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HOMOTOPY ANALYSIS METHOD FOR SOLVING THE

BACKWARD PROBLEM FOR THE TIME-FRACTIONAL

DIFFUSION EQUATION

MOHAMMAD F. AL-JAMAL(1,2)

Abstract. This paper deals with the backward problem of a nonhomogeneous

time-fractional diffusion equation, that is, the problem of determining the past

distribution of the substance from present measurements. By the separation of

variables method, exact solutions of the forward and backward problems are ob-

tained in terms of eigenfunctions and Mittag-Leffler functions. Contrary to the

forward problem, i.e., determining the present solution from given initial data, the

backward problem, i.e., the problem of recovering the initial condition from noisy

measurements of the final data, is proved to be ill-posed and highly unstable with

respect to perturbations in the final data, and thus, some regularization technique

is required. The novelty of the current work stems from utilizing the homotopy

analysis method as a tool to obtain a regularization scheme to tackle the instability

of the backward problem. Stability and convergence results of the proposed method

are proved, and optimal convergence rates of the regularized solution are given un-

der both a priori and a posteriori parameter choice rules. The resulted algorithm is

very efficient and computationally inexpensive. Numerical examples are presented

to illustrate the validity and accuracy of the proposed homotopy method.

1. Introduction

Fractional calculus is a branch of mathematics that attempts to generalize the

classical calculus to include derivatives and integrals of arbitrary orders. It can be

traced back to 1695 in a letter from L’Hospital to Leibniz asking of the meaning of
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the derivative of order 1/2. Since then several definitions have been given trying to

accommodate the meaning of non-integer order derivatives and integrals, most notice-

ably, the Riemann-Liouville and Caputo definitions [1,2]. Recently, new definitions of

fractional derivatives have emerged, most popularly, the Caputo-Fabrizio fractional

derivative [3, 4], Atangana-Baleanu definition [5], and the memory-dependent deriv-

ative [6].

Nowadays, fractional differential equations have gained extra popularity due to

its potential applications in physics, engineering, biology, and other branches, and

due to its ability to model complex real-life systems, such as, dissipation mechanisms

with memory effects, hearing loss due to Mumps virus, optical solitons, predator-prey

dynamical systems, anomalous diffusion, viscoelasticity, and economic growth with

memory effect; see [2, 4, 6–11] and the references therein.

In this paper, we consider the backward problem of determining the initial condition

g in the nonhomogeneous time-fractional diffusion problem:

(1.1)























Dα
t u(x, t) = uxx(x, t) + f(x, t), 0 < x < l, 0 < t < T,

u(0, t) = u(l, t) = 0, 0 < t < T,

u(x, 0) = g(x), 0 < x < l,

where the time-fractional derivative Dα
t u is taken in the Caputo sense [1] defined by

Dα
t u(x, t) =

1

Γ(1− α)

∫ t

0

uτ (x, τ)

(t− τ)α
dτ, 0 < α < 1.

Time-fractional differential equations are fairly examined and their analytical as-

pects and numerical treatment are well developed. They are found to be adequate

models to describe anomalous diffusion, such as the sub-diffusion, which have been

observed, for example, in transport processes in porous media, protein diffusion within

cells, and movement of a material along fractals. We refer the reader to [1,9–18] and

the references therein. For instance, equations (1.1) models a slow diffusion process

of a contaminant in a subdiffusive medium (fractal or porous media) that takes place

in a straight pipe of finite length l over the time period 0 ≤ t ≤ T .

Solving equations (1.1) for u(x, t) from given initial condition g(x) and source

term f(x, t) is usually termed as the forward or direct problem. In this paper, we
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are interested in the backward problem of determining the initial condition g(x),

and hence the solution u(x, t), from a noisy measurement qδ(x) of the final data

q(x) = u(x, T ) satisfying the a priori error bound

(1.2) ‖qδ − q‖0 ≤ δ,

where δ > 0 is the noise level. Thus, the backward problem under consideration

can be stated as follows:

Backward problem: given a noisy measurement qδ(x) of q(x) = u(x, T ), estimate

the initial state g(x) = u(x, 0), x ∈ [0, l].

