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NEW NOTIONS OF ROUGH STATISTICAL CONVERGENCE OF
TRIPLE SEQUENCES IN GRADUAL NORMED LINEAR SPACES

ÖMER KIŞI(1) AND CHIRANJIB CHOUDHURY(2)

Abstract. In the present article, we introduce and investigate the concept of

statistical convergence for triple sequences in gradual normed linear spaces. We

prove some of its fundamental properties and a few implication relations. We then

concentrate on rough statistical convergence for triple sequences in gradual normed

linear spaces and established some of its features based on the limit set st3 −

LIM r

x
(G).

1. Introduction

The notion of statistical convergence was first presented by Fast [19] and Steinhaus

[31] independently in 1951. The main idea behind statistical convergence was the

notion of natural density. The natural density of a set A ⊆ N is denoted and defined

by

δ(A) = lim
n

1
n
|{k ∈ A : k ≤ n}|,

where the vertical bars indicate the cardinality of the enclosed set. A real-valued

sequence x = (xk) is said to be statistically convergent to the real number x0 if for

each η > 0,

δ({k ∈ N : |xk − x0| ≥ η}) = 0.

Subsequently, the idea was further investigated from the sequence space point of

view by Fridy [21], Šalát [29], Connor [12], Tripathy [34, 35], and many researchers

to provide deeper insights into the summability theory. Mursaleen and Edely [22]
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extended this concept over double sequences and mainly worked on the relationship

between statistical convergence and statistical Cauchy double sequences, statistical

convergence, and strong Cesaro summable double sequences. Besides this, Tripathy

[33] examined various properties of the sequence spaces formed by statistical conver-

gent double sequences and proved a decomposition theorem. Also, in 2007, Sahiner

et. al. [28] introduced and investigated statistical convergence for triple sequences.

Later on, Savaş and Esi [30] developed and investigated it for probabilistic normed

spaces. Statistical convergence got attention from a vast class of researchers due

to its wide applicability in various branches of mathematics such as number theory,

mathematical analysis, probability theory, etc.

On the other hand, the concept of rough convergence was first examined by Phu

[24] for finite dimensional normed linear spaces. Although a similar investigation was

carried out in fuzzy settings by Burgin [9] but the results in this paper will emphasize

those of Phu. Let r be a non-negative real number. A sequence x = (xk) in a normed

linear space (X, ‖·‖) is said to be rough convergent to x0 ∈ X with roughness degree

r, provided that for all η > 0, there exists a N ∈ N so that for all k ≥ N ,

‖xk − x0‖ < r + η.

Symbolically, it is represented as xk
r−‖·‖
−−−→ x0. It is clear from the above definition

that for r = 0, the above definition turns to the definition of usual convergence in

normed linear spaces. The prime results of Phu [24] are mainly based on the limit

set LIM rx which is closed, convex, and having no smaller bound of its diameter.

It should be noted that the idea of rough convergence occurs quite naturally in nu-

merical analysis and has significant applications there. Phu [25], further investigated

the notion of rough convergence for infinite dimensional normed spaces and proved

some interesting results therein. Combining the notions of rough convergence and

statistical convergence, in 2008, Aytar [6] developed rough statistical convergence.

A sequence x = (xk) in a normed linear space (X, ‖·‖) is said to be rough statisti-

cally convergent to x0 ∈ X with roughness degree r (≥ 0), if for each η > 0,

δ({k ∈ N : ‖xk − x0‖ ≥ r + η}) = 0.
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Symbolically, it is denoted as xk
str−‖·‖
−−−−→ x0. Since the natural density of a finite set

is zero, so it is clear from the above definition that if a sequence is rough convergent,

then it is also rough statistically convergent.

For an extensive study on rough convergence and its recent progress, [2, 3, 4, 5, 7,

8, 13, 15, 16, 23] can be addressed, where many more references can be found.

In another direction, the notion of fuzzy sets was introduced by Zadeh [36] in 1965.

These days, it has wide applications in different branches of science and engineering.

The term “fuzzy number (FN)” is significant in the study of fuzzy set theory. FNs

were essentially the generalization of intervals, not numbers. Indeed FNs do not obey

a couple of algebraic features of classical numbers. So the term “FN” is debatable to

many researchers due to its different behavior. The term “fuzzy intervals” is often

utilized by several authors in place of FNs. To overcome the confusion among the

researchers, in 2008, Fortin et al. [20] put forward the notion of gradual real numbers

(GRN) as elements of fuzzy intervals. GRN are mainly known by their respective

assignment function whose domain is the interval (0, 1]. So, all real numbers can

be thought of as gradual numbers (GN) with a constant assignment function. The

GRN also obey all the algebraic features of the classical real numbers and have been

utilized in optimization problems and computation.

Sadeqi and Azari [27] were the first to present the notion of GNLS. They studied

various properties from both the algebraic and topological points of view. Further

improvement in this direction has been taken place due to Ettefagh et al. [17, 18],

Choudhury and Debnath [10, 11], and many others. For more details, one may refer

to [1, 14, 32].

2. Definitions and Preliminaries

Throughout the paper, N and R denote the set of all positive integers and the set

of all real numbers respectively and by the convergence of a triple sequence we mean

the convergence in Pringsheim’s [26] sense.

Definition 2.1. [26] A real valued triple sequence x = (xijk) is said to be convergent

to a real number x0, if for any η > 0, there exists a positive integer k0 = k0(η) such

that for all i, j, k ≥ k0,
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|xijk − x0| < η.

