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ESTIMATION OF OVERLAPPING MEASURES USING
NUMERICAL APPROXIMATIONS: WEIBULL DISTRIBUTIONS

OMAR M. EIDOUS(1) AND MERVAT M. ABU AL-HAYJA‘A(2)

Abstract. This paper deals with the estimation problem of the two overlapping

(OVL) measures, namely; Matusita ρ and Morisita λ measures when two indepen-

dent random variables X and Y follow Weibull distribution. The two measures

ρ and λ have been studied in the literature in the case of two Weibull distributions

under the assumption that the two shape parameters are equal. In this work, a

new general expression for each measure is provided under the Weibull distribution

without using any assumptions about the distribution parameters. The numerical

integration methods known as trapezoidal, Simpson 1/3 and Simpson 3/8 rules that

facilitate making inference on these measures are utilized. The relative bias (RB)

and relative mean square error (RMSE) of the resulting proposed estimators were

investigated and compared with some existing estimators via Monte-Carlo simula-

tion technique. The results demonstrated clearly the superiority of the proposed

estimators over the existing one in almost all considered cases.

1. Introduction

The overlapping coefficients(OVL) indicates to the similarity of two probability

distributions, measured by their intersection area of graphs of two or more proba-

bility density functions, and it is another a simple method to identify the closeness

between samples or populations that are usually described in terms of their distri-

bution functions (Weitzman, 1970). Pastore and Calcagni (2019) mentioned that

the main reason of using such overlapping measures is that they improve the inter-

pretability and conclusions reliability of data analysis. In the literature, there are
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many overlap coefficients such as Matusita (1955), Morisita (1959), Weitzman(1970)

and Pianka (Chaubey et al., 2008) measures and others.

In this paper, we will focus on Matusita’s and Morisita‘s measures of OVL. Let

fX (x) and fY (x) be two continuous probability density functions for the two random

variables X and Y respectively, then the OVL are defined as follows:

(1) Matusita‘s measure (1955) is given by:

ρ =

∫ √
fX (x) fY (x)dx

(2) Morsita‘s measure(1959) is given by:

λ=
2
∫
fX (x) fY (x) dx∫

[fX (x)]2dx +
∫
[fY (x)]2dx

If X and Y are discrete random variables then ρ and λ are defined the same as the

above formulas but any integral in their expressions should be replaced by summation

(Inman and Bradly, 1989).

The value of each of the above formula of overlap measures of two densities are

measured on the scale of 0 to 1. If the value is close to 0 then it indicates that

there is no common area between two densities (i.e. fX (x) 6= fY (x) , ∀ x) and if the

overlap value is 1 then it indicates a perfect agreement between two densities , which

is equivalent to say, fX (x) = fY (x), ∀ x.

The overlapping is used in many applications to measure the similarity of data

sets. Thus, it is applied to data sets arising in different fields such as ecology (Pianka,

1973 and Hurlbert, 1978), geography, social behavior, niche structure and organism

morphology (LU, Smith, and Good 1989). Sneath (1977) used the OVL coefficient

as a measure of disjunction and other authors pointed out to the application of

OVL measure on income differentials (see Mulekar and Mishra, 1994, Mulekar and

Fukasawa, 2010 and Inman and and Bradley, 1989) and genetics (Federer et al. 1963).

Recently, Alodat et al. (2021) derived the asymptotic sampling distribution of the

kernel estimator of the Matusita measure and they showed the importance of OVL in

goodness-of-fit test for two independent populations. Samawi et al. (2011) introduced

a new nonparametric test of symmetry based on OVL measure ρ using kernel density

estimation.
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Most studies have considered the estimation of ρ and λ under some specific pair

distributions. Mulekar and Mishra (2000) suggested the use of Jackknife and Boot-

strap methods to construct the confidence intervals for ρ and λ in the case of two

normal distributions with common mean. Chaubey et al. (2008) studied the proper-

ties and addressed point estimation for ρ when the two populations are assumed to

be described by the inverse Gaussian distributions (Wald distributions) with equal

means. Eidous and Daradkeh (2022) proposed a new technique for estimating the

Matusita coefficient ρ under pair-normal distributions, and Eidous and Al-Shourman

(2022) used another method based on the numerical approximation method to esti-

mate ρ under two normal distributions.

The case of exponential distributions can be considered as a special case of Weibull

distributions by taking β = 1. The case of two exponential distributions was studied

by Madhuri et al. (2001) and Samawi and Al-Saleh (2008), who also studied the effect

of sampling scheme on ρ. Helu and Samawi (2011) investigated the OVL coefficients

for two Lomax distributions with different sampling procedures. Parallel to the work

of Helu and Samawi (2011), Dhaker et al. (2021) considered the case of two inverse

Lomax distributions to study the measures ρ.