Such inverse problem can be used to recover the initial concentration of a contam-

inant (or the initial temperature profile in the case of a heat conduction problem)

in a sub-diffusive media which is important for example in environmental engineer-

ing, hydrology, and physics, and it can be applied to other disciplines such as image

deblurring.

Despite its importance in a diverse set of applications in science and engineering,

only a humble number of results dealing with inverse problems in time-fractional

differential equations have been established. In [19], Wang et al. considered the

backward problem in time-fractional diffusion equations with variable coefficients in

general domain. They used Tikhonov regularization to solve the corresponding Fred-

holm integral equation. Wang and Liu [20] used the total variation regularization to

solve the backward problem from given internal measurements. In [21], Deng and

Yang proposed a numerical method based on the idea of reproducing kernel approx-

imation to reconstruct the unknown initial heat distribution from a scattered mea-

surements of transient temperature. Kokila and Nair [22] used the Fourier truncation

method for solving the nonhomogeneous time-fractional backward heat conduction

problem. In [23], Yang et al. used the truncation regularization technique to solve

the backward problem for nonhomogeneous time-fractional diffusion-wave equations.

Tuan et al. [24] used filter regularization method to determine the initial data from

final value with deterministic and random noise. In [25], Zhang and Xu considered

the problem of identifying the time-independent source term from boundary data.

In [26], Li and Guo considered the identification of the diffusion coefficient and the
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order of the fractional derivative from the boundary data. Uniqueness and stability

results concerning the reconstruction of the initial condition from interior measure-

ments are obtained by Al-Jamal [6]. See also [27–32] for a recent account of the

theory of inverse problems in fractional differential equations.

In the recent years, the homotopy analysis method and its modifications have been

used to solve fractional differential equations. We refer the reader to [33–35] and

the references therein. In this paper, we utilize the homotopy analysis method to

obtain approximate expansion of the initial condition. The novelty of this approach

is twofold. First, the use of the convergence parameter of the homotopy analysis

method as a filter factor for the regularized solution, which in turn can be chosen

to exploit different regularization schemes. Second, the proposed approach can be

used to solve the backward in the case of nonhomogeneous source term f , which

is a limitation for many of the existing methods. Moreover, we give convergence

rates under a priori and a posteriori parameter choice rules of the regularization

parameter. The results of the numerical experiments are in excellent agreement with

our theoretical analysis.

The rest of this paper is organized as follows. In Section 2, we present some defini-

tions and essential functions and function spaces, then we derive the solution of the

forward problem and investigate the instability of the backward problem. In Section

3, we transform the nonhomogeneous problem (1.1) into a homogeneous problem,

then an approximate analytic solution is obtained via HAM, from which our regular-

ization technique is developed, and after that, the main results are stated and proved.

Section 4 is devoted for the practical implementation of the proposed method, and

some numerical experiments to validate our theoretical results.

2. Preliminaries

2.1. Relevant functions and function spaces. Let L2(0, l) be the space of square-

integrable functions with inner product and norm given by

(v, w)0 =

∫ l

0

v(x)w(x)dx, ‖v‖0 =
(
∫ l

0

|v(x)|2 dx
)

1

2

.
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Let {(λn, Xn) : n = 1, 2, . . .} be the orthonormal eigensystem for the eigenvalue

problem

−X ′′(x) = λX(x), X(0) = X(l) = 0.

The eigenvalues and the normalized (with respect to the L2-norm) eigenfunctions are

given by

λn =
(nπ

l

)2

, Xn(x) =

√

2

l
sin
(nπx

l

)

, n = 1, 2, . . .

In the analysis below, we find it useful to define the function space Hp(0, l) by

Hp(0, l) =

{

v ∈ L2(0, l) :
∞
∑

n=1

|(v,Xn)0|
2 λ2p

n < ∞
}

,

which is a Hilbert space with the norm

‖v‖p =
(

∞
∑

n=1

|(v,Xn)0|
2 λ2p

n

)
1

2

.