Definition 2.2. [28] Let K ⊆ N× N× N and Kl,m,n denote the set

{(i, j, k) ∈ K : i ≤ l, j ≤ m, k ≤ n}.

The triple natural density of K is denoted and defined by

δ3(K) = lim
l,m,n→∞

|Kl,m,n|
lmn

,

provided that the limit exists.

Definition 2.3. [28] A real valued triple sequence x = (xijk) is said to be statistical

convergent to a real number x0 if for each η > 0,

δ3 ({(i, j, k) ∈ N
3 : |xijk − x0| ≥ η}) = 0.

In this case, l is called the statistical limit of the triple sequence x and symbolically

it is expressed as xijk
st
−→ l.

Definition 2.4. [28] A real valued sequence x = (xijk) is called to be statistical

Cauchy provided that for all η > 0, there are three positive integers M = M(η),

N = N(η) and P = P (η) so that

δ3 ({(i, j, k) ∈ N
3 : |xijk − xMNP | ≥ η}) = 0.

Definition 2.5. [20] A GRN g̃ is described by an assignment functionRg̃ : (0, 1] → R.

The set of all GRN is indicated by G(R). A GRN g̃ is named to be non-negative

provided that for all ψ ∈ (0, 1], Rg̃(ψ) ≥ 0. G∗(R) is utilized to denote the set of all

non-negative GRNs.

The gradual operations between the elements of G(R) was itendifed as follows:

Definition 2.6. [20] Assume ∗ be any operation in R and take g̃1, g̃2 ∈ G(R) with

assignment functions Rg̃1 and Rg̃2 respectively. At that time, g̃1 ∗ g̃2 ∈ G(R) is

determined with the assignment function Rg̃1∗g̃2 given by

Rg̃1∗g̃2(ψ) = Rg̃1(ψ) ∗ Rg̃2(ψ), ∀ψ ∈ (0, 1].

Especially, the gradual addition g̃1+g̃2 and the gradual scalar multiplication cg̃(c ∈ R)

are itendifed by

Rg̃1+g̃2(ψ) = Rg̃1(ψ) +Rg̃2(ψ) and Rcg̃(ψ) = cRg̃(ψ), ∀ψ ∈ (0, 1].
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The constant GRN p̃ is itendified by the constant assignment function Rp̃(ψ) = p

for any ψ ∈ (0, 1], for any p ∈ R. Especially, 0̃ and 1̃ are the constant GNs itendifed

by R0̃(ψ) = 0 and R1̃(ψ) = 1 respectively. One can simply confirm that G(R) with

the gradual multiplication and addition forms a real vector space.

Definition 2.7. [27] Suppose X be a real vector space. The function ‖·‖G : X →

G∗(R) is named to be a gradual norm (GN) on X , provided that for all ψ ∈ (0, 1],

the subsequent three situations supply for any x, y ∈ X :

(G1) R‖x‖G
(ψ) = R0̃(ψ) iff x = 0;

(G2) R‖ρx‖G
(ψ) = |ρ|R‖x‖G

(ψ) for any ρ ∈ R;

(G3) R‖x+y‖G
(ψ) ≤ R‖x‖G

(ψ) +R‖y‖G
(ψ).

The pair (X, ‖·‖G) is named as GNLS.

Example 2.1. [27] Suppose X = R
t and for x = (x1, x2, ..., xt) ∈ R

t, ψ ∈ (0, 1],

identify ‖·‖G by

R‖x‖G
(ψ) = eψ

t
∑

i=1

|xi|.

At that time, ‖·‖G is an GN on R
t and (Rt, ‖·‖G) is an GNLS.

Definition 2.8. [27] Suppose x = (xk) ∈ (X, ‖·‖G). At that time, x is named to be

gradually convergent to x0 ∈ X provided that for all ψ ∈ (0, 1] and η > 0, there is a

natural number N(= Nη(ψ)) so that for all k ≥ N ,

R‖xk−x0‖G
(ψ) < η.

Symbolically, xk
‖·‖G
−−→ x0.

Definition 2.9. [27] A sequence x is named to be gradually Cauchy provided that

for all ψ ∈ (0, 1] and η > 0, there exists a natural number N(= Nη(ψ)) so that

R‖xp−xq‖G
(ψ) < η

holds for all p, q ≥ N .

Definition 2.10. A triple sequence x = (xijk) in (X, ‖·‖G) is called to be gradually

rough convergent to x0 ∈ X , provided that for each ψ ∈ (0, 1] and η > 0, there is a

positive integer k0 = k0(ψ, η) so that for all i, j, k ≥ k0,
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R‖xijk−x0‖
G

(ψ) < r + η.

Symbolically, it is denoted as xijk
r−‖·‖G
−−−−→ x0.

For r = 0, the above definition reduces to the definition of gradual convergence of

the triple sequence x to x0, which is represented as xijk
‖·‖G
−−→ x0.

Throughout the following sections, r indicates a non-negative real number and 0

denotes the zero element of Rt.

3. Statistical Convergence of Triple Sequences In GNLS

In this section, we present our findings related to statistical convergence for triple

sequences in GNLS.

Definition 3.1. Assume x = (xijk) ∈ (X, ‖·‖G). Then, x is called to be gradually

statistical convergent (in short st3(G)−convergent) to x0 ∈ X provided that for all

ψ ∈ (0, 1] and η > 0,

δ3
({

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ η
})

= 0.

Symbolically we write, xijk
st3(G)
−−−→ x0.

Theorem 3.1. When a triple sequence x = (xijk) is gradual convergent to x0 ∈ X,

then x is st3(G)−convergent to x0 ∈ X.

