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A NEW CUBIC TRANSMUTED POWER FUNCTION
DISTRIBUTION: PROPERTIES, INFERENCE AND APPLICATION

MARIYAM HAFEEZ(1), RASHIDA KHALIL(2) AND NAILA AMJAD(3)

Abstract. A new cubic transmuted power function distribution has been pro-

posed by using the cubic transmuted family of distributions, proposed by [1]. The

proposed distribution provides transmuted power function distribution as a special

case. The properties of the proposed distribution are studied that include shape,

moments, quantiles, entropy, random number generation and order statistics. The

maximum likelihood estimation of the parameters of the proposed distribution is

discussed. A simulation study has been conducted to observe the performance of

the estimation procedure. The proposed distribution has been applied to real data

sets to compare the suitability of the model.

1. Introduction

Probability distributions have widespread applications in many areas of life. The

need for probability distributions has always been there to model the phenomenon

in different fields of science and engineering. The standard probability distributions

can be used to model the data originated from different domains but the need has

always been there to extend the standard probability distributions for much wider

applicability. The work on families of distributions has been done by various authors

to extend the standard probability distributions by introducing new parameters to

base distribution such that more flexible distributions can be obtained which increase

the reliability to study the behavior of real-life data. A new family of distributions,

named as the beta-G family of distributions, has been proposed by [2] by using

the logit of the beta distribution. The proposed family of distributions extends the
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distribution of order statistics. The Kumaraswamy-G family of distributions has been

proposed by [3] by using the distribution function of the Kumaraswamy distribution

given by [4]. A more general method to extend the standard probability distributions

has been proposed by [5] by using a combination of two probability distributions. The

family of distributions proposed by [5] is named as the T-X family of distributions.

The cumulative distribution function (cdf ) of this family of distributions is

(1.1) FT−X (x) =

∫ W [G(x)]

a

r (t) dt

where r (t)is the density of any random variable defined on [a, b], where a can be

-∞ and b can be +∞ and W [G (x)] is any function of G (x) such that W (0) = a

and W (1) = b. The T-X family of distributions provide beta-G and Kumaraswamy-

G families of distributions turned out to be a special case of the T-X family of

distribution.

A simple method to extend any baseline distribution has been proposed by [6] by

adding one new parameter. The proposed family of distributions is named as the

transmuted family of distributions. The cdf of this family of distributions is

(1.2) F (x) = G (x) + λG (x) [1−G (x)] − 1 ≤ λ ≤ 1,

where λ is the transmutation parameter. The transmuted distribution reduces to

the baseline distribution for λ = 0. The transmuted family of distributions has been

extended by [1] and [7] by adding one more parameter and have named the proposed

family of distributions as the cubic transmuted family of distributions. The cdf of

the cubic transmuted family of distributions proposed by [1] is

(1.3) F (x) = G (x) + λ1G (x) [1−G (x)] + λ2G
2 (x) [1−G (x)] x ∈ R,

where λ1 and λ2 are transmutation parameters such that (λ1, λ2) ∈ [−1, 1]and

−2 ≤ λ1+λ2 ≤ 1. Also, g (x) and G (x) are, respectively, the density and distribution

functions of any baseline distribution. The density function corresponding to (1.3) is

(1.4) f (x) = g (x)
[

1 + λ1 + 2 (λ2 − λ1)G (x)− 3λ2G
2 (x)

]

x ∈ R.
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The cubic transmuted family of distributions, given in (1.3), reduces to the trans-

muted family of distributions, given in (1.2), for λ2 = 0. Also, the cubic transmuted

family of distributions, (1.3), reduced to the baseline distribution for λ1 = λ2 = 0.

The cubic transmuted family of distributions, (1.3) has not been much explored,

and in this paper, we have used this family of distributions with the baseline power

function distribution to propose a new cubic transmuted power function distribution.

The organization of the paper is given below.

A new cubic transmuted power function distribution has been introduced in sec-

tion 2. In section 3 some useful properties of the proposed cubic transmuted power

function distribution have been discussed. The maximum likelihood estimation of

the parameters is given in Section 4. Some numerical studies are given in Section 5.

The conclusions and recommendations are given in Section 6.

2. A New Cubic Transmuted Power Function Distribution

The power function distribution is a simple yet very useful distribution. The density

and distribution function of the power function distribution are

(2.1) g (x) =
αxα−1

θα
0 < x < θ & G (x) =

xα

θα
0 < x < θ,

where α > 0 is the shape parameter and θ > 0 is the scale parameter. The power

function distribution given in (2.1), reduces to the uniform distribution over [0, θ]

for α = 1. The power function distribution has been studied by various authors in

different contexts. The relations for moments of lower generalized order statistics

for the distribution have been obtained by [8]. Some characterizations of the distri-

bution by using lower record values have been given by [9]. The transmuted power

function distribution has been proposed by [10] by using cdf of the distribution in

the transmuted family of distributions, (1.2). In the following, we have proposed the

cubic transmuted power function distribution by using the density and distribution

function of the power function distribution in (1.3) and (1.4). The cdf of the new

cubic transmuted power function (NCTPF ) distribution is

(2.2) F (x) = (1 + λ1)
xα

θα
+ (λ2 − λ1)

x2α

θ2α
− λ2

x3α

θ3α
0 < x < θ,
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where (λ1, λ2) ∈ [−1, 1]and −2 ≤ λ1 + λ2 ≤ 1. The density function corresponding

to (2.2) is

(2.3) f (x) =
αxα−1

θα

[

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

]

0 < x < θ.