One of the key ingredients when dealing with fractional differential equations is

the Mittag-Leffler [1, 12]. The Mittag-Leffler function of index (α, β) is defined as

Eα,β(z) =
∞
∑

k=0

zk

Γ(kα + β)
, z ∈ C,

where α > 0 and β ∈ R are constants. For brevity, we will use the notation Eα(z) to

denote Eα,1(z). We cite some relevant properties of the Mittag-Leffler function [1].

Lemma 2.1. Let λ > 0.

(1) For 0 < α < 1, t > 0, we have

Dα
t Eα(−λtα) = −λEα(−λtα).

(2) For α > 0, t > 0, we have

d

dt
[Eα(−λtα)] = −λtα−1Eα,α(−λtα).

(3) For 0 < α < 1, t ≥ 0, we have

Eα,α(−t) ≥ 0, 0 < Eα(−t) ≤ 1.

From Lemma 2.1, we can easily deduce the following corollary.
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Corollary 2.1. For α, λ, t > 0, we have

∫ t

0

τα−1Eα,α(−λτα)dτ =
1

λ
(1−Eα(−λtα)) .

We also need the following asymptotic result which can be found in [31].

Lemma 2.2. Assume that 0 < α < 1. Then there exist constants C−, C+ > 0

depending only on α such that

C−

1 + t
≤ Eα(−t) ≤ C+

1 + t
, for all t ≥ 0.

2.2. The eigenfunction expansion of the forward solution. Following the sep-

aration of variables method, we formally define the solution of problem (1.1) by

u(x, t) =

∞
∑

n=1

Tn(t)Xn(x).

Then, it follows that Tn(t) solves the fractional order initial-value problem

(2.1) DαTn(t) + λnTn(t) = fn(t), Tn(0) = gn,

where

fn(t) =

∫ l

0

f(x, t)Xn(x)dx, gn =

∫ l

0

g(x)Xn(x)dx, n = 1, 2, . . .

From [12], the solution of the initial-value problem (2.1) is given by

Tn(t) = gnEα(−λnt
α) + Fn(t),

where

Fn(t) =

∫ t

0

fn(t− τ)τα−1Eα,α(−λnτ
α)dτ.

Hence, the formal solution to (1.1) is given by

u(x, t) =

∞
∑

n=1

{gnEα(−λnt
α) + Fn(t)}Xn(x).
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2.3. Stability of the backward problem. From the final data u(x, T ) = q(x), we

observe that

(2.2) qn = gnEα(−λnT
α) + Fn(T ), n = 1, 2, . . .

where qn = (q,Xn)0. Thus, the solution to the backward problem is

(2.3) u(x, t) =
∞
∑

n=1

{

qn − Fn(T )

Eα(−λnT α)
Eα(−λnt

α) + Fn(t)

}

Xn(x).

Now, we discuss the stability of the backward problem with respect to perturbations

in the final data q. To this end, let qδ be some noisy data satisfying the bound (1.2),

and denote by uδ(x, t) the solution of the backward problem with qδ in place of q,

that is,

(2.4) uδ(x, t) =

∞
∑

n=1

{

qδn − Fn(T )

Eα(−λnT α)
Eα(−λnt

α) + Fn(t)

}

Xn(x),

where qδn =
(

qδ, Xn

)

0
. Then, from equations (2.3) and (2.4), for any t ∈ (0, T ], we

have

uδ(x, t)− u(x, t) =
∞
∑

n=1

{

Eα(−λnt
α)

Eα(−λnT α)

(

qδn − qn
)

}

Xn(x).

From Lemma 2.2, we have the inequality

Eα(−λnt
α)

Eα(−λnT α)
≤
(

C+

C−

)(

1 + λnT
α

1 + λntα

)

≤
(

C+

C−

)(

T α

tα

)

,

and so, by using the Parseval’s identity, we obtain

∥

∥uδ(·, t)− u(·, t)
∥

∥

2

0
=

∞
∑

n=1

∣

∣

∣

∣

Eα(−λnt
α)

Eα(−λnT α)

∣

∣

∣

∣

2
∣

∣qn − qδn
∣

∣

2 ≤
(

C+

C−

)2(
T α

tα

)2

δ2.