Proof. The proof is easy so omitted. �

Hovewer the converse of the above theorem is not true. The next example demon-

strates the fact.

Example 3.1. Suppose X = R
t and ‖·‖G be the GN itendified in Example 2.1.

Contemplate the sequence x = (xijk) in R
t determined as

xijk =











(0, 0, ..., 0, t) if i = u2, j = v2, k = w2 for some u, v, w ∈ N

0 otherwise.

Then, for any η > 0 and ψ ∈ (0, 1],
{

(i, j, k) ∈ N
3 : R‖xijk−0‖

G

(ψ) ≥ η
}

⊆ {1, 4, 9, ..} × {1, 4, 9, ..} × {1, 4, 9, ..}.
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Hence, xijk
st3(G)
−−−→ 0 in R

t. Hovewer, it is obvious from the definition that, x is not

gradual convergent to 0.

Theorem 3.2. Assume x = (xijk) ∈ (X, ‖·‖G). Then, xijk
st3(G)
−−−→ x0 iff there is a set

M = {(li, mj , nk) : l1 < l2 < ... < li < ...;m1 < m2 < ... < mj < ...;n1 < n2 < ... <

nk < ...} ⊂ N
3

such that δ3(M) = 1 and xlimjnk
‖·‖G
−−→ x0.

Proof. Firstly, we assume that there exists a set M = {(li, mj, nk) : l1 < l2 < ... <

li < ...;m1 < m2 < ... < mj < ...;n1 < n2 < ... < nk < ...} ⊂ N
3 satisfying

δ3(M) = 1 and xlimjnk
‖·‖G
−−→ x0.

Then, for all ψ ∈ (0, 1] and η > 0, there exists N(= Nη(ψ)) ∈ N so that

R‖xlimjnk−x0‖G

(ψ) < η, ∀i, j, k ≥ N .

Let B(ψ, η) =
{

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ η
}

. Then, the inclusion

B(ψ, η) ⊂ (N3) \ ({lN+1, lN+2, ...} × {mN+1, mN+2, ...} × {nN+1, nN+2, ...})

holds and as a consequence we have δ3(B(ψ, η)) = 0. Hence, xijk
st3(G)
−−−→ x0.

For the converse part, assume that xijk
st3(G)
−−−→ x0 holds. Then, for every ψ ∈ (0, 1]

and s ∈ N, δ3(Ms) = 1, where

Ms =
{

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) < 1
s

}

.

From the construction of Ms’s, it is clear that

(3.1) M1 ⊃M2 ⊃ ... ⊃Ms ⊃Ms+1 ⊃ ...

Let us choose (u1, v1, w1) ∈M1 be an arbitrary element. Then, there exists (u2, v2, w2) ∈

M2 such that for all l ≥ u2, m ≥ v2, n ≥ w2,

1
lmn

|{i ≤ l, j ≤ m, k ≤ n : (i, j, k) ∈M2}| >
1
2
,

holds. In a similar way, there exists (u3, v3, w3) ∈ M3 such that for all l ≥ u3, m ≥

v3, n ≥ w3,

1
lmn

|{i ≤ l, j ≤ m, k ≤ n : (i, j, k) ∈M3}| >
2
3
,
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satisfies. Proceeding like this, we can construct three sequences (us), (vs), and (ws)

of positive integers such that (us, vs, ws) ∈Ms and for all l ≥ us, m ≥ vs, n ≥ ws,

(3.2)
1

lmn
|{i ≤ l, j ≤ m, k ≤ n : (i, j, k) ∈ Ms}| > 1−

1

s
,

is true. Let us construct M as follows: each element of the set [1, u1]× [1, v1]× [1, w1]

belong to M and any element of the set [us, us+1]× [vs, vs+1]× [ws, ws+1] belongs to

M if and only if it belongs to Ms (s ∈ N).

From (3.1) and (3.2), we have for each us ≤ l < us+1, vs ≤ m < vs+1, ws ≤ n <

ws+1,

|{i ≤ l, j ≤ m, k ≤ n : (i, j, k) ∈M}|

lmn
≥

|{i ≤ l, j ≤ m, k ≤ n : (i, j, k) ∈Ms}|

lmn
> 1−

1

s
.

Consequently, δ3(M) = 1. Let η > 0 be given. By Archimedean property, choose s ∈

N such that 1
s
< η. Further, let (i, j, k) ∈M be such that i ≥ us, j ≥ vs, and k ≥ ws.

Then, there exists t ≥ s such that ut ≤ i ≤ ut+1, vt ≤ j ≤ vt+1, wt ≤ k ≤ wt+1. But

by the definition of M , (i, j, k) ∈Mt.

Therefore,

R‖xijk−x0‖
G

(ψ) < 1
t
≤ 1

s
< η.

Hence, xlimjnk
‖·‖G
−−→ x0 holds. �

Definition 3.2. Take x = (xijk) as a triple sequence in (X, ‖·‖G). Then, x is named

to be gradually statistical Cauchy (in short st3(G)−Cauchy) provided that for all

η > 0 and ψ ∈ (0, 1], there are N1, N2, N3 ∈ N so that

δ3
({

(i, j, k) ∈ N
3 : R‖xijk−xN1N2N3‖G

(ψ) ≥ η
})

= 0.