Let X and Y are independent Weibull distributions random variable with the same

shape (β1 = β2 = β) but different scale parameter α1 and α2 respectively, then the

pdf of X is:

fX (x;α1, β) =
β

α1

(
x

α1

)β−1

e−(x/α1)
β

, x > 0, α1, β > 0.

We will denote it by, X ∼ We(α1, β). Thus, if Y ∼ We(α2, β) then the pdf of

Y is,

fY (y;α2, β) =
β

α2

(
y

α2

)β−1

e−(y/α2)
β

, y > 0, α2, β > 0.

Under the assumption thatX and Y are independent, Al-Saidy et al. (2005) (See also,

Eidous and Al-Hayjaa, 2023) considered the case of two Weibull distributions with

the same shape and different scale parameters. Let K = α1/α2 and Q = (2β − 1)/β

(α1, α2 are scale parameters and β is the shape parameter). Al-Saidy et al. (2005)
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derived the formulas of ρ, which are given by

ρ =
2
√
Kβ

1 +Kβ

and

λ =
2Q+1Kβ

(1 +K)(1 +Kβ)Q
,

Most of the previous studied were accomplished by using some restrictions on the

distributions parameters. For example, without using the assumption β1 = β2 = β

(Al-Saidy et al., 2005), the above formula of ρ and λ are no longer true. The main

objective of this paper is to estimate the OVL ρ and λ by adopting the numerical

integration approximation methods; trapezoidal and Simpson rules. Then, for each

numerical integration rule, a new maximum likelihood (ML) estimator of ρ and λ

are obtained. The various rules are introduced in this paper, and their performances

are assessed throughout the simulation technique. Accordingly, this paper has been

organized as follows:

The maximum likelihood estimators for the parameters of the Weibull distributions

were derived in Section 2. Section 3 gives some explanations and introduces the

formulas of the trapezoidal and Simpson rules. The approximation formulas for ρ and

λ based on numerical integration methods have been given in Section 4 and Section 5,

respectively. In Section 6, three new estimators are proposed and developed for each

of ρ and λ. Section 7 discusses some concepts for applying the proposed estimators

of ρ and λ in practice. Section 8 gives a Monte-Carlo simulation study to investigate

the finite properties of the proposed estimators and to compare their performance

with some other estimators found in the literature. The final conclusions are stated

in Section 9.

2. Maximum Likelihood Estimators of Weibull Distribution

Parameters

LetX1, X2, . . . , Xn1
be a random sample of size n1 fromWe(α1, β1) and let Y 1, Y2, . . . , Yn2

be another random sample of size n2 from We(α2, β2), where the two samples are

independent. The log-likelihood function is,

lnL (α1, β1, α2, β2) = n1lnβ1 + n2lnβ2 − (n1β1lnα1 + n2β2lnα2) +
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+ (β1 − 1)
n1∑

i=1

lnxi + (β2 − 1)
n2∑

i=1

lnyi −
1

α1
β1

n1∑

i=1

xβ1

i − 1

α2
β2

n2∑

i=1

yβ2

i

The ML estimators of α1, β1, α2 and β2 are obtained by solving the following equa-

tions simultaneously,

1

β1

+
1

n1

n1∑

i=1

lnxi −
∑n1

i=1

[
xβ1

i lnxi

]

∑n1

i=1 x
β1

i

= 0

1

β2
+

1

n2

n2∑

i=1

lnyi −
∑n2

i=1

[
yβ2

i lnyi

]

∑n2

i=1 y
β2

i

= 0

α1 =

(∑n1

i=1 x
β1

i

n1

) 1

β1

and

α2 =

(∑n2

i=1 y
β2

i

n2

) 1

β2

If α̂1, α̂2, β̂1 and β̂2 are the ML estimators of α1, α2, β1and β2 respectively then the

ML estimators of fX (x;α1, β1) and fY (x;α2, β2) are fX

(
x; α̂1, β̂1

)
and fY

(
x; α̂2, β̂2

)

respectively.

3. Numerical Integration Methods

Many definite integrals are not simple to find or when definite integral approxima-

tion is required. Wherefore, we can use numerical approximation methods to quickly

and easily solve problems with a satisfactory higher absolute error (see Chapra and

Canale, 2014). Trapezoidal, Simpson 1/3 and Simpson 3/8 rules to approximate the

interested integral are adopted in this paper. Let h (t) be a continuous function on

[a, b] and let ∆t = b−a
k

, a and b are finite real numbers. Suppose that the interval

[a, b] is divided into k subintervals each of length ∆t as follows,

a = t0 < t1 < t2 < · · · < tk = b,

where ti = a+ i∆t , i = 0, 1, . . . , k−1. The three interested numerical integration

rules to approximate
∫ b

a
h (t) dt are (Chapra and Canale, 2014),

(1) The trapezoidal rule is given by,
∫ b

a

h (t) dt =
∆t

2
[h (a) + 2h (t1) + 2h (t2) · · ·+ 2h (tk−1) + h (b)] ,
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(2) The Simpson 1/3 rule is given by,