This shows that the backward problem is in fact stable for t ∈ (0, T ]. However, the

problem becomes unstable for t = 0. To see this, take, for instance, perturbations of

the final data as

qδk(x) = q(x) + δkXk(x),

with δk = Eα(−λkT
α)

1

2 , to compute the backward solution gδk(x) = uδk(x, 0) as given

by the expansion (2.4). Then,

gδk(x) =

∞
∑

n=1

{

(q + δkXk, Xn)0
Eα(−λnT α)

}

Xn(x) = g(x) + δ
− 1

2

k Xk(x).
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On the one hand, we have
∥

∥qδk − q
∥

∥

0
= δk → 0,

as k → ∞, but on the other hand, we get

∥

∥gδk − g
∥

∥

0
= δ

− 1

2

k → ∞,

as k → ∞. Thus, the problem of determining the initial data from the final data q is

unstable, and hence, it is ill-posed. To deal with the instability issue, we shall discuss

regularization schemes in the following section.

3. Regularization scheme via the homotopy analysis method

3.1. Transformation into homogeneous problem. We can transform the non-

homogeneous problem (1.1) into a homogeneous problem by introducing the function

v given by

v(x, t) = u(x, t)− w(x, t),

where w(x, t) =
∑∞

n=1 Fn(t)Xn(x) is the solution to the time-fractional diffusion

equations

(3.1)























Dα
t w(x, t) = wxx(x, t) + f(x, t), 0 < x < l, 0 < t < T,

w(0, t) = w(l, t) = 0, 0 < t < T,

w(x, 0) = 0, 0 < x < l.

Then, v satisfies the homogeneous time-fractional diffusion problem

(3.2)























Dα
t v(x, t) = vxx(x, t), 0 < x < l, 0 < t < T,

v(0, t) = v(l, t) = 0, 0 < t < T,

v(x, 0) = u(x, 0) = g(x), 0 < x < l.

Therefore, if we set

q(x) = q(x)− w(x, T ), qδ(x) = qδ(x)− w(x, T ),

then the original backward problem defined by equations (1.1) is equivalent to the

backward problem of recovering g(x) in equations (3.2) from the noisy measurement
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qδ(x) of the final data q(x) = v(x, T ). Moreover, from (1.2), we have the a priori

error bound

(3.3) ‖qδ − q‖0 ≤ δ.

From the last section, we deduce the following expansions of the solution v:

(3.4) v(x, t) =
∞
∑

n=1

{gnEα(−λnt
α)}Xn(x) =

∞
∑

n=1

{

Eα(−λnt
α)

Eα(−λnT α)
qn

}

Xn(x),

where qn = (q,Xn)0 = qn − Fn(T ). In particular, by setting t = 0, we get

(3.5) g(x) =
∞
∑

n=1

{gn}Xn(x) =
∞
∑

n=1

{

qn
Eα(−λnT α)

}

Xn(x).

In the next subsection, we provide an alternative method to obtain approximate

and exact solutions to problem (3.2) by utilizing the homotopy analysis method

(HAM). The resulted solution will provide an insight for the suggested regularization

method.

3.2. The backward solution via HAM. To present our homotopy based approach,

let us define the following sequence of auxiliary problems:

(3.6) Dα
t Vn = (Vn)xx, 0 < x < l, 0 < t < T,

subject to the conditions

(3.7)











Vn(0, t) = Vn(l, t) = 0, 0 < t < T,

Vn(x, T ) = qnXn(x), 0 < x < l.

Then, to solve (3.6)-(3.7) by means of the homotopy analysis method, we introduce

the so-called zero-order deformation equation given by

(1− p)L [φn(x, t; p)− v0(x, t)] = ~npL [φn(x, t; p)] ,

where L is an auxiliary linear operator, ~n is a nonzero auxiliary parameter, p ∈ [0, 1]

is the embedding parameter, and v0 is some initial guess of the solution Vn of (3.6).