Theorem 3.3. Let x = (xijk) be a triple sequence in the GNLS (X, ‖·‖G). Then, the

following statements are equivalent:

(i) xijk
st3(G)
−−−→ x0;

(ii) x is a st3(G)−Cauchy sequence;

(iii) x is a sequence for which there is a gradual convergent triple sequence (yijk) so

that

δ3({(i, j, k) ∈ N
3 : xijk 6= yijk}) = 0.
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Proof. (i) ⇒ (ii) Take x = (xijk) ∈ X and assume xijk
st3(G)
−−−→ x0. At that time, for

all η > 0 and ψ ∈ (0, 1],

δ3 (C(ψ, η)) = 0, where C(ψ, η) =
{

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ η
}

.

Clearly, δ3 ((N3 \ C(ψ, η)) = 1 and therefore, is non-empty. Select (N1, N2, N3) ∈

N
3 \ C(ψ, η). Afterwards, we obtain R‖xijk−xN1N2N3‖G

(ψ) < η.

Let B(ψ, η) =
{

(i, j, k) ∈ N
3 : R‖xijk−xN1N2N3‖G

(ψ) ≥ 2η
}

. At this time we demon-

strate that the subsequent inclusion is true

B(ψ, η) ⊆ C(ψ, η).

For if (u, v, w) ∈ B(ψ, η) we have

2η ≤ R‖xuvw−xN1N2N3‖G

(ψ) ≤ R‖xuvw−x0‖G
(ψ)+R‖x0−xN1N2N3‖G

(ψ) < R‖xuvw−x0‖G
(ψ)+η,

which gives (u, v, w) ∈ C(ψ, η). Thus, we conclude that δ3 (B(ψ, η)) = 0, which

means x is st3(G)−Cauchy sequence.

(ii) ⇒ (iii) Let x = (xijk) be a st3(G)−Cauchy sequence. Select N1, N2, N3 ∈ N so

that

δ3
({

(i, j, k) ∈ N
3 : R‖xijk‖

G

(ψ) /∈ I
})

= 0,

where

I =
[

R‖xN1N2N3‖G

(ψ)− 1,R‖xN1N2N3‖G

(ψ) + 1
]

.

Again select M1,M2,M3 ∈ N so that δ3
({

(i, j, k) ∈ N
3 : R‖xijk‖

G

(ψ) /∈ I ′
})

= 0,

where

I ′ =

[

R‖xM1M2M3‖G

(ψ)−
1

2
,R‖xM1M2M3‖G

(ψ) +
1

2

]

.

Now as the equality

{

i ≤ l, j ≤ m, k ≤ n : R‖xijk‖
G

(ψ) /∈ I ∩ I ′
}

=
{

i ≤ l, j ≤ m, k ≤ n : R‖xijk‖
G

(ψ) /∈ I
}

∪
{

i ≤ l, j ≤ m, k ≤ n : R‖xijk‖
G

(ψ) /∈ I ′
}

holds, so we have to have

δ3
({

(i, j, k) ∈ N
3 : R‖xijk‖

G

(ψ) /∈ I ∩ I ′
})

= 0.



690 ÖMER KIŞI AND CHIRANJIB CHOUDHURY

Denote I ∩I ′ by I1. Then, it is obvious that I1 is a closed interval with diam(I1) ≤ 1,

where diam(I1) represents the length of the interval I1. Proceeding like this, we

choose N1(2), N2(2), N3(2) ∈ N so that

δ3
({

(i, j, k) ∈ N
3 : R‖xijk‖

G

(ψ) /∈ I ′′
})

= 0,

where

I ′′ =

[

R‖xN1(2)N2(2)N3(2)‖G

(ψ)−
1

4
,R‖xN1(2)N2(2)N3(2)‖G

(ψ) +
1

4

]

.

Let us denote I1 ∩ I
′′ by I2. Then, by the previous argument we can say that I2 is a

closed interval with diam(I2) ≤
1
2
satisfying

δ3
({

(i, j, k) ∈ N
3 : R‖xijk‖

G

(ψ) /∈ I2

})

= 0.

Continuing in this way, we obtain a sequence (It) of closed intervals such that

I1 ⊇ I2 ⊇ ... ⊇ It ⊇ It+1 ⊇ ...

and

diam(It) ≤ 21−t.

By Nested Interval Theorem, there exists a λ ∈ R such that

∞
⋂

t=1

It = {λ}.

Now we choose an increasing sequence of natural numbers (Tt) such that

(3.3)
1

lmn

∣

∣

∣

{

i ≤ l, j ≤ m, k ≤ n : R‖xijk‖
G

(ψ) /∈ It

}
∣

∣

∣
<

1

t

if l, m, n > Tt. Define a triple subsequence (zijk) of (xijk) consisting of all terms xijk

such that i, j, k > T1 and if Tm < i, j, k ≤ Tm+1 then R‖xijk‖
G

(ψ) /∈ Im. Define the

triple sequence (yijk) as follows:

yijk =











λ̃, if xijk is a term of (zijk)

xijk, otherwise,

where Rλ̃(ψ) = λ, ∀ψ ∈ (0, 1]. Then, yijk → λ̃; for, if η > 1
t
> 0 and i, j, k > Tt then

either xijk is a term of (zijk), which means yijk = λ̃ or yijk = xijk, R‖xijk‖
G

(ψ) ∈ It

and R‖yijk−λ̃‖
G

(ψ) ≤ diam(It) ≤ 21−t.
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We also claim that δ3 ({k ∈ N : xijk 6= yijk}) = 0. Because if Tt < l,m, n < Tt+1,

then the inclusion

{i ≤ l, j ≤ m, k ≤ n : xijk 6= yijk} ⊆
{

i ≤ l, j ≤ m, k ≤ n : R‖xijk‖
G

(ψ) /∈ It

}

holds and consequently by (3.3),

1
lmn

|{i ≤ l, j ≤ m, k ≤ n : xijk 6= yijk}| <
1
lmn

.