The proposed Cubic Transmuted Power Function distribution reduces to the Trans-

muted Power Function distribution, proposed by [10], for λ2 = 0. Also for λ1 = λ2 =

λ, the proposed cubic transmuted power function distribution provides the cubic

transmuted power function distribution of [11] as a special case.

The hazard rate function of the distribution is immediately written from (2.2) and

(2.3) as

(2.4) h (x) =
f (x)

1− F (x)
= αxα−1

(

1

θα − xα
+

λ1θ
α + 2λ2x

α

θ2α − λ1θαxα − λ2x2α

)

0 < x < θ.

The mode of the distribution is obtained by solving ∂ ln f (x) /∂x = 0 for x. Now

ln f (x) = lnα + (α− 1) ln x− α ln θ + ln

[

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

]

and ∂
∂x

ln f (x) = α−1
x

+
2α(λ2−λ1)(xα−1/θα)−6αλ2(x2α−1/θ2α)
1+λ1+2(λ2−λ1)(xα/θα)−3λ2(x2α/θ2α)

.

Also ∂
∂x

ln f (x)
∣

∣

x=0
= ∞ and ∂

∂x
ln f (x)

∣

∣

x=θ
= α+λ1+λ2−3αλ1−5αλ2−1

(1−λ1−λ2)θ
. We can see

that (ln f)
′

(θ) changes sign and also attains infinity and hence there is no mode of

the distribution. The plots of density, distribution and hazard rate functions of the

proposed cubic transmuted power function distribution are given in Figure 1 below.

Although, the plots show some peaks but these represents the local maximum of the

density function.
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Figure 1. Plots of Density, Distribution and Hazard Rate functions

3. Properties of the New Cubic Transmuted Power Function

Distribution

The properties of any probability distribution extensively help to study the behavior

of the distribution. Some useful properties of the proposed CTPF distribution are

discussed in the following subsections.

3.1. Moments. The moments are useful to study some useful properties of a distri-

bution. In the following, we have obtained the rth moment for the proposed CTPF

distribution. Now, the rth moment of the CTPF distribution is

µ
′

r = E (Xr) =
∫ θ

0
xrf (x) dx =

∫ θ

0
xr
[

αxα−1

θα

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}]

dx

= (1 + λ1)
∫ θ

0
αxα+r−1

θα
dx+ 2 (λ2 − λ1)

∫ θ

0
αx2α+r−1

θ2α
dx− 3λ2

∫ θ

0
αx3α+r−1

θ3α
dx.
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Solving the above integrals, the rth moment of the CTPF distribution is

(3.1) µ
′

r =
αθr [6α2 + αr (5− 3λ1 − λ2) + r2 (1− λ1 − λ2)]

(α + r) (2α + r) (3α+ r)
·

The moments can be used to obtain the mean, variance, skewness and kurtosis of the

distribution. Specifically, the mean and variance of the distribution are

µ = E (X) =
αθ [6α2 + α (5− 3λ1 − λ2) + (1− λ1 − λ2)]

(α + 1) (2α + 1) (3α + 1)

and

σ2 =
αθ2 [6α2 + 2α (5− 3λ1 − λ2) + 4 (1− λ1 − λ2)]

(α + 2) (2α + 2) (3α + 2)

−
[

αθ [6α2 + α (5− 3λ1 − λ2) + (1− λ1 − λ2)]

(α + 1) (2α + 1) (3α + 1)

]

The mean, variance, skewness and kurtosis for the proposed NCTPF distribution

are given in Table 1 and Table 2. From these tables, we can see that for a fixed

value of α, and for different combinations of λ1 and λ2, the mean increases with

increase in θ. Also, for fixed θ, the mean increases with an increase in α. It can

also be observed that for fixed α the variance increases with an increase in θ and

for fixed θ, the variance decreases with an increase in α. The variance exhibits this

behavior for both combinations of λ1andλ2. The table 2 for skewness shows that if

both λ1 and λ2 are negative then the distribution is positively skewed for α < 1 and

negatively skewed otherwise. Also, if both λ1 and λ2 are positive then the distribution

is positively skewed for α ≤ 1 and negatively skewed otherwise. The kurtosis of the

distribution shows interesting behavior. When both λ1 and λ2 are negative then the

distribution is platy-kurtic for α ≤ 1and is lepto-kurtic otherwise. When both λ1 and

λ2 are positive then the kurtosis changes behavior with an increase in α. It can also

be seen that the parameter θ does not affect skewness and kurtosis.

3.2. Moment Generating and Characteristic Functions. The moment gener-

ating function is useful to obtain the moments. The moment generating function of

a random variable is defined as

MX (t) = E
(

etX
)

=

∫ ∞

−∞

etXf (x) dx.
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The moment generating function for the CTPF distribution is readily written as

MX (t) = E
(

etX
)

=
∫ θ

0
etxf (x) dx =

∑∞
r=0

tr

r!

∫ θ

0
xrf (x) dx

=
∑∞

r=0
tr

r!

∫ θ

0
xr
[

αxα−1

θα

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}]

dx,

or

(3.2) MX (t) =

∞
∑

r=0

tr

r!