If we define the auxiliary linear operator L by

L[v] = Dα
t v − vxx,



772 MOHAMMAD F. AL-JAMAL

then, as p varies from 0 to 1, the solution φn(x, t; p) deforms from the initial guess

φn(x, t; 0) = v0(x, t) to the solution φn(x, t; 1) = Vn(x, t) of (3.6). Now, a formal

power series expansion of the function φn(x, t; p) about p = 0 is

φn(x, t; p) = v0(x, t) +

∞
∑

k=1

vk(x, t)p
k,

and therefore, the solution to equation (3.6) has a formal expansion of the form

Vn(x, t) = φn(x, t; 1) = v0(x, t) +
∞
∑

k=1

vk(x, t).

To enforce conditions (3.7), we may choose v0(x, t) = qnXn(x), and thus, we may

assume that

(3.8) vk(x, T ) = 0, k = 1, 2, . . .

Then, to determine the unknown functions vk, we substitute the expansion of φ(x, t; p)

in the zero-order deformation equation and equate the coefficients of equal powers of

p. This yields

L[v1(x, t)] = ~nλnqnXn(x),

L[vk+1(x, t)] = (1 + ~n)
kL[v1(x, t)], k = 1, 2, . . .(3.9)

One can directly verify that the solutions to (3.8)-(3.9) are given by

v1(x, t) = −~n

[

Eα(−λnt
α)

Eα(−λnT α)
qn − qn

]

Xn(x),

vk+1(x, t) = (1 + ~n)
kv1(x, t), k = 1, 2, . . .

Thus, we can form the so-called mth-order homotopy approximate solution to prob-

lem (3.6)-(3.7) given by

V m
n (x, t) = v0(x, t) +

m
∑

k=1

vk(x, t) = v0(x, t) +

(

m
∑

k=1

(1 + ~n)
k−1

)

v1(x, t),

which can be simplified to

V m
n (x, t) = ξn

(

Eα(−λnt
α)

Eα(−λnT α)
qn

)

Xn(x) + (1− ξn)qnXn(x),

where ξn = 1− (1 + ~n)
m.
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If we assume that −1 < ~n < 0, then the exact solution to the auxiliary problem

(3.6)-(3.7) is

Vn(x, t) = lim
m→∞

V m
n (x, t) =

(

Eα(−λnt
α)

Eα(−λnT α)
qn

)

Xn(x).

Moreover, from the expansion (3.4), we see that the solution to problem (3.2) can be

formed as

v(x, t) =

∞
∑

n=1

Vn(x, t).

By replacing Vn by its mth-order approximation V m
n , we suggest the approximate

HAM solution to the backward problem (3.2) as

vH(x, t) =
∞
∑

n=1

V m
n (x, t).

In particular, if we set t = 0, then the exact initial condition g(x) can be approximated

by

(3.10) gH(x) =
∞
∑

n=1

ξn

(

qn
Eα(−λnT α)

)

Xn(x) +
∞
∑

n=1

(1− ξn)qnXn(x).

We conclude by the following consistency result which will play a key role in proving

the main results of this paper.

Lemma 3.1. Assume that g ∈ Hp(0, l) for some p > 0. Then, the following bound

holds

‖gH − g‖0 ≤ (µp) sup
n≥1

{Bn} ,

where

µp =

(

1 + λ1T
α

λ1C−

)p

‖g‖p , Bn = (1− ξn)Eα(−λnT
α)p.

Proof. From equations (3.5)-(3.10) it follows that

gH(x)− g(x) =

∞
∑

n=1

(1− ξn) (Eα(−λnT
α)− 1) gnXn(x).

Then, by the Parseval’s identity and the fact that 0 < Eα(−t) < 1 for t ≥ 0, we get

‖gH − g‖20 ≤
∞
∑

n=1

(1− ξn)
2g2n ≤ sup

n≥1

{

B2
n

}

∞
∑

n=1

g2n
Eα(−λnT α)2p

.