∫ b

a

h (t) dt =
∆t

3
[h (a) + 4h (t1) + 2h (t2) + · · ·+ 4h (tk−1) + h (b)] ,

(3) The Simpson 3/8 rule is given by,

∫ b

a

h (t) dt =
3∆t

8
[h (a) + 3h (t1) + 3h (t2) + 2h (t3) + 3h (t4) + 3h (t5)

+2h (t6) + · · ·+ 2h (tk−3) + 3h (tk−2) + 3h (tk−1) + h(b)]

4. Approximation of ρ(X,Y )

The formula of Matusita measure ρ(X, Y ) between X and Y is,

ρ (X, Y ) =

∫ ∞

0

√
fX (x;α1, β1) fY (x;α2, β2)dx.

Under the assumption β1 = β2 (= β, say), Al-Saidy et al. (2005) computed the value

of the above integral, which is given by,

ρ(X, Y ) =
2

√
(α1/α2)

β

1 + (α1/α2)
β
.

However, it is not an easy job to evaluate the above integral without using the

assumption β1 = β2. Therefore, our main interest is to approximate the above integral

by using the trapezoidal and Simpson numerical integration methods without using

any restrictions on the parameters of Weibull distributions. Since these methods

require the integral limits (bounds) to be finite then as a first step, we have to find

a proper transformation that enables us to apply the trapezoidal and Simpson rules.

As a general case, consider the transformation t = W (x), where W (x) is a contin-

uous increasing (or decreasing) function in x such that W (0) = c and W (∞) = d,

where c and d are two real numbers (If W is strictly increasing function then c < d,

while c > d for strictly decreasing W ). Then x = W−1(t) and dx = dW−1(t)
dt

. To sim-

plify the notations, let V (t) = W−1(t) then x = V (t) and dx = V ′ (t) dt. Therefore,

ρ (X, Y ) =

∫ d

c

√
fX (V (t) ;α1, β1) fY (V (t) ;α2, β2)V

′(t)dt. (1)

Theorem 4.1. Let W be a continuous increasing (or decreasing) function then,

ρ (W (X) ,W (Y )) = ρ (X, Y ) .
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Which indicates that ρ is invariant measure with respect to any continuous increasing

or decreasing function.

Proof. Let T1 = W (X) be a continuous increasing (or decreasing) function of a

random variable X . The pdf of T1 is,

fT1
(t1) = fX (V (t1) ;α1, β1) |V ′(t1)|

and the pdf of T2 = W (Y ) is,

fT2
(t2) = fY (V (t2) ;α2, β2) |V ′(t2)|

Now, if

ρ (W (X) ,W (Y ))=ρ (T1 , T 2)

=

∫ d

c

√
fT1

(t1) fT2
(t1)dt1

=

∫ d

c

√
fT1

(t1) fT2
(t1) |V ′(t1)| fY (V (t1) ;α2, β2) |V ′(t2)| dt1

=

∫ d

c

√
fT1

(t1) fT2
(t1) fY (V (t1) ;α2, β2) |V ′(t2)| dt1

= ρ (X, Y ) .

�

The last step is obtained based on Eq. 1. This completes the proof.

Now, suppose that the selected transformation W gives finite numbers for c and

d then formula of ρ that is given by Eq. 1 can be approximated using trapezoidal,

Simpson 1/3 and Simpson 3/8 rules as follows:

Let h (t) =
√
fX (V (t) ;α1, β1) fY (V (t) ;α2, β2)V

′(t) then,

ρ=

∫ d

c

√
fX (V (t) ;α1, β1) fY (V (t) ;α2, β2)V

′(t)dt

=

∫ d

c

h (t) dt.

The approximations of ρ=
∫ d

c
h (t) dt by using numerical integral methods are given

as follows:
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(1) Trapezoidal Approximation: The approximation of ρ using trapezoidal

rule is,

ρ1 ∼=
d− c

2k
[h (c) + 2h (u1) + 2h (u2) · · ·+ 2h (uk−1) + h (d)] .

(2) Simpson 1/3 Approximation: The approximation of ρ using Simpson 1/3

rule is,

ρ2 ∼=
d− c

3k
[h (c) + 4h (u1) + 2h (u2) + · · ·+ 4h (uk−1) + h (d)] .

(3) Simpson 3/8 Approximation: The approximation of ρ using Simpson 3/8

rule is,

ρ3 ∼=
3(d− c)

8k
{h (c) + 3h (u1) + 3h (u2) + 2h (u3) + 3h (u4) + 3h (u5) + 2h (u6) + · · ·+ 2h (uk−

5. Approximation of λ

The Morisita measure λ between the two independent random variables X and Y

is,

λ=
2
∫∞

0
fX (x;α1, β1) fY (x;α2, β2) dx∫∞

0
(fX (x;α1, β1))

2dx+
∫∞

0
(fY (x;α2, β2))

2 dx

=
2ϕXY

ϕX + ϕY

,

where,

ϕXY =

∫ ∞

0

fX (x;α1, β1) fY (x;α2, β2) dx

ϕX =
∫∞

0
(fX (x;α1, β1))

2dx,and

ϕY =

∫ ∞

0

(fY (x;α2, β2))
2 dx .