αθr [6α2 + αr (5− 3λ1 − λ2) + r2 (1− λ1 − λ2)]

(α + r) (2α + r) (3α + r)

The rth moment can be easily obtained as the coefficient of tr/r! in (3.2). The

characteristic function of the distribution is immediately written from (3.2) as

(3.3)

φX (t) =

∫ θ

0

e itxf (x) dx =
∞
∑

r=0

(it)r

r!

αθr [6α2 + αr (5− 3λ1 − λ2) + r2 (1− λ1 − λ2)]

(α + r) (2α + r) (3α+ r)
,

where i =
√
−1is the imaginary number. The rth moment can also be obtained as

the coefficient of (it)r /r! in the expansion of φX (t).

Table 1: Mean and Variance of Cubic Transmuted
Power Function Distribution

Mean
α λ1 = −0.75 and λ2 = −0.25

θ = 1 θ = 2 θ = 3 θ = 4 θ = 5 θ = 6 θ = 7 θ = 8 θ = 9 θ = 10
0.5 0.483 0.967 1.450 1.933 2.417 2.900 3.383 3.867 4.350 4.833
1.0 0.646 1.292 1.938 2.583 3.229 3.875 4.521 5.167 5.813 6.458
1.5 0.730 1.459 2.189 2.918 3.648 4.377 5.107 5.836 6.566 7.295
2.0 0.781 1.562 2.343 3.124 3.905 4.686 5.467 6.248 7.029 7.810
2.5 0.816 1.632 2.447 3.263 4.079 4.895 5.711 6.527 7.342 8.158
3.0 0.841 1.682 2.523 3.364 4.205 5.046 5.888 6.729 7.570 8.411
3.5 0.860 1.720 2.581 3.441 4.301 5.161 6.021 6.882 7.742 8.602
4.0 0.875 1.750 2.626 3.501 4.376 5.251 6.126 7.002 7.877 8.752
4.5 0.887 1.775 2.662 3.549 4.437 5.324 6.211 7.098 7.986 8.873
5.0 0.897 1.795 2.692 3.589 4.486 5.384 6.281 7.178 8.075 8.973
α λ1 = 0.25 and λ2 = 0.50

θ = 1 θ = 2 θ = 3 θ = 4 θ = 5 θ = 6 θ = 7 θ = 8 θ = 9 θ = 10
0.5 0.242 0.483 0.725 0.967 1.208 1.450 1.692 1.933 2.175 2.417
1.0 0.417 0.833 1.250 1.667 2.083 2.500 2.917 3.333 3.750 4.167
1.5 0.528 1.057 1.585 2.114 2.642 3.170 3.699 4.227 4.756 5.284
2.0 0.605 1.210 1.814 2.419 3.024 3.629 4.233 4.838 5.443 6.048
2.5 0.660 1.320 1.980 2.640 3.300 3.960 4.620 5.280 5.940 6.600
3.0 0.702 1.404 2.105 2.807 3.509 4.211 4.913 5.614 6.316 7.018
3.5 0.734 1.469 2.203 2.938 3.672 4.407 5.141 5.876 6.610 7.345
4.0 0.761 1.521 2.282 3.043 3.803 4.564 5.325 6.085 6.846 7.607
4.5 0.782 1.564 2.347 3.129 3.911 4.693 5.475 6.258 7.040 7.822
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5.0 0.800 1.600 2.401 3.201 4.001 4.801 5.601 6.402 7.202 8.002
Variance

α λ1 = −0.75 and λ2 = −0.25
θ = 1 θ = 2 θ = 3 θ = 4 θ = 5 θ = 6 θ = 7 θ = 8 θ = 9 θ = 10

0.5 0.090 0.361 0.812 1.443 2.255 3.247 4.420 5.773 7.306 9.020
1.0 0.066 0.265 0.596 1.060 1.656 2.384 3.245 4.239 5.365 6.623
1.5 0.048 0.192 0.432 0.768 1.200 1.727 2.351 3.071 3.887 4.798
2.0 0.036 0.144 0.324 0.575 0.899 1.294 1.761 2.301 2.912 3.595
2.5 0.028 0.111 0.250 0.445 0.696 1.002 1.364 1.781 2.254 2.783
3.0 0.022 0.089 0.199 0.354 0.554 0.797 1.085 1.417 1.794 2.214
3.5 0.018 0.072 0.162 0.288 0.451 0.649 0.883 1.154 1.460 1.803
4.0 0.015 0.060 0.135 0.239 0.374 0.538 0.733 0.957 1.211 1.495
4.5 0.013 0.050 0.113 0.202 0.315 0.454 0.617 0.806 1.021 1.260
5.0 0.011 0.043 0.097 0.172 0.269 0.387 0.527 0.689 0.872 1.076
α λ1 = 0.25 and λ2 = 0.50