774 MOHAMMAD F. AL-JAMAL

Using Lemma 2.2, we can bound the last term as

∞
∑

n=1

g2n
Eα(−λnT α)2p

≤
∞
∑

n=1

∣

∣

∣

∣

1 + λnT
α

C−

∣

∣

∣

∣

2p

g2n ≤
∣

∣

∣

∣

1 + λ1T
α

C−λ1

∣

∣

∣

∣

2p ∞
∑

n=1

λ2p
n g2n

=

∣

∣

∣

∣

1 + λ1T
α

C−λ1

∣

∣

∣

∣

2p

‖g‖2p ,(3.11)

which finishes the proof. �

3.3. Regularization scheme via HAM. The expansion in (3.10) will be the basis

of the regularization scheme presented in this paper. More specifically, we suggest

the following regularized solution to our backward problem:

(3.12) gδH(x) =

∞
∑

n=1

ξn

(

qδn
Eα(−λnT α)

)

Xn(x) +

∞
∑

n=1

(1− ξn)q
δ
nXn(x),

where qδn =
(

qδ, Xn

)

0
= qδn − Fn(T ). In the context of regularization theory, the

numbers ξn ∈ (0, 1) are treated as the filter factors of regularization method.

Now, we prove some results concerning the recovery of the initial condition g by

the proposed homotopy method. We shall need the following stability result.

Lemma 3.2. It holds that

∥

∥gδH − gH
∥

∥

0
≤
(

sup
n≥1

{An}+ 1

)

δ,

where

An =
ξn

Eα(−λnT α)
.

Proof. By equations (3.12)-(3.10), the triangle inequality, the Parseval’s identity, and

the fact that ξn ∈ (0, 1), we have

∥

∥gδH − gH
∥

∥

0
≤
∥

∥

∥

∥

∥

∞
∑

n=1

ξn

(

qδn − qn
Eα(−λnT α)

)

Xn

∥

∥

∥

∥

∥

0

+

∥

∥

∥

∥

∥

∞
∑

n=1

(1− ξn)
(

qδn − qn
)

Xn

∥

∥

∥

∥

∥

0

≤ sup
n≥1

{

ξn
Eα(−λnT α)

}

δ + δ,

as required. �

Combining Lemma 3.1 and Lemma 3.2 together with the triangle inequality, we

obtain the first main result:
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Theorem 3.1. Assume that g ∈ Hp(0, l) for some p > 0. Then

∥

∥gδH − g
∥

∥

0
≤ (µp) sup

n≥1
{Bn}+

(

sup
n≥1

{An}+ 1

)

δ.

Several regularization methods can be designed by choosing different filter factors.

In this paper, we will focus on the filter factors given by

(3.13) ξn =
Eα(−λnT

α)2

Eα(−λnT α)2 + β
, n = 1, 2, . . .

where β > 0 is a fixed constant which plays the rule of the regularization parameter of

the regularization scheme. We will utilize Theorem 3.1 to obtain some convergence

results under this particular choice of the filter factors. To this end, we need the

following auxiliary result.

Lemma 3.3. If the factors ξn are chosen as in (3.13), then

An =
Eα(−λnT

α)

Eα(−λnT α)2 + β
, and Bn =

βEα(−λnT
α)p

Eα(−λnT α)2 + β
,

with

sup
n≥1

{An} ≤ 1

2
√
β
, and sup

n≥1
{Bn} ≤











β
p

2 , p < 2,

β, p ≥ 2.

Proof. Consider the functions

f(x) =
x

x2 + β
, g(x) =

βxp

x2 + β
, x > 0, p < 2.

Then it easy to verify that f attains its maximum value at x0 =
√
β, while g attains

its maximum value at x1 =
√

pβ
2−p

. Hence,

sup
n≥1

{An} = sup
n≥1

{

Eα(−λnT
α)

Eα(−λnT α)2 + β

}

≤ f(x0) =
1

2
√
β
,

and, for p < 2, we have

sup
n≥1

{Bn} = sup
n≥1

{

βEα(−λnT
α)p

Eα(−λnT α)2 + β

}

≤ g(x1) =

(

1

2
(2− p)1−

p

2p
p

2

)

β
p

2 ≤ β
p

2 .

For the case p ≥ 2, we use Lemma 2.1 (3) to see that

sup
n≥1

{Bn} = sup
n≥1

{

βEα(−λnT
α)p

Eα(−λnT α)2 + β

}

≤ sup
n≥1

{

Eα(−λnT
α)p−2β

}

≤ β.