Letting l, m, n→ ∞ on both sides of the above inequation, we obtain

lim
l,m,n→∞

1

lmn
|{i ≤ l, j ≤ m, k ≤ n : xijk 6= yijk}| = 0,

i.e.,

δ3(
{

(i, j, k) ∈ N
3 : xijk 6= yijk

}

) = 0.

(iii)⇒ (i) Finally we assume that δ3 ({(i, j, k) ∈ N
3 : xijk 6= yijk}) = 0 and yijk

‖·‖G
−−→

x0.

Then, by definition for any η > 0 and ψ ∈ (0, 1], the set

{

i ≤ l, j ≤ m, k ≤ n : R‖yijk−x0‖
G

(ψ) ≥ η
}

contains a finite number of elements say N0. Now as the inclusion

{

i ≤ l, j ≤ m, k ≤ n : R‖xijk−x0‖
G

(ψ) ≥ η
}

⊆ {i ≤ l, j ≤ m, k ≤ n : xijk 6= yijk}

∪
{

i ≤ l, j ≤ m, k ≤ n : R‖yijk−x0‖
G

(ψ) ≥ η
}

holds, so we must have,

1

lmn

∣

∣

∣

{

i ≤ l, j ≤ m, k ≤ n : R‖xijk−x0‖
G

(ψ) ≥ η
}
∣

∣

∣

≤
1

lmn
|{i ≤ l, j ≤ m, k ≤ n : xijk 6= yijk}|+

N0

lmn
.

Letting l, m, n→ ∞ on both sides of the above inequality and utilizing the fact that

δ3
({

(i, j, k) ∈ N
3 : xijk 6= yijk

})

= 0

we obtain xijk
st3(G)
−−−→ x0. This completes the proof. �
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4. Rough Statistical Convergence of Triple Sequences In GNLS

A triple sequence that is not statistically convergent, may be rough statistically

convergent for some roughness degree r in a normed space. However, since every

GNLS is not necessarily a normed linear space (Example 3.18 of [27]), so it is quite

natural to investigate the above properties of triple sequences in GNLS setting. In

this section, we put forward our findings regarding the rough statistical convergence

of triple sequences in GNLS. We begin with the following definitions:

Definition 4.1. A triple sequence x = (xijk) is named to be gradually rough statisti-

cal convergent (briefly st3r(G)−convergent) to x0 ∈ Y , provided that for all ψ ∈ (0, 1]

and η > 0,

δ3
({

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ r + η
})

= 0.

Symbolically we write, xijk
st3r(G)−−−→ x0.

Here r is named the degree of roughness. For r = 0, the above definition reduces to

Definition 3.1. But our main intention is to deal with the case r > 0. There are some

reasons for such interest. Since a gradually statistical convergent sequence y = (yijk)

with yijk
st3(G)
−−−→ x0 often cannot be measured or calculated accurately, one has to deal

with an approximated triple sequence x = (xijk) satisfying

δ3
({

(i, j, k) ∈ N
3 : R‖xijk−yijk‖

G

(ψ) > r
})

= 0.

Then, no one can guarantee the gradually statistical convergence of x, but since for

any η > 0, the following inclusion
{

(i, j, k) ∈ N
3 : R‖yijk−x0‖

G

(ψ) ≥ η
}

⊇
{

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ r + η
}

.

holds, one can certainly assure the st3r(G)−convergence of x. We serve the subsequent

example to illustrate the above fact more preciously:

Example 4.1. Assume X = R
t and let ‖·‖G be the GN itendified in Example 2.1.

Contemplate the triple sequence (yijk) in X defined as

yijk =











(

0, 0, ..., 0, 0.5 + 2 · (−1)i+j+k

i+j+k

)

, when i, j, k are perfect squares

(0, 0, ..., 0, 0.5), otherwise.

Then, we get
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R‖yijk−(0,0,...,0,0.5)‖
G

(ψ) =











2eψ

i+j+k
, when i, j, k are perfect squares

0, otherwise.

So, for any η > 0, the following inclusion
{

(i, j, k) ∈ N
3 : R‖quv−(0,0,...,0,0.5)‖G

(ψ) ≥ η
}

⊆ {(1, 1, 1), (4, 4, 4), (9, 9, 9), ...}

supplies and eventually yijk
st3(G)
−−−→ (0, 0, ..., 0, 0.5). But for sufficiently large i, j, and k,

it is not possible to compute yijk exactly by computer however it is rounded to the near-

est one. So, in the interest of simplicity, we approximate yijk by xijk = (0, 0, ..., 0, z)

at the perfect square values of i, j and k, where z is the integer satisfying z − 0.5 <

yijk < z + 0.5. At that time, the triple sequence (xijk) does not st3(G)−converge

anymore. On the other hand according to the definition xijk
st30.5(G)−−−−→ (0, 0, ..., 0, 0.5).

It is obvious that for r > 0, the st3r(G)−limit of a triple sequence is not necessarily

unique. As a result, our fundamental interest is to deal with the case r > 0. Therefore,

we construct st3r(G)−limit set of a triple sequence x = (xijk), determined as follows:

st3 − LIM r
x(G) =

{

x0 ∈ X : xijk
st3r(G)−−−→ x0

}

.