θ = 1 θ = 2 θ = 3 θ = 4 θ = 5 θ = 6 θ = 7 θ = 8 θ = 9 θ = 10
0.5 0.061 0.243 0.546 0.970 1.516 2.183 2.972 3.881 4.912 6.064
1.0 0.068 0.272 0.613 1.089 1.701 2.450 3.335 4.356 5.513 6.806
1.5 0.060 0.241 0.543 0.966 1.509 2.172 2.957 3.862 4.888 6.034
2.0 0.051 0.204 0.458 0.815 1.273 1.833 2.496 3.260 4.125 5.093
2.5 0.043 0.171 0.384 0.683 1.067 1.536 2.090 2.730 3.456 4.266
3.0 0.036 0.144 0.323 0.574 0.898 1.293 1.759 2.298 2.908 3.591
3.5 0.030 0.122 0.274 0.488 0.762 1.097 1.494 1.951 2.469 3.048
4.0 0.026 0.104 0.235 0.418 0.653 0.940 1.280 1.672 2.116 2.612
4.5 0.023 0.090 0.203 0.361 0.565 0.813 1.107 1.446 1.830 2.259
5.0 0.020 0.079 0.177 0.315 0.493 0.710 0.966 1.262 1.597 1.971

Table 2: Skewness and Kurtosis for the Cubic Trans-
muted Power Function Distribution

Skewness
α λ1 = −0.75 and λ2 = −0.25

θ = 1 θ = 2 θ = 3 θ = 4 θ = 5 θ = 6 θ = 7 θ = 8 θ = 9 θ = 10
0.5 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
1.0 -0.599 -0.599 -0.599 -0.599 -0.599 -0.599 -0.599 -0.599 -0.599 -0.599
1.5 -0.949 -0.949 -0.949 -0.949 -0.949 -0.949 -0.949 -0.949 -0.949 -0.949
2.0 -1.193 -1.193 -1.193 -1.193 -1.193 -1.193 -1.193 -1.193 -1.193 -1.193
2.5 -1.377 -1.377 -1.377 -1.377 -1.377 -1.377 -1.377 -1.377 -1.377 -1.377
3.0 -1.522 -1.522 -1.522 -1.522 -1.522 -1.522 -1.522 -1.522 -1.522 -1.522
3.5 -1.641 -1.641 -1.641 -1.641 -1.641 -1.641 -1.641 -1.641 -1.641 -1.641
4.0 -1.740 -1.740 -1.740 -1.740 -1.740 -1.740 -1.740 -1.740 -1.740 -1.740
4.5 -1.824 -1.824 -1.824 -1.824 -1.824 -1.824 -1.824 -1.824 -1.824 -1.824
5.0 -1.896 -1.896 -1.896 -1.896 -1.896 -1.896 -1.896 -1.896 -1.896 -1.896
α λ1 = 0.25 and λ2 = 0.50

θ = 1 θ = 2 θ = 3 θ = 4 θ = 5 θ = 6 θ = 7 θ = 8 θ = 9 θ = 10
0.5 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093
1.0 0.287 0.287 0.287 0.287 0.287 0.287 0.287 0.287 0.287 0.287
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1.5 -0.103 -0.103 -0.103 -0.103 -0.103 -0.103 -0.103 -0.103 -0.103 -0.103
2.0 -0.353 -0.353 -0.353 -0.353 -0.353 -0.353 -0.353 -0.353 -0.353 -0.353
2.5 -0.533 -0.533 -0.533 -0.533 -0.533 -0.533 -0.533 -0.533 -0.533 -0.533
3.0 -0.670 -0.670 -0.670 -0.670 -0.670 -0.670 -0.670 -0.670 -0.670 -0.670
3.5 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780
4.0 -0.869 -0.869 -0.869 -0.869 -0.869 -0.869 -0.869 -0.869 -0.869 -0.869
4.5 -0.944 -0.944 -0.944 -0.944 -0.944 -0.944 -0.944 -0.944 -0.944 -0.944
5.0 -1.008 -1.008 -1.008 -1.008 -1.008 -1.008 -1.008 -1.008 -1.008 -1.008

Kurtosis
α λ1 = −0.75 and λ2 = −0.25

θ = 1 θ = 2 θ = 3 θ = 4 θ = 5 θ = 6 θ = 7 θ = 8 θ = 9 θ = 10
0.5 -1.244 -1.244 -1.244 -1.244 -1.244 -1.244 -1.244 -1.244 -1.244 -1.244
1.0 -0.620 -0.620 -0.620 -0.620 -0.620 -0.620 -0.620 -0.620 -0.620 -0.620
1.5 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224
2.0 1.044 1.044 1.044 1.044 1.044 1.044 1.044 1.044 1.044 1.044
2.5 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800
3.0 2.487 2.487 2.487 2.487 2.487 2.487 2.487 2.487 2.487 2.487
3.5 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108
4.0 3.669 3.669 3.669 3.669 3.669 3.669 3.669 3.669 3.669 3.669
4.5 4.178 4.178 4.178 4.178 4.178 4.178 4.178 4.178 4.178 4.178
5.0 4.641 4.641 4.641 4.641 4.641 4.641 4.641 4.641 4.641 4.641
α λ1 = 0.25 and λ2 = 0.50

θ = 1 θ = 2 θ = 3 θ = 4 θ = 5 θ = 6 θ = 7 θ = 8 θ = 9 θ = 10
0.5 0.286 0.286 0.286 0.286 0.286 0.286 0.286 0.286 0.286 0.286
1.0 -0.943 -0.943 -0.943 -0.943 -0.943 -0.943 -0.943 -0.943 -0.943 -0.943
1.5 -0.932 -0.932 -0.932 -0.932 -0.932 -0.932 -0.932 -0.932 -0.932 -0.932
2.0 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700
2.5 -0.417 -0.417 -0.417 -0.417 -0.417 -0.417 -0.417 -0.417 -0.417 -0.417
3.0 -0.131 -0.131 -0.131 -0.131 -0.131 -0.131 -0.131 -0.131 -0.131 -0.131
3.5 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142
4.0 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397
4.5 0.632 0.632 0.632 0.632 0.632 0.632 0.632 0.632 0.632 0.632
5.0 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850