This completes the proof. �
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The following result gives error estimates on the regularized approximate solution

using the filter factors defined by (3.13).

Lemma 3.4. Assume that g ∈ Hp(0, l) for some p > 0. If ξn is chosen as in (3.13),

then the following error estimates hold.

(1) For p < 2, we have

∥

∥gδH − g
∥

∥

0
≤ µpβ

p

2 +
δ

2
√
β
+ δ.

(2) For p ≥ 2, we have

∥

∥gδH − g
∥

∥

0
≤ µpβ +

δ

2
√
β
+ δ.

Proof. The proof follows directly from Theorem 3.1 and Lemma 3.3. �

Finally, we cite the following remark regarding the convergence rates of the regu-

larization scheme under an a priori choice rule of the regularization parameter β.

Remark 1. Under the hypotheses of Lemma 3.4, if we choose β = Cδγ for some

γ ∈ (0, 2) and constant C > 0, then

∥

∥gδH − g
∥

∥

0
→ 0,

as δ → 0. For a given value of p > 0, the convergence rate is optimal when

γ =











2
p+1

, p < 2,

2
3
, p ≥ 2,

in which case we have

∥

∥gδH − g
∥

∥

0
=











O
(

δ
p

p+1

)

, p < 2,

O
(

δ
2

3

)

, p ≥ 2.

Thus, we obtain the fastest convergence when p ≥ 2. In this case, we have

∥

∥gδH − g
∥

∥

0
= O

(

δ
2

3

)

,

provided β = Cδ
2

3 .
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3.4. Convergence under Morozov’s discrepancy principle. Next, we prove

convergence results under a posteriori parameter choice rule for the regularization

parameter β. In this paper, we focus on the Morozov’s discrepancy principle, which

amounts to choosing β > 0 such that

(3.14)
∥

∥LgδH − qδ
∥

∥

0
= ηδ,

where η > 1 is some given constant, and L denotes the forward map from the initial

data to the final data, which from (3.4), is given by

Lz =
∞
∑

n=1

{(z,Xn)0Eα(−λnT
α)}Xn.

We have the following auxiliary results:

Lemma 3.5. It holds that

‖LgH − q‖0 ≤ (η + 2)δ.

Proof. Using the triangle inequality, equation (3.14), and inequality (3.3), we see that

‖LgH − q‖0 ≤
∥

∥LgH − LgδH
∥

∥

0
+
∥

∥LgδH − qδ
∥

∥

0
+
∥

∥qδ − q
∥

∥

0

≤
∥

∥LgH − LgδH
∥

∥

0
+ ηδ + δ.

Since 0 < Eα(−λnT
α) ≤ 1, and

gH(x)− gδH(x) =
∞
∑

n=1

{

Eα(−λnT
α) + β

Eα(−λnT α)2 + β

(

qn − qδn
)

}

Xn(x),

it follows that

∥

∥LgH − LgδH
∥

∥

2

0
=

∞
∑

n=1

∣

∣

∣

∣

Eα(−λnT
α)2 + βEα(−λnT

α)

Eα(−λnT α)2 + β

∣

∣

∣

∣

2
∣

∣qn − qδn
∣

∣

2

≤
∞
∑

n=1

∣

∣qn − qδn
∣

∣

2 ≤ δ2,

which concludes the proof. �

Lemma 3.6. Assume that g ∈ Hp(0, l) for some p > 0. Then

‖gH − g‖0 ≤ ((η + 2)pµp)
1

p+1 δ
p

p+1 .
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Proof. From equations (3.5)-(3.10) we get

gH(x)− g(x) =
∞
∑

n=1

{

β

Eα(−λnT α)2 + β
(qn − gn)

}

Xn(x),

LgH(x)− q(x) =

∞
∑

n=1

{

βEα(−λnT
α)

Eα(−λnT α)2 + β
(qn − gn)

}

Xn(x).