To approximate λ, we need to approximate ϕXY , ϕX and ϕY , that require their

integrals limits to be finite. This can be achieved by selecting a proper transformation.

The same technique used the approximation in the previous in section 4 .

By using the same transformation t = W (x) with inverse tramsformation x =

W−1 (t) = V (t) and the same notations of previous subsection, we obtain,

ϕXY =

∫ d

c

fX (V (t) ;α1, β1) fY (V (t) ;α2, β2) V
′(t)dt
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ϕX =
∫ d

c
(fX (V (t) ;α1, β1))

2V ′(t)dt,and

ϕY =

∫ d

c

(fY (V (t) ;α2, β2))
2 V ′(t)dt .

Thus,

λ =
2
∫ d

c
fX (V (t) ;α1, β1) fY (V (t) ;α2, β2)V

′(t)dt
∫ d

c
(fX (V (t) ;α1, β1))

2V ′(t)dt +
∫ d

c
(fY (V (t) ;α2, β2))

2 V ′(t)dt
.

To simplify the notations, let

h1 (t) = fX (V (t) ;α1, β1) fY (V (t) ;α2, β2) V
′(t)

h2 (t) = (fX (V (t) ;α1, β1))
2V ′(t)

and

h3 (t) = (fY (V (t) ;α2, β2))
2 V ′ (t) .

Then ϕXY =
∫ d

c
h1 (t) dt, ϕX =

∫ d

c
h2 (t) dt, ϕY =

∫ d

c
h3 (t) dt and

λ =
2
∫ d

c
h1 (t) dt∫ d

c
h2 (t) dt +

∫ d

c
h3 (t) dt

.

Then the approximations of λ by using numerical integral methods are given as

follows:

(1) Trapezoidal Approximation: The approximation of λ using trapezoidal

rule is,

λ1
∼=

2
(
h1 (c) + 2

∑k−1
j=1 h1 (uj) + h1 (d)

)

h2 (c) + 2
∑k−1

j=1 h2 (uj) + h2 (d) + h3 (c) + 2
∑k−1

j=1 h3 (uj) + h3 (d)

(2) Simpson 1/3 Approximation: The approximation of λ using Simpson 1/3

rule is (k is an integer positive number and a multiple of 2),

λ2 =
2(h1(c)+B1+h1(d))

h2(c)+B2+h2(d)+h3(c)+B3+h3(d)
where,

Bi = 4

k/2∑

j=1
j 6=2m

hi (u2j−1) + 2

k/2−1∑

j=1

hi (u2j), i = 1, 2, 3, m ∈ N0.

(1) Simpson 3/8 Approximation: The approximation of λ by using Simpson

3/8 rule is (k is an integer positive number and a multiple of 3),

λ3
∼= 2 (h1 (c) + A1 + h1 (d))

h2 (c) + A2 + h2 (d) + h3 (c) + A3 + h3 (d)
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where,

Ai = 3
k−1∑

j=1
j 6=3m

hi (uj) + 2

k/3−1∑

j=1

hi (u3j), i = 1, 2, 3, m ∈ N0

6. Estimation of Overlapping Coefficients

Let α̂1, α̂2, β̂1 and β̂2 be the ML estimators of α1, α2, β1 and β2 respectively

then the ML estimators of fX (x;α1, β1) and fY (x;α2, β2) are fX

(
x; α̂1, β̂1

)
and

fY

(
x; α̂2, β̂2

)
respectively. Eidous and Al-Maqableh (2022) suggested and developed

an estimator of ρ (X, Y ) and λ(X, Y ) . Their work depends entirely on writing the

formula of ρ and λ as an expected value of some function(s), and then they estimated

the resulting expected value(s) by using the method of moments (See also Eidous and

Al-Talafhah, 2020). The two estimators of ρ and λ are respectively,

ρ̂EM =
1

2




1

n1

n1∑

k=1




fY

(
Xk; α̂2, β̂2

)

fX

(
Xk; α̂1, β̂1

)




1/2

+
1

n2

n2∑

k=1



fX

(
Yk; α̂1, β̂1

)

fY

(
Yk; α̂2, β̂2

)




1/2



λ̂EM =

1
n2

∑n2

k=1 fX

(
Yk; α̂1, β̂1

)
+ 1

n1

∑n1

k=1 fY

(
Xk; α̂2, β̂2

)

1
n1

∑n1

k=1 fX

(
Xk; α̂1, β̂1

)
+ 1

n2

∑n2

k=1 fY

(
Yk; α̂2, β̂2

)

