorem 3.2. Let N be the Inverted Multicorn set of fo(z) =2"+ 2, c € C* for
every k > 2. Then

a). B (w, %) C N3 where w is a solution of the equation 2* = —1
b). B (w,3:) C N3 where w is a solution of the equation z* = —1
c).B <w, m> C N} where w is a solution of the equation 2*™' = —1 for every

k> 4.

Proof. For this proof we will use the reccurence R, = R_nk + % for every n > 1
where R = % with ¢ € C* and k£ > 2.

a). If & = 2 then the recurrence is R, = Fi + % with R; = % Suppose w is

a solution of the equation 2* = —1 and |c — w| < 5. Then [¢ + w?| < 55 and |Ry
:ﬁg%.Hence

_E2 ] g B Y a2 902 (F e a? 2 _

|Ro| = [Ry™ + ¢ _‘a2+c‘_ = P | (€4 w?)” —2w* (¢ +w?) + w* 4+ ¢| =
2

le

(#) | (64 w?)” — 2w (e +w?) + ¢ — w| < (%) (e +w?|* 4 2[¢ + w?| + [c —w]] <
0

114932 <02 =1

Moreover
Rl =[R2 = (R + 12+ 5 = [RE+2 () 3+ &+ ] <

Rl +2 (&) [Ro 4+ |4+ 1] < (1) +2(2) (2)+0.114932 = 0.1993897 < 0.2 = 1

Hence by Lemma 2.5, point b), we obtain that |Ry,| < i for every n > 1 and thus
R,, # oo when n — co. Hence B (w, %) C N5 where w is a solution of the equation
2= —1.

b). If k = 3 then the recurrence is R, 11 = Ei + % with R; = % Suppose that w is
a solution of the equation z* = —1 and |¢ — w| < 3- = . Then |Ry| = |¢[ < 3t and
e+ w?| < 5. Hence we have

3 +¢|

—3
|Ra| = ‘R1 -l—% o
(L“) | @+ w?)’ = 3w (€ + w?)? + 3uS (e +w?) —w+ | <

el

11
_‘E3+c‘_
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(c|4> [[e + w?]> 4 3[c + w?|* + 3|c + w?| + | — w]|] <
() (@ +30% +40) < (3)" | ()" +3 ()" + 4 ()] 201507135 < |
Moreover
Ryl = [F"+ 1| = (B + 1P+ | = IR +3 () B +3 () RE+ S+ 1 <
|R2\9+3(%> R2|6+3( ) |Rol® + |5 + 1] <
(3)?+3(2) (H)°+3(2)* (1) +0.1507135 = 0.2015262 < 0.25 = 1

Hence by Lemma 2.5, point b), we have |Ry,| < 1 for every n > 1 and thus R,, /4 oo
when n — co. Hence B ( w, 31) C N where w is a solution of the equation z* = —1.

c). Let k > 4 and let us first make the following five remarks:

i). For R > 1.25, the sequence ¢ = % for every k > 4 is decreasing. Indeed, we
have that % = () (£) = 5 < 1 4= k+ 1< Rk <= 1 < (R — 1)k which
is true since R > 1.25 and k£ > 4. Hence we obtain that 0 < g, < g4 = % for every
k> 4.

ii). The sequence a; = 7(k =y for every k > 4 is increasing. Indeed, we have that

apt1 _ k242k+1 _ n _ 1
o = o 1 for every k > 4. Thus ay < lim a, = lim =z L for every

n—so0 n—soo 7(n+1)
k> 4.

iii). The sequence ¢, = m for every k > 4 is increasing. Indeed, we have that

Ck+1 __ Tk24+13k+6 . T n 1
0 = v > L for every k > 4. Thus ¢ < nh_r)noocn = nh_r)n()o?mr6 = ¢ for every
k> 4.

iv). According to ([8]) for every r > 0 and x > —1 we have a generalized version
of Bernoulli’s inequality which is 1 +rz < (14 2)" < €.

v). For a € (0,1) we have that —a € (—1,0) and we can apply Bernoulli’s
inequality from above and we obtain (1 — )" = (14 (—a))" > 1+ k(—a) =1—ka.

1

, E) we have 1 — ka > 0 and we obtain also

1

Moreover for o € (O (- )k < T

We return now to the proof of point ¢). We suppose that w is a solution of the

equation zF*! = —1 and |c — w| < m = «. Then from Lemma 2.4 we have

1=(k+1)a 6
() [/ — 1+ L] 2 0.21249249 < L =

[} k a eFe_14+a a
[Ry| < et < ool :(Z)[ek_u ;)]<

T(k
1
R
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Thus we obtain R = 3 and the sequence ¢, = 3% for every k > 4 verifies 0 < ¢, <

€4 = =7 = 84—1. Then from Lemma 2.5 we have

k « — a o k N k .
1l < (75 + ) “JT?Z(H—J%) + g <

€
ertst + () [V -2+ g] = (1.2119611) + (—0.9208408) = 0.2911203 < 4

Hence by Lemma 2.5, point b), we have |Ry,| < 5 for every n > 1 and thus R, / oo

when n — oco. Thus B <w, m) c Nf Where w is a solution of the equation

21 = —1 for every k > 4. O

4. CONCLUSIONS

In this paper we have proved that B (—1, 1—11) C Na, E( , 14) C N3 where w is a

solution of the equation 2> = —1 and B (w, 5%) C N, where w is a solution of the

equation zF~! = —1 for every k > 4 and F( ) C N5 where w is a solution of the

W; 29
equation z* = —1, B ( , 31) C N where w is a solution of the equation z* = —1 and
B (w, m) C N} where w is a solution of the equation zF+t? = —1 for every k > 4
where N, and N;' are the Inverted Multibrot and Multicorn sets of the functions
F+landzb+1 ceCrk>2
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