3.3. Geometric and Harmonic Means. The geometric mean is a useful measure

in finance and is used to see average growth rate in stocks or market value. The

harmonic mean is another useful measure to see the average rate of change in speed

or stocks, etc. The geometric mean (GM ) and harmonic mean (HM ) for a continuous

random variable are defined as

lnGM = E [lnX ] and (HM)−1 = E
(

X−1
)

.
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Now, for CTPF distribution the geometric mean is given as

lnGM =

∫ θ

0

(ln x) f (x) dx =

∫ θ

0

(ln x)
αxα−1

θα

[

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

]

dx.

Solving the integral we have

(3.4) lnGM = ln θ − 6 + 3λ1 + λ2

6α
⇒ GM = θ exp

(

−6 + 3λ1 + λ2

6α

)

.

Again, the harmonic mean for the CTPF distribution is

(HM)−1 =

∫ θ

0

x−1αx
α−1

θα

[

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

]

dx.

Solving the integral the result is obtained as

(3.5) (HM)−1 = α[(3α−1)(2α+λ1−1)+λ2(α−1)]
θ(α−1)(2α−1)(3α−1)

⇒ HM = θ(α−1)(2α−1)(3α−1)
α[(3α−1)(2α+λ1−1)+λ2(α−1)]

.

The geometric mean and harmonic mean can be computed for different values of the

parameters.

3.4. The Conditional Moments. The conditional moments are useful when the

random variable is truncated below a specific point. Such moments are useful in reli-

ability analysis and engineering. The rth conditional moment for a random variable

is defined as

µr
r|X>t = E (Xr|X > t) =

1

1− F (t)

∫ ∞

t

xrf (x) dx.

Now, the rth conditional moment for the CTPF distribution is given as

µ
′

r|X>t =
1

1−∆t (α, θ, λ1, λ2)

∫ θ

t

xrαx
α−1

θα

[

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

]

dx,

where ∆t (α, θ, λ1, λ2) = (1 + λ1)
tα

θα
+(λ2 − λ1)

t2α

θ2α
−λ2

t3α

θ3α
. The conditional moment

can be written as

µ
′

r|X>t =
1

1−∆t(α,θ,λ1,λ2)

[

∫ θ

0
xr αxα−1

θα

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}

dx

−
∫ t

t
xr αxα−1

θα

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}

dx
]

= 1
1−∆t(α,θ,λ1,λ2)

[

µ
′

r −
∫ t

t
xr αxα−1

θα

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}

dx
]

,

where µ
′

r is given in (3.1). Now, solving the integral, we have

(3.6)

µ
′

r|X>t =
1

1−∆t (α, θ, λ1, λ2)

[

µ
′

r −
αtα+r

θ3α

{

(1 + λ1) θ
2α

(α + r)
+

2 (λ2 − λ1) θ
αtα

(2α+ r)
− 3λ2t

2α

(3α+ r)

}]

,



A NEW CUBIC TRANSMUTED POWER FUNCTION DISTRIBUTION 729

where µ
′

r is given in (3.1). It is to be noted that if t = 0 then the conditional moment

reduces to the raw moment.

3.5. Quantile Function. The quantile function is useful to obtain quantiles of a

distribution. This function is also useful to generate a random sample from the

distribution. The quantile function is obtained as a solution of F (x) = p for x. Now,

for the CTPF distribution, the quantile function is obtained by solving

(1 + λ1)
xα

θα
+ (λ2 − λ1)

x2α

θ2α
− λ2

x3α

θ3α
= p.

Writing (x/θ)α = wwe have

(1 + λ1)w + (λ2 − λ1)w
2 − λ2w

3 = p or λ2w
3 − (λ2 − λ1)w

2 − (1 + λ1)w + p = 0

or c1w
3 + c2w

2 + c3w + p = 0,

where c1 = λ2 ; c2 = − (λ2 − λ1)and c3 = − (1 + λ1).

Solving the above cubic equation, the only real root is

w = − c2

3c1
− 21/3δ1

3c1δ
1/3
3

+
δ
1/3
3

3× 21/3c1
,

where δ1 = −c22 + 3c1c3 ; δ2 = −2c32 + 9c1c2c3 − 27c21p and δ3 = δ2 +
√

4δ31 + δ22.

The quantile function of CTPF distribution is therefore obtained by solving

(x

θ

)α

= − c2

3c1
− 21/3δ1

3c1δ
1/3
3

+
δ
1/3
3

3× 21/3c1
,

for x and is

(3.7) QX (p) = θ

(

− c2

3c1
− 21/3δ1

3c1δ
1/3
3

+
δ
1/3
3

3× 21/3c1

)1/α

.

The random sample can be generated by replacing p with a uniform random number

within [0,1] in the above quantile function. The median can be obtained by using

p= 0.5 in (3.7).