6.1 Estimation of ρ

The proposed estimators of ρ can be obtained simply by substituting the ML

estimators fX

(
.; α̂1, β̂1

)
and fY

(
.; α̂2, β̂2

)
of fX (.;α1, β1) and fY (.;α2, β2) back into

h (u) to obtain the corresponding estimators of ρTrap, ρSimp1 and ρSimp2. Briefly, the

proposed estimators of ρ (X, Y ) are given as follows:

Let ĥ (t) =

√
fX

(
V (t) ; α̂1, β̂1

)
fY

(
V (t) ; α̂2, β̂2

)
V ′(t) then

(1) The proposed estimator of ρ using the trapezoidal approximation is,

ρ̂Trap =
d− c

2k

[
ĥ (c) + 2

k−1∑

j=1

ĥ (uj) + ĥ (d)

]
.

(2) The proposed estimator of ρ using Simpson 1/3 approximation is,

ρ̂Simp1 =
d− c

3k


ĥ (c) + 4

k/2∑

j=1

ĥ (u2j−1) + 2

k/2−1∑

j=1

ĥ (u2j) + ĥ (d)


 .
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(3) The proposed estimator of ρ using Simpson 3/8 approximation is,

ρ̂simp2 =
3(d− c)

8k




ĥ (c) + 3

k−1∑

j=1
j 6=3m

ĥ (uj) + 2

k/3−1∑

j=1

ĥ (u3j) + ĥ (d)





, m ∈ N0.

6.2 Estimation of λ

Let

ĥ1 (t) = fX

(
V (t) ; α̂1, β̂1

)
fY

(
V (t) ; α̂2, β̂2

)
V ′ (t) ,

ĥ2 (t) =
(
fX

(
V (t) ; α̂1, β̂1

))2
V ′(t)

and

ĥ3 (t) =
(
fY

(
V (t) ; α̂2, β̂2

))2
V ′ (t) .

(1) The proposed estimators of λ using the trapezoidal approximation is,

λ̂Trap =
2
(
ĥ1 (c) + 2

∑k−1
j=1 ĥ1 (uj) + ĥ1 (d)

)

ĥ2 (c) + ĥ3 (c) + 2
∑k−1

j=1 ĥ2 (uj) + 2
∑k−1

j=1 ĥ3 (uj) + ĥ2 (d) + ĥ3 (d)

(2) The proposed estimators of λ using Simpson 1/3 approximation is,

λ̂Simp1 =
2(ĥ1(c)+B̂1+h1(d))

ĥ2(c)+B̂2+ĥ2(d)+ĥ3(c)+B̂3+ĥ3(d)
where,

B̂i = 4

k/2∑

j=1
j 6=2m

ĥi (u2j−1) + 2

k/2−1∑

j=1

ĥi (u2j), i = 1, 2, 3, m ∈ N0.

(1) The proposed estimators of λ using Simpson 3/8 approximation is,

λ̂Simp2 =
2
(
ĥ1 (c) + Â1 + ĥ1 (d)

)

ĥ2 (c) + Â2 + ĥ2 (d) + ĥ3 (c) + Â3 + ĥ3 (d)

where,

Âi = 3
k−1∑

j=1
j 6=3m

ĥi (uj) + 2

k/3−1∑

j=1

ĥi (u3j), i = 1, 2, 3, m ∈ N0.
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7. Number of Partitions and Transformation

To use the various estimators proposed for (ρ and λ) in the practical application

stage, there are two quantities to be determined. The first quantity is the transforma-

tion functionW . Let Z be a continuous random variable with cumulative distribution

function FZ (z) , z ≥ 0 then our special interest is to take W (x) = FZ (x). In this

case, a = W (0) = 0 and b = W (∞) = 1. More specifically, we consider the following

transformation in our simulation study in the next section,

FZ (x) = 1− e−x , 0 ≤ x < ∞.

That is, Z ∼ exp (1) = Weib(1, 1). In addition, and to study the effect of the

selected transformation on the estimation process we also take Z ∼ Weib(1, 2). In

general, let Z ∼ Weib(1, θ) then,

FZ (x) = 1− e−xθ

, 0 ≤ x < ∞.

In this case, t = W (x) = FZ (x) = 1 − e−xθ

. The inverse transformation is x =

V (t) = (−ln(1− t))1/θ and dx = V ′ (t) dt = (−ln(1−t) )
1

θ
−1

θ(1−t)
dt.

The second quantity that need to be determine is the number of partitions (subin-

tervals) k. In this study, we suggest to take its value to be k = min{n1, n2}. It

is well known that the maximum absolute error of the different numerical integral

approximation decreases as the number of partitions k increases (Chapra and Canale,

2014). However, a preliminary simulation study was performed for different values of

k greater thanmin{n1, n2}, it is found that there is no significant improvement in the

estimation process for the different proposed estimators by taking k > min{n1, n2}.