Theorem 4.1. Assume (xijk) and (yijk) be two triple sequences in (X, ‖·‖G) so that

xijk
st3r1

(G)
−−−−→ x0 and yijk

st3r2
(G)

−−−−→ y0. Then,

(i) xijk + yijk
st3

(r1+r2)
(G)

−−−−−−−→ x0 + y0 and (ii) µxijk
st3

|µ|r1
(G)

−−−−−→ µx0 for any µ ∈ R.

Proof. (i) Since, xijk
st3r1

(G)
−−−−→ x0 and yijk

st3r2
(G)

−−−−→ q0, so for any ψ ∈ (0, 1] and η > 0,

δ3(P ) = δ3(Q) = 0, where

P =
{

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ r1 +
η

2

}

and

Q =
{

(i, j, k) ∈ N
3 : R‖yijk−y0‖

G

(ψ) ≥ r2 +
η

2

}

.

As the inclusion

(N3 \ P ) ∩ (N3 \Q) ⊆
{

(i, j, k) ∈ N
3 : R‖(xijk+yijk)−(x0+y0)‖

G

(ψ) < r1 + r2 + η
}

holds, so we obtain

δ3
({

(i, j, k) ∈ N
3 : R‖(xijk+yijk)−(x0+y0)‖

G

(ψ) ≥ r1 + r2 + η
})

= 0.

Hence, xijk + yijk
st3

(r1+r2)
(G)

−−−−−−−→ x0 + y0.
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(ii) When µ = 0, then there is nothing to prove. So let us presume that µ 6= 0.

Now as the situations

R‖xijk−x0‖
G

(ψ) ≤ r1 and R‖µxijk−µx0‖
G

(ψ) ≤ |µ|r1

are equivalent in gradual normed algebras, so the result follows. �

Now for r1 = r2 = 0, the above theorem reduces to the following result:

Corollary 4.1. Presume (xijk) and (yijk) be two triple sequences in (X, ‖·‖G) so that

xijk
st3(G)
−−−→ x0 and yijk

st3(G)
−−−→ y0. Then,

(i) xijk + yijk
st3(G)
−−−→ x0 + y0 and (ii) µxijk

st3(G)
−−−→ µx0 for any µ ∈ R.

Theorem 4.2. Take x = (xijk) ∈ (X, ‖·‖G). Then,

diam(st3 − LIM r
x(G)) = sup

{

R‖q−t‖G
(ψ) : q, t ∈ st3 − LIM r

x(G), ψ ∈ [0, 1)
}

≤ 2r.

In general, diam(st3 − LIM r
x(G)) has no smaller bound.

Proof. If possible, let us suppose that diam(st3 −LIM r
x(G)) > 2r. Afterwards, there

are q0, t0 ∈ st3 − LIM r
x(G) and ψ0 ∈ [0, 1) so that R‖q0−t0‖G

(ψ0) > 2r. Select η > 0

in such a manner that

(4.1) η <
R‖q0−t0‖G

(ψ0)

2
− r.

Since, q0, t0 ∈ st3 − LIM r
x(G), so for any ψ ∈ (0, 1] and η > 0, δ3(A) = δ3(B) = 0,

where

A =
{

(i, j, k) ∈ N
3 : R‖xijk−q0‖

G

(ψ) ≥ r + η
}

and

B =
{

(i, j, k) ∈ N
3 : R‖xijk−t0‖

G

(ψ) ≥ r + η
}

.

As a result, δ3((N3\A)∩(N3\B)) = 1 and eventually (N3\A)∩(N3\B) is non-empty.

Take (i0, j0, k0) ∈ (N3 \ A) ∩ (N3 \B). At that time, we acquire

R‖q0−t0‖G
(ψ0) ≤ R‖xi0j0k0−q0‖G

(ψ0) +R‖xi0j0k0−t0‖G

(ψ0) < 2(r + η),

which contradicts (4.1).

For the second part, presume (xijk) be a triple sequence in (X, ‖·‖G) so that

xijk
st3(G)
−−−→ x0. As a result, for any ψ ∈ (0, 1] and η > 0,

δ3
({

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ η
})

= 0.
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Now for each q0 ∈ (x0+N̄(r, ψ)) =
{

κ ∈ X : R‖x0−κ‖G
(ψ) ≤ r

}

, the following inequa-

tion

R‖xijk−q0‖
G

(ψ) ≤ R‖xijk−x0‖
G

(ψ) +R‖x0−q0‖G
(ψ) < r + η,

supplies whenever (i, j, k) /∈ {(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ η}. This shows that

q0 ∈ st3 − LIM r
x(G) and subsequently

st3 − LIM r
x(G) = (x0 + N̄(r, ψ))

supplies. Since, diam(x0 + N̄(r, ψ)) = 2r, so in general upper bound 2r of the

diameter of the set st3 − LIM r
x(G) cannot be decreased anymore. �

Taking r = 0 in the above theorem, we can get the subsequent result:

Corollary 4.2. Let x = (xijk) be a triple sequence in (X, ‖·‖G) so that xijk
st3(G)
−−−→ x0.

Then, x0 is uniquely determined.

Definition 4.2. The triple sequence (xijk) is named to be st3(G)−bounded provided

that for all ψ ∈ (0, 1], there is an M(=M(ψ)) > 0 so that

δ3
({

(i, j, k) ∈ N
3 : R‖xijk‖

G

(ψ) > M
})

= 0.

Theorem 4.3. A triple sequence x = (xijk) in (X, ‖·‖G) is st
3(G)−bounded iff there

exists some r ≥ 0 so that st3 − LIM r
x(G) 6= ∅.