3.6. Shannon Entropy. The Shannon entropy, [12], is a useful measure to decide

about the amount of information in a distribution. The Shannon entropy is defined

as

IS = E [− ln {f (X)}] =
∫ θ

0

− ln {f (x)} f (x) dx.
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Now, for CTPF distribution this expression is written as

− ln f (x) = − ln

(

αxα−1

θα

)

− ln

[

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

]

,

and hence the Shannon entropy for CTPF is

IS =

∫ θ

0

[

− ln

(

αxα−1

θα

)

− ln

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}]

×
[

αxα−1

θα

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}]

dx

= −
∫ θ

0

ln

(

αxα−1

θα

)[

αxα−1

θα

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}]

dx

−
∫ θ

0

ln

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}

×
[

αxα−1

θα

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}]

dx

or

(3.8) IS = ln

(

θ

α

)

+
(6 + 3λ1 + λ2)

6α
− I1,

where

I1 =

∫ θ

0

ln

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}

×
[

αxα−1

θα

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}]

dx.

The Shannon entropy can be computed for different values of the parameters. An

approximation for the Shannon entropy can be obtained by using the expansion of

ln (1 + y) = ln

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}

where

y = λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

and retaining only the linear term. In this case, the integral becomes
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I1 =

∫ θ

0

ln

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}

×
[

αxα−1

θα

{

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

}]

dx

=
1

15

(

5λ2
1 + 5λ1λ2 + 2λ2

2

)

and an approximate value of Shannon entropy is

(3.9) IS = ln

(

θ

α

)

+
(6 + 3λ1 + λ2)

6α
− 1

15

(

5λ2
1 + 5λ1λ2 + 2λ2

2

)

.

The approximate value of Shannon entropy can be computed for various values of

the parameters.

3.7. Order Statistics. In this section, a brief description of order statistics for

CTPF distribution is given. For this, suppose that a random sample of size n is

available from CTPF distribution and x1:n ≤ x2:n ≤ · · · · · · ≤ xn:n be the correspond-

ing order statistics. The distribution of rth order statistics is then given as

(3.10) fr:n (x) =
1

B (r, n− r + 1)
f (x) [F (x)]r−1 [1− F (x)]n−r

r = 1, 2, . . . , n,

where B (a, b) is the complete beta function defined as

B (a, b) =

∫ 1

0

wa−1 (1− w)b−1
dw.

More details about the order statistics may be seen in [13] or in [14]. Now, using the

density and distribution function of CTPF distribution in (3.10), the distribution of

rth order statistics is

(3.11) fr:n (x) =
1

B (r, n− r + 1)

αx2α−1

θ2α

[

1 + λ1 + 2 (λ2 − λ1)
xα

θα
− 3λ2

x2α

θ2α

]

[

1 + λ1 + (λ2 − λ1)
xα

θα
− λ2

x2α

θ2α

]r−1

×
[

1− xα

θα

{

1 + λ1 + (λ2 − λ1)
xα

θα
− λ2

x2α

θ2α

}]n−r

x > θ , α > 0 , r = 1, 2, . . . . . . , n.

The distribution of minimum can be easily obtained from (3.11) by using r = 1 and

the distribution of maximum can be obtained from (3.11) by using r = n.
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4. Maximum Likelihood Estimation

In this section, the maximum likelihood estimation for parameters of CTPF distri-

bution has been derived. For this, suppose a random sample of size n is available

from the CTPF distribution. The likelihood function is

L (α, θ, λ1, λ2; x) =
αn

θnα

n
∏

i=1

xα−1
i

n
∏

i=1

[

1 + λ1 + 2 (λ2 − λ1)
xα
i

θα
− 3λ2

x2α
i

θ2α

]

.

The log of the likelihood function is

(4.1) ℓ = lnL (α, θ, λ1, λ2; x) = n lnα− nα ln θ + (α− 1)

n
∑

i=1

ln xi

+
n
∑

i=1

ln

[

1 + λ1 + 2 (λ2 − λ1)
xα
i

θα
− 3λ2

x2α
i

θ2α

]

.

Since the parameter θ appears in the upper domain of the random variable so the

maximum likelihood estimator of θ is θ̂ = max (x1, x2, . . . , xn) = xn:n. In order to

obtain the maximum likelihood estimators of other parameters, the partial derivatives

of the log-likelihood function is obtained with respect to these parameters. These

derivatives are

(4.2)

∂ℓ

∂α
= n

(

1

α
− ln θ

)

+

n
∑

i=1

ln xi −
n
∑

i=1

2 ln (xi/θ) (xi/θ)
α {λ1 − λ2 + 3λ3 (xi/θ)

α}
1 + λ1 + 2 (λ2 − λ1) (xi/θ)

α − 3λ2 (xi/θ)
2α ,

(4.3)
∂ℓ

∂λ1
=

n
∑

i=1

1− 2 (xi/θ)
α

1 + λ1 + 2 (λ2 − λ1) (xi/θ)
α − 3λ2 (xi/θ)

2α ,

and

(4.4)
∂ℓ

∂λ2
=

n
∑

i=1

2 (xi/θ)
α − 3 (xi/θ)

2α

1 + λ1 + 2 (λ2 − λ1) (xi/θ)
α − 3λ2 (xi/θ)

2α

The maximum likelihood estimates of α, λ1 and λ2 can be obtained by equating (4.2)

- (4.4) to zero and numerically solving the resulting equations. Also, as n → ∞
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then we know that the asymptotic distribution of maximum likelihood estimates of

Θ̂ =
(

α̂, λ̂1, λ̂2

)

is given as [15],











α̂

λ̂1

λ̂2











∼ N3





















α

λ1

λ2











,











V̂11 V̂12 V̂13

V̂21 V̂22 V̂23

V̂31 V̂32 V̂33





















,

where V̂ij = Vij|Θ=Θ̂. Also, the entries Vij can be obtained by inverting the Hessian

matrix; see Appendix.