8. Simulation Study and Results

In this section, a Monte-Carlo simulation study is conducted to investigate the

properties and performances of the proposed estimators of OVL measures ρ and λ

that derived in this paper. The transformation FZ (x) = 1 − e−xθ

with θ = 1, 2

is used for each of the proposed estimator. For sake of comparison, the estimators

ρ̂EM and λ̂EM of ρ and λ that suggested by Eidous and Al-Maqableh (2022) are also

considered.
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Two random samples are simulated from two Weibull distributions. The first sam-

ple x1, x2, . . . , xn1
is simulated from fX (x) = We (α1, β1), while the second sample

y1, y2, . . . , yn2
is generated from fY (y) = We (α2, β2), where fX (x) and fY (y) and

the corresponding choosing parameters are given in Table 1. Also, the exact values

of ρ and λ for each pair of selection are also provided. Despite that the process of

selection parameters seems to be arbitrary, we take into account that our selection

should vary the exact values of ρ and λ from 0 to 1. That is, the selection gives

the values of ρ and λ to be small (near zero) and large (near one). For each pair of

densities, the size of simulated data are (n1, n2) = (12, 12) , (24, 30) , (504, 504) . All

simulation results are calculated by using Mathematica Version 7.

Table 1. The simulated pair of distributions and the corresponding

exact values of ρ and λ .

Weibull Distributions fX(x) fY (y) ρ λ

Case(1) We(1,2) We(1.2,1.8) 0.9793 0.9721

Case(2) We(1,4) We(1.8,2.1) 0.6893 0.5672

Case(3) We(1,2) We(5,6) 0.055 0.0026

The empirical results were calculated based on a thousand iterations (Rep = 1000).

For each of the estimators considered, we computed Relative Bias (RB), Relative

Mean Square Error (RMSE) and Efficiency (EFF). If we interested in calculating the

RB, RMSE and EFF of an estimator ρ̂, the numerical calculations are performed as

follows:

Suppose ρ̂ is an estimator of ρ and let ρ̂(j) be the value of ρ̂ calculated on the basis

of iteration j of a sample, j= 1, 2, . . . , Rep= 1000 then the estimated expected value

of ρ̂ is,

Ê (ρ̂) =

∑Rep
j=1 ρ̂(j)

Rep
,

and the estimated mean square error (MSE) of ρ̂ is,

M̂SE (ρ̂) =

∑Rep
j=1

(
ρ̂(j) − Ê (ρ̂)

)2

Rep
.
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Accordingly, the RB of ρ̂ is given by,

RB =
Ê (ρ̂)− ρ

ρ

and the RMSE of ρ̂ is,

RMSE =

√
M̂SE (ρ̂)

ρ
.

Also, the EFF of ρ̂ with respect to ρ̂EM is,

EFF =
M̂SE (ρ̂EM )

M̂SE (ρ̂)
.

All computations and outputs of the simulation study are showed in Table 2 and Table

3, respectively. Based on these outputs we can summarize the results as follows.

(1) Properties and performances of the various estimators:

(2) The |RB| and RMSE values of the different estimators of ρ and λ decrease

with increasing sample sizes. This indicates the various estimators are con-

sistent estimators. For example, from Table 2 and for Case 1 with θ = 1 and

(n1, n2) = (12, 12), the values of |RB| and RMSE of ρ̂Trap are 0.0528 and

0.0836, respectively, while its |RB| = 0.001 and RMSE = 0.0066 for large

(n1, n2) = (504, 504).

(3) Most of the RBs values of the proposed estimators were negative (this can

be clearly seen by examining the values of RBs of the proposed estimators

in Table 1 and 2), indicating that the various proposed estimators are under

estimate the exact value of the OVL coefficient. This indicates that some bias

correction methods (see Eidous, 2009 and 2011) can be used to improve the

performance of the proposed estimators.

(4) It is clear that the RMSE and consequently the values of EFF for the proposed

estimators are better than that of Eidous and Al-Maqableh (2022) estimators

for all most considered cases. This feature becomes more evident when the

exact values of ρ and λ are small. For example and based on Table 2, all

values of the EFFs of the proposed estimators ρ̂Trap, ρ̂Trap and ρ̂Trap (for Case

3) are all greater than 1, indicating that the RMSEs of the estimator ρ̂Weib are

larger than those corresponding to the proposed estimators. Therefore and at
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least for this case, the estimators ρ̂Trap, ρ̂Trap and ρ̂Trap are more efficient and

then better than the existing estimator ρ̂Weib of Eidous and Talafha (2020).