Proof. Let x = (xijk) be st3(G)−bounded. Then, for each ψ ∈ (0, 1], there exists

M(=M(ψ)) > 0 so that

δ3(A) = 0, where A =
{

(i, j, k) ∈ N
3 : R‖xijk‖

G

(ψ) > M
}

.

Suppose

B = sup
{

R‖xijk‖
G

(ψ) : (i, j, k) ∈ (N3 \ A), ψ ∈ [0, 1)
}

.

Then, the set st3 − LIMB
x (G) includes the zero vector of X and eventually

st3 − LIMB
x (G) 6= ∅.

Conversely, presume that st3 − LIM r
x(G) 6= ∅ for some r ≥ 0. At that time, for

x0 ∈ st3 − LIM r
x(G),
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δ3
({

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ r + η
})

= 0

holds for any ψ ∈ (0, 1] and η > 0. This implies that x is st3(G)−bounded. �

Theorem 4.4. Let x = (xijk) ∈ (X, ‖·‖G). When q0 ∈ st3 − LIM r0
x (G) and q1 ∈

st3 − LIM r1
x (G), then

qλ = (1− λ)q0 + λq1 ∈ st3 − LIM (1−λ)r0+λr1
x (G), where λ ∈ [0, 1].

Proof. Since q0 ∈ st3 − LIM r0
x (G) and q1 ∈ st3 − LIM r1

x (G), so for each ψ ∈ (0, 1]

and η > 0, δ3(A) = δ3(B) = 0, where

A =
{

(i, j, k) ∈ N
3 : R‖xijk−q0‖

G

(ψ) ≥ r0 + η
}

and

B =
{

(i, j, k) ∈ N
3 : R‖xijk−q1‖

G

(ψ) ≥ r1 + η
}

.

Subsequently, for any (i, j, k) ∈ (N3 \ A) ∩ (N3 \B),

R‖xijk−qλ‖
G

(ψ) ≤ (1− λ)R‖xijk−q0‖
G

(ψ) + λR‖xijk−q1‖
G

(ψ)

< (1− λ)(r0 + η) + λ(r1 + η)

= (1− λ)r0 + λr1 + η.

This demonstrates that,
{

(i, j, k) ∈ N
3 : R‖xijk−qλ‖

G

(ψ) ≥ (1− λ)r0 + λr1 + η
}

⊆ A ∪ B.

Now since the set in the right-hand side has triple natural density zero, so the

set in the left-hand side also has triple natural density zero. Hence, qλ ∈ st3 −

LIM
(1−λ)r0+λr1
x (G). �

Corollary 4.3. Let x = (xijk) ∈ (X, ‖·‖G). Then, the set st3 − LIM r
x(G) is convex.

Theorem 4.5. Let x = (xijk) ∈ (X, ‖·‖G). Then, the set st3 −LIM r
x(G) is gradually

closed.

Proof. Let y = (yijk) ∈ st3 − LIM r
x(G) be such that

yijk
‖·‖G
−−→ y0.

Then, for each ψ ∈ (0, 1] and η > 0, there is an N(= Nη(ψ)) ∈ N so that for all

i, j, k ≥ N ,
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R‖yijk−y0‖
G

(ψ) < η

2
.

Select i0, j0, k0 ∈ N so that i0 ≥ N, j0 ≥ N, k0 ≥ N . Then, R‖yi0j0k0−y0‖G

(ψ) < η

2
.

On the other hand, since (yijk) ⊆ st3 − LIM r
x(G), we must have

(4.2) δ3
({

(i, j, k) ∈ N
3 : R‖xijk−yi0j0k0‖G

(ψ) ≥ r +
η

2

})

= 0.

Suppose (u, v, w) /∈
{

(i, j, k) ∈ N
3 : R‖xijk−yi0j0k0‖G

(ψ) ≥ r + η

2

}

.

Then, R‖xuvw−yi0j0k0‖G

(ψ) < r + η

2
and eventually

R‖xuvw−y0‖G
(ψ) ≤ R‖xuvw−yi0j0k0‖G

(ψ) +R‖yi0j0k0−y0‖G

(ψ) < r + η.

This gives that (u, v, w) /∈
{

(i, j, k) ∈ N
3 : R‖xijk−y0‖

G

(ψ) ≥ r + η
}

and subsequently

from (4.2) we acquire

δ3
({

(i, j, k) ∈ N
3 : R‖xijk−y0‖

G

(ψ) ≥ r + η
})

= 0.

Hence, y0 ∈ st3 − LIM r
x(G) and the proof ends. �

Theorem 4.6. Let r1 ≥ 0 and r2 ≥ 0. A triple sequence x = (xijk) in a GNLS

(X, ‖·‖G) is st3(r1+r2)(G)−convergent to x0 iff there is a triple sequence y = (yijk) so

that

yijk
st3r1

(G)
−−−−→ x0 and R‖xijk−yijk‖

G

(ψ) ≤ r2

for all (i, j, k) ∈ N
3.

Proof. Let us assume that yijk
st3r1

(G)
−−−−→ x0. Afterwards, according to definition for any

ψ ∈ (0, 1] and η > 0,

δ3(P ) = 0, where P =
{

(i, j, k) ∈ N
3 : R‖yijk−x0‖

G

(ψ) ≥ r1 + η
}

.

Now since R‖xijk−yijk‖
G

(ψ) ≤ r2 supplies for all (i, j, k) ∈ N
3, so for all (i, j, k) /∈ P ,

R‖xijk−x0‖
G

(ψ) ≤ R‖xijk−yijk‖
G

(ψ) +R‖yijk−x0‖
G

(ψ) < r1 + r2 + η.