5. Numerical Study

In this section, a numerical study for the proposed CTPF distribution has been

conducted. The study is carried out in two different ways; namely simulation and

real data application. These numerical studies are given in the following subsections.

5.1. Simulation. In this section, a simulation for CTPF distribution is performed

by generating random samples from the proposed CTPF distribution. The simulation

algorithm is given below:

(1) Generate random samples of sizes 50, 100, 200, 500 and 1000 from CTPF

distribution by using different values of the parameters.

(2) Obtain maximum likelihood estimates of the parameters α, λ1 and λ2. Also

set θ̂ = xn:n for each sample.

(3) Repeat the process for, say, 20000 times.

(4) Obtain average estimate as

ˆ̂α =
1

20000

20000
∑

j=1

α̂j ;
ˆ̂
θ =

1

20000

20000
∑

j=1

θ̂j ;
ˆ̂
λ1 =

1

20000

20000
∑

j=1

λ̂1j and
ˆ̂
λ2 =

1

20000

20000
∑

j=1

λ̂2j .

(5) Obtain mean square error of the estimate as

MSE (α̂) = 1
20000

∑20000
j=1

(

α̂j − ˆ̂α
)2

; MSE
(

θ̂
)

= 1
20000

∑20000
j=1

(

θ̂j − ˆ̂
θ
)2

MSE
(

λ̂1

)

= 1
20000

∑20000
j=1

(

λ̂1j − ˆ̂
λ1

)2

; MSE
(

λ̂2

)

= 1
20000

∑20000
j=1

(

λ̂2j − ˆ̂
λ2

)2

The estimated parameters and the mean square errors are given in Table 3, below.

From the table, it can be seen that the estimated values of the parameters are close to

actual values and hence the estimation process is consistent. Also the mean square
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Table 3. Simulation Results

α = 1.5 , θ = 2.0 , λ1 = 0.5 , λ2 = −0.25
Sample Size Estimates Mean Square Errors

α θ λ1 λ2 α θ λ1 λ2

50 1.489 2.000 0.504 -0.244 0.097 0.095 0.045 0.043
100 1.519 1.988 0.503 -0.246 0.089 0.089 0.044 0.041
200 1.506 1.985 0.480 -0.264 0.088 0.086 0.040 0.042
500 1.517 1.991 0.503 -0.239 0.073 0.079 0.024 0.039
1000 1.512 1.995 0.516 -0.266 0.042 0.076 0.023 0.038

α = 2.5 , θ = 3.0 , λ1 = −0.5 , λ2 = 0.25
Sample Size Estimates Mean Square Errors

α θ λ1 λ2 α θ λ1 λ2

50 2.506 2.987 -0.511 0.266 0.096 0.092 0.048 0.056
100 2.494 2.995 -0.500 0.258 0.094 0.087 0.040 0.048
200 2.504 2.987 -0.513 0.246 0.092 0.087 0.031 0.034
500 2.490 3.005 -0.520 0.251 0.087 0.083 0.028 0.030
1000 2.512 2.988 -0.515 0.231 0.085 0.080 0.027 0.029

Table 4. Summary Measures for Two Data Sets

Data n Min Mean Q1 Median Q3 Skew Max

Mammal Brain 84 0.45 106.9261 9.8250 50.5000 183.500 1.1019 442.00

Bladder Cancer 128 0.08 9.3656 3.3475 6.3950 11.8375 3.2481 79.05

error of the estimates reduces with an increase in the sample size and hence the

estimates become more efficient with an increase in the sample size.

5.2. Real Data Applications. A real data application of the proposed CTPF dis-

tribution is conducted in this section which has been done by using mammal brain

data; obtained from [16]; containing mammal brain weight in grams and the bladder

cancer data; obtained from [17]; containing remission time from bladder cancer. The

summary measures of these two data sets are given below. Different competitive dis-

tributions along with the proposed CTPF distribution are fitted on these data sets,

namely, the cubic transmuted power function distribution, by [11], the transmuted

power function distribution, by [10] and the power function distribution for the pur-

pose of comparison. The distributions have been fitted by computing the maximum

likelihood estimates of the parameter, obtained by using the maxLik function of R,

[18].
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Table 5. MLE’s and Goodness of Fit Measures for the Mammal

Brain Data

Parameters
CTPF
(New)

CTPF
(Ansari)

TPF
(Haq)

Power Function

θ̂
442

-

442

-

442

-

442

-

α̂
0.5272

(0.0733)

0.5191

(0.0764)

0.4456

(0.0459)

0.3823

(0.0417)

λ̂1

0.9997

(0.5036)

0.9995

(0.5071)

1.0000

(0.3103)

λ̂2

0.6838

(0.6238)

Log-likelihood (0.6238) (0.5071) (0.3103)

AIC 874.7988 914.0048 886.4986 915.4038

BIC 882.0913 918.8664 891.3602 917.8346

KS
(pvalue)

0.9781 0.8392 0.0111 0.5732

The maximum likelihood estimates for various distributions and their standard er-

ror for the mammal brain data are given in Table 5. This table also contains the

values of log-likelihood function, Akaike Information Criterion (AIC ), and Bayesian

Information Criterion (BIC ) for various distributions for the mammal brain data

sets.