(5) The effect of transformation selection: To study the effect of the selected

transformation on the performance of the proposed estimators of ρ and λ, the

two transformations FZ (x) = 1 − e−xθ

, θ = 1, 2 were studied. The two se-

lected transformations (i.e. θ = 1, 2) give acceptable results for our proposed

estimators. It is clear from the simulation results that these estimators are

sensitive to the transformation selection. This can be inferred by examining

and comparing the values of RMSEs and then the values of EFFs values asso-

ciated with the proposed estimators when θ = 1 and when θ = 2 for different

sample sizes. However, based on the simulation results, we recommend taking

θ = 1 for estimating ρ and θ = 2 for estimating λ. For example, if one exam-

ines the values of the EFFs of ρ̂Trap, ρ̂Simp1 and ρ̂Simp2 for Case 1 and with

θ = 1, they are found to be larger than their corresponding values for θ = 2.

The exact opposite case occurs in the case of examining the EFFs values of

the estimators λ̂Trap, λ̂Simp1 and λ̂Simp2 of λ based on Case 1.

(6) The effect of the selected numerical rule: The three proposed estimators

ρ̂Trap, ρ̂Simp1 and ρ̂Simp2 of ρ are obtained based on trapezoidal, Simpson

1/3 and Simpson 3/8 rules respectively. The same thing can be said for

the proposed estimators λ̂Trap, λ̂Simp1 and λ̂Simp2 of λ. By comparing the

performances of the proposed estimator of ρ and λ, it is clear that the three

rules give similar results for different sample size. In general, their results

coincide when the sample sizes get larger. This indicates that using any of

these three rules is enough for the process of estimation OVL coefficients ρ and

λ. That is, there is no need to use the three methods together. For example,

if one considers Case 2 of Table 3 with (n1, n2) = (24, 30) and θ = 1, then the

values of RMSEs for λ̂Trap, λ̂Simp1 and λ̂Simp2 are 0.1723, 0.1720 and 0.1701,

respectively. Also, for the same case with θ = 2, their RMSEs values are

0.1702, 0.1701 and 0.1698 respectively. As we can simply see, for each value

of θ, the corresponding RMSEs of λ̂Trap, λ̂Simp1 and λ̂Simp2 are very close to

each other.
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9. Conclusions

This paper focused on developing a new technique to approximate values of the

OVL coefficients ρ and λ and then estimating them based on two independent random

samples from pair Weibull distributions. The advantage of the proposed technique

over others found in the literature is that it can be used without placing any re-

strictions on the parameters of the Weibull distributions. Based on the results of

the simulations conducted in this study, it was evident that the new technique is

effectiveness and the performance of the resulting estimators is better than those de-

veloped by Eidous and Magableh (2022). Because of the generality of the proposed

technique and under the same distributions, it can be applied to estimate some other

OVL coefficients mentioned in the literature, such as Weizmann coefficient and also

Pianka coefficient (See, Eidous and Al-Talafha, 2020). Also, the same proposed tech-

nique can be used when the two random samples are assumed to follow other pair

distributions such as the normal distribution, the Lomax distribution, and the inverse

Lomax distribution.

Table 2. The RB, RMSE and EFF of the estimators

ρ̂EM , ρ̂Trap, ρ̂Simp1 and ρ̂Simp2 when the data are simulated from

pair Weibull distributions as given in Table 1.

θ = 1 θ = 2

(n1, n2) ρ̂EM ρ̂Trap ρ̂Simp1 ρ̂Simp2 ρ̂EM ρ̂Trap ρ̂Simp1 ρ̂Simp2

Case 1

(12,12) RB -0.0574 -0.0528 -0.0523 -0.0533 -0.0518 -0.135 -0.109 -0.115

RMSE 0.0921 0.0836 0.0834 0.0845 0.0837 0.1485 0.1246 0.1308

EFF 1 1.213 1.218 1.188 1 0.318 0.452 0.41

(24,30) RB -0.0214 -0.0196 -0.0193 -0.0195 -0.0235 -0.0767 -0.0614 -0.0655

RMSE 0.0425 0.0389 0.0388 0.0388 0.0445 0.0836 0.0697 0.0734

EFF 1 1.193 1.199 1.198 1 0.283 0.408 0.367

(504,504) RB -0.001 -0.001 -0.001 -0.001 -0.0011 -0.0062 -0.0049 -0.0053

RMSE 0.0068 0.0066 0.0066 0.0066 0.0067 0.0087 0.0079 0.0081

EFF 1 1.048 1.048 1.048 1 0.599 0.736 0.695
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θ = 1 θ = 2