This implies that
{

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ r1 + r2 + η
}

⊆ P

and eventually by the property of triple natural density,

δ3
({

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ r1 + r2 + η
})

= 0.
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Hence, xijk
st3

(r1+r2)
(G)

−−−−−−−→ x0.

For the converse part, let us suppose that

(4.3) xijk
st3

(r1+r2)
(G)

−−−−−−−→ x0.

Define y = (yijk) by

yijk =















x0, if R‖xijk−x0‖
G

(ψ) ≤ r2

xijk + r2
x0−xijk

R
‖xijk−x0‖G

(ψ)
, otherwise.

Then, it is easy to observe that R‖xijk−yijk‖
G

(ψ) ≤ r2 for all (i, j, k) ∈ N
3.

Moreover,

R‖yijk−x0‖
G

(ψ) =











0, if R‖xijk−x0‖
G

(ψ) ≤ r2

R‖xijk−x0‖
G

(ψ)− r2, otherwise.

By (4.3), for each ψ ∈ (0, 1] and η > 0,

δ3
({

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ r1 + r2 + η
})

= 0.

Now as the inclusion
{

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ r1 + r2 + η
}

⊇
{

(i, j, k) ∈ N
3 : R‖yijk−x0‖

G

(ψ) ≥ r1 + η
}

holds, so we obtain

δ3
({

(i, j, k) ∈ N
3 : R‖yijk−x0‖

G

(ψ) ≥ r1 + η
})

= 0.

Hence, yijk
st3r1

(G)
−−−−→ x0 and the proof ends. �

Corollary 4.4. A triple sequence (xijk) ∈ (X, ‖·‖G) is st
3
r(G)−convergent to x0 ∈ X

with roughness degree r ≥ 0 iff there is a triple sequence y = (yijk) in X so that

xijk
st3(G)
−−−→ x0 and R‖xijk−yijk‖ ≤ r for all (i, j, k) ∈ N

3.

Theorem 4.7. Presume (X, ‖·‖) be a normed linear space and suppose f : (0, 1] →

R
+ be a non-zero function. In [17], it was demonstrated that the map R‖x‖G

: (0, 1] →

R
+ determined by

R‖x‖G
(ψ) = f(ψ) ‖x‖ , x ∈ X
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determines a gradual norm on X. For any triple sequence (xijk) in X,

(i) When xijk
st3r−‖·‖
−−−−→ x0, then xijk

st3r(G)−−−→ x0.

(ii) When xijk
st3r(G)−−−→ x0 and there exists a ψ0 ∈ (0, 1] so that f(ψ0) = 1, then

xijk
st3
r′
−‖·‖

−−−−→ x0 for some r′ ≥ 0.

Proof. (i) Since xijk
st3r−‖·‖
−−−−→ x0, so for any η > 0 and ψ0 ∈ (0, 1],

δ3
({

(i, j, k) ∈ N
3 : ‖xijk − x0‖ ≥ r + η

f(ψ0)

})

= 0.

So, the following inequation

R‖xijk−x0‖
G

(ψ0) = f(ψ0) ‖xijk − x0‖ < rf(ψ0) + η

supplies for any (i, j, k) /∈
{

(i, j, k) ∈ N
3 : ‖xijk − x0‖ ≥ r + η

f(ψ0)

}

and the result

follows by taking r′ = rf(ψ0).

(ii) Since xijk
st3r(G)−−−→ x0, so for any η > 0 and ψ ∈ (0, 1],

δ3
({

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ r + η
})

= 0.

Especially, for ψ = ψ0, the following inequation

‖xijk − x0‖ = f(ψ0) ‖xijk − x0‖ = R‖xijk−x0‖
G

(ψ0) < r + η

supplies for any (i, j, k) /∈
{

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ r + η
}

and the rest fol-

lows from the property of triple natural density. �

5. Concluding Remarks

In this paper, we have investigated the notion of statistical and rough statistical

convergence in GNLS for triple sequences. Theorem 3.2 and Corollary 4.4 gives a

necessary and sufficient condition for the respective convergences of a triple sequence

in a GNLS. Theorem 3.3 relates a gradually statistical convergent triple sequence with

a gradually statistical Cauchy triple sequence in a GNLS. Furthermore, Theorem 4.2,

Theorem 4.4 and Theorem 4.5 established the several properties of the set st3 −

LIM r
x(G). Finally, Theorem 4.7 is established for a comparative study of rough

statistical convergence of triple sequences in normed linear spaces and in gradual

normed linear spaces. In future, as a continuation of this research, one can form the
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following sequence spaces

cst
3

θ (G) = {x = (xijk) : there exists x0 ∈ X such that for all ψ ∈ (0, 1] and η > 0,

δ3
({

(i, j, k) ∈ N
3 : R‖xijk‖

G

(ψ) ≥ η
})

= 0
}

,

cst
3

(G) = {x = (xijk) : there exists x0 ∈ X such that for all ψ ∈ (0, 1] and η > 0,

δ3
({

(i, j, k) ∈ N
3 : R‖xijk−x0‖

G

(ψ) ≥ η
})

= 0
}

,

and

lst
3

∞ (G) = {x = (xijk) : for all ψ ∈ (0, 1] there existsM(=M(ψ)) > 0 such that

δ3
({

(i, j, k) ∈ N
3 : R‖xijk‖

G

(ψ) > M
})

= 0
}

and utilize this study to investigate several important properties such as solidity,

monotonicity, symmetric properties etc.
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