From the above table, it is observed that the proposed CTPF distribution is the best

fit for the mammal brain data as this distribution has the largest value of the log-

likelihood function. Also, the proposed CTPF distribution has the smallest values of

AIC and BIC. This distribution also has largest p-value for the Kolmogorov-Smirnov

test and hence the proposed CTPF distribution is the best fit to the data.

The results for various distributions for the bladder cancer data are given in Table 6

below. This table also shows that the proposed CTPF distribution is the best fit for

the bladder cancer data as this distribution has the largest value of the log-likelihood

function and the smallest values of AIC and BIC alongside the highest p-value for

the Kolmogorov-Smirnov test.
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Table 6. MLEs and Goodness of Fit Measures for the Bladder
Cancer Data

Parameters
CTPF
(New)

CTPF
(Ansari)

TPF
(Haq)

Power Function

θ̂
79.05

-

79.05

-

79.05

-

79.05

-

α̂
0.4016

(0.0856)

0.2664

(0.1846)

0.4589

(0.0374)

0.3822

(0.0388)

λ̂1

0.0428

(0.0512)

1.0000

(0.3486)

1.0000

(0.2307)

λ̂2

0.9995

(0.2248)

Log-likelihood 450.5112 459.7019 453.2533 475.5632

AIC 907.0224 923.4038 910.5066 953.1264

BIC 915.5785 929.1079 916.2107 955.9784

KS
(pvalue)

0.4528 0.3748 0.0248 0.2587

The plots of actual data and fitted distributions for two data sets are shown in

figure 2 below.

Figure 2. Actual Data and Fitted Distributions
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6. Conclusions

In this paper, a new cubic transmuted power function (CTPF ) distribution is pro-

posed by using the cubic transmuted family of distributions suggested by Rahman et

al. (2018). The proposed distribution provides the cubic transmuted power function

distribution of [11] and the transmuted power function distribution of [10] as a special

case. Some useful properties of the proposed CTPF distribution have also been stud-

ied. These properties include moments, generating functions, quantile function and

random number generation. The geometric mean, harmonic mean and conditional

moments of the distribution are also obtained. The maximum likelihood estimation

of the parameters of the proposed CTPF distribution has also been done. The simu-

lation study to see the consistency of the estimation is also conducted. The proposed

CTPF distribution provides better fit on two real data sets. The proposed CTPF

distribution can be used to model the data sets for reliability analysis.

Appendix

The Hessian matrix for the proposed CTPF distribution is

H =











H11 H12 H13

H21 H22 H23

H31 H32 H33











.

The variance - covariance matrix of the estimated parameters is given as

V =











V11 V12 V13

V21 V22 V23

V31 V32 V33











=











H11 H12 H13

H21 H22 H23

H31 H32 H33











−1

.

The entries of H are given below.

We have used ∆ (λ1, λ2) = 1 + λ1 + 2 (λ2 − λ1)
(

x
θ

)α − 3λ3

(

x
θ

)2α
.

H11 =
∂2ℓ

∂α2
= − n

α2
−
∑n

i=1

[

1

∆2 (λ1, λ2)

(

2
(xi

θ

)α

ln
(xi

θ

)

{

λ1 − λ2 + 3λ2

(xi

θ

)α})2

− 2

∆ (λ1, λ2)
(xi

θ

)α

ln2
(xi

θ

){

λ1 − λ2 + 6λ2

(xi

θ

)α}]
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H12 =
∂2ℓ

∂α∂λ1

=
∑n

i=1

[

1

∆2 (λ1, λ2)

(

2
(xi

θ

)α {

1− 2
(xi

θ

)α}

× ln
(xi

θ

){

λ1 − λ2 + 3λ2

(xi

θ

)α})2

− 2

∆ (λ1, λ2)
ln
(xi

θ

)

]

H13 =
∂2ℓ

∂α∂λ2
=
∑n

i=1

[

1

∆2 (λ1, λ2)

(

2
(xi

θ

)α
{

2
(xi

θ

)α

− 3
(xi

θ

)2α
}

× ln
(xi

θ

){

λ1 − λ2 + 3λ2

(xi

θ

)α})2

+
2

∆ (λ1, λ2)

×
((xi

θ

)α

ln
(xi

θ

){

1− 3
(xi

θ

)α})]

H22 =
∂2ℓ

∂λ2
1

= −
∑n

i=1

[

1

∆2 (λ1, λ2)

{

1− 2
(xi

θ

)α}2
]

H23 =
∂2ℓ

∂α∂λ2

= −
∑n

i=1

[

1

∆2 (λ1, λ2)

{

1− 2
(xi

θ

)α}
{

2
(xi

θ

)α

− 3
(xi

θ

)2α
}]

H33 =
∂2ℓ

∂λ2
2

= −
∑n

i=1

[

1

∆2 (λ1, λ2)

{

2
(xi

θ

)α

− 3
(xi

θ

)2α
}2
]

It is to be noted that H21 = H12 , H31 = H13 and H32 = H23.
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