(n1, n2) ρ̂EM ρ̂Trap ρ̂Simp1 ρ̂Simp2 ρ̂EM ρ̂Trap ρ̂Simp1 ρ̂Simp2

Case 2

(12,12) RB -0.069 -0.0657 -0.0685 -0.0609 -0.0696 -0.0761 -0.0699 -0.0701

RMSE 0.2005 0.1793 0.1858 0.172 0.1963 0.1725 0.1731 0.1736

EFF 1 1.251 1.165 1.36 1 1.294 1.286 1.278

(24,30) RB -0.0318 -0.0303 -0.0303 -0.0305 -0.0259 -0.0255 -0.024 -0.0241

RMSE 0.1204 0.1048 0.1048 0.1045 0.119 0.0998 0.1004 0.1005

EFF 1 1.32 1.32 1.327 1 1.419 1.404 1.403

(504,504) RB -0.0008 -0.0015 -0.0015 -0.0015 -0.0023 -0.0024 -0.0024 -0.0024

RMSE 0.028 0.0225 0.0225 0.0225 0.0271 0.0213 0.0213 0.0213

EFF 1 1.547 1.547 1.547 1 1.617 1.617 1.617

Case 3

(12,12) RB -0.331 -0.15 -0.104 -0.113 -0.329 -0.568 -0.535 -0.547

RMSE 1.013 0.6959 0.7263 0.7193 1.068 0.7058 0.6959 0.6997

EFF 1 2.12 1.947 1.985 1 2.292 2.357 2.332

(24,30) RB -0.203 -0.0733 -0.0605 -0.0611 -0.157 -0.47 -0.439 -0.451

RMSE 1.121 0.5086 0.519 0.5176 1.245 0.5502 0.5314 0.5384

EFF 1 4.86 4.67 4.69 1 5.12 5.49 5.34

(504,504) RB 0.0043 0.0001 0.0001 0.0001 0.0066 -0.148 -0.133 -0.138

RMSE 0.4738 0.1331 0.1331 0.1331 0.4223 0.1808 0.1703 0.174

EFF 1 12.68 12.68 12.68 1 5.46 6.15 5.89

Table 3. The RB, RMSE and EFF of the estimators

λ̂EM , λ̂Trap, λ̂Simp1 and λ̂Simp2 when the data are simulated from pair

Weibull distributions as given in Table 1.

θ = 1 θ = 2

(n1, n2) λ̂EM λ̂Trap λ̂Simp1 λ̂Simp2 λ̂EM λ̂Trap λ̂Simp1 λ̂Simp2

Case 1

(12,12) RB -0.0876 -0.0885 -0.0883 -0.0891 -0.329 -0.0715 -0.0748 -0.0735

RMSE 0.143 0.1377 0.1377 0.1377 1.068 0.1188 0.1228 0.1213

EFF 1 1.079 1.078 1.079 1 1.375 1.287 1.318

(24,30) RB -0.0387 -0.0405 -0.0406 -0.0405 -0.157 -0.0311 -0.0326 -0.0321

RMSE 0.0689 0.0671 0.0671 0.0671 1.245 0.0608 0.0626 0.062

EFF 1 1.054 1.052 1.054 1 1.295 1.224 1.246
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Case 1

(504,504) RB -0.0021 -0.0019 -0.0019 -0.0019 0.0066 -0.0015 -0.0016 -0.0016

RMSE 0.0104 0.0094 0.0094 0.0094 0.4223 0.0095 0.0095 0.0095

EFF 1 1.217 1.217 1.217 1 1.175 1.166 1.169

Case 2

(12,12) RB -0.0908 -0.106 -0.111 -0.117 -0.0884 -0.0461 -0.0579 -0.0554

RMSE 0.3127 0.2833 0.2935 0.2852 0.3102 0.2565 0.2566 0.2589

EFF 1 1.218 1.135 1.202 1 1.463 1.462 1.435

(24,30) RB -0.0511 -0.0612 -0.0607 -0.059 -0.0412 -0.0061 -0.0141 -0.0115

RMSE 0.1894 0.1723 0.172 0.1701 0.1957 0.1702 0.1701 0.1698

EFF 1 1.208 1.213 1.239 1 1.322 1.324 1.327

(504,504) RB -0.0021 -0.0035 -0.0035 -0.0035 -0.0019 0.005 0.0036 0.0041

RMSE 0.0448 0.038 0.038 0.038 0.0463 0.0395 0.0394 0.0395

EFF 1 1.393 1.393 1.393 1 1.374 1.38 1.378

Case 3

(12,12) RB 0.163 0.856 0.938 0.932 0.547 0.158 0.242 0.206

RMSE 2.652 3.127 3.325 3.305 4.372 2.577 2.718 2.662

EFF 1 0.719 0.636 0.644 1 2.88 2.59 2.7

(24,30) RB 0.172 0.755 0.749 0.76 0.102 0.0933 0.162 0.135

RMSE 1.941 2.201 2.202 2.222 1.785 1.255 1.328 1.3

EFF 1 0.778 0.777 0.763 1 2.021 1.807 1.885

(504,504) RB 0.021 0.0091 0.013 0.0101 0.00566 0.424 0.441 0.435

RMSE 0.3841 0.2556 0.2564 0.2556 0.3801 0.5568 0.5731 0.5678

EFF 1 2.258 2.244 2.258 1 0.466 0.44 0.448
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