Then, using Holder’s inequality, we have

‖gH − g‖20 =
∞
∑

n=1

∣

∣

∣

∣

β

Eα(−λnT α)2 + β

∣

∣

∣

∣

2

|qn − gn|2

=
∞
∑

n=1

∣

∣

∣

∣

βEα(−λnT
α)(qn − gn)

Eα(−λnT α)2 + β

∣

∣

∣

∣

2p

p+1

∣

∣

∣

∣

βEα(−λnT
α)−p(qn − gn)

Eα(−λnT α)2 + β

∣

∣

∣

∣

2

p+1

≤ S1S2,

where

S1 =

(

∞
∑

n=1

∣

∣

∣

∣

βEα(−λnT
α)(qn − gn)

Eα(−λnT α)2 + β

∣

∣

∣

∣

2
)

p

p+1

,

S2 =

(

∞
∑

n=1

∣

∣

∣

∣

βEα(−λnT
α)−p(qn − gn)

Eα(−λnT α)2 + β

∣

∣

∣

∣

2
)

1

p+1

.

For the first term, from Lemma 3.5, we have

S1 =
(

‖LgH − q‖20
)

p

p+1 ≤ ((η + 2) δ)
2p

p+1 ,

and by that fact that 0 < Eα(−λnT
α) ≤ 1 and inequality (3.11), we have

S2 =

(

∞
∑

n=1

∣

∣

∣

∣

β

Eα(−λnT α)2 + β

∣

∣

∣

∣

2 |qn − gn|2
Eα(−λnT α)2p

)
1

p+1

≤
(

∞
∑

n=1

|qn − gn|2
Eα(−λnT α)2p

)
1

p+1

=

(

∞
∑

n=1

[Eα(−λnT
α)− 1]2|gn|2

Eα(−λnT α)2p

)
1

p+1

≤ (µp)
2

p+1 ,

which completes the proof. �
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Lemma 3.7. Assume that g ∈ Hp(0, l) for some p > 0. Then

∥

∥gδH − gH
∥

∥

0
≤ δ +

1

2











(Cp)
−1

p+1 δ
p

p+1 , p < 1,

(Cp)
−1

2 δ
1

2 , p ≥ 1,

where Cp = (η − 1)/µp.

Proof. We first observe that

(

gδH , Xn

)

0
=

Eα(−λnT
α)

Eα(−λnT α)2 + β
qδn +

β

Eα(−λnT α)2 + β
qδn,

and so

LgδH − qδ =
∞
∑

n=1

{

β(Eα(−λnT
α)− 1)

Eα(−λnT α)2 + β

(

qδn − qn
)

}

Xn

+

∞
∑

n=1

{

β(Eα(−λnT
α)− 1)

Eα(−λnT α)2 + β
(qn)

}

Xn.

Because 0 < Eα(−λnT
α) ≤ 1, we have

∥

∥

∥

∥

∥

∞
∑

n=1

{

β(Eα(−λnT
α)− 1)

Eα(−λnT α)2 + β

(

qδn − qn
)

}

Xn

∥

∥

∥

∥

∥

2

0

=
∞
∑

n=1

∣

∣

∣

∣

β(Eα(−λnT
α)− 1)

Eα(−λnT α)2 + β

∣

∣

∣

∣

2
∣

∣qδn − qn
∣

∣

2 ≤ δ2,

and by equation (3.5) and inequality (3.11), we have

∥

∥

∥

∥

∥

∞
∑

n=1

{

β(Eα(−λnT
α)− 1)

Eα(−λnT α)2 + β
(qn)

}

Xn

∥

∥

∥

∥

∥

2

0

=

∞
∑

n=1

∣

∣

∣

∣

βEα(−λnT
α)p+1

Eα(−λnT α)2 + β

∣

∣

∣

∣

2
(Eα(−λnT

α)− 1)2 |gn|2
Eα(−λnT α)2p

≤ sup
n≥1

∣

∣

∣

∣

βEα(−λnT
α)p+1

Eα(−λnT α)2 + β

∣

∣

∣

∣

2
(

µ2
p

)

.

By utilizing Lemma 3.3, we see that

sup
n≥1

∣

∣

∣

∣

βEα(−λnT
α)p+1

Eα(−λnT α)2 + β

∣

∣

∣

∣

≤











β
p+1

2 , p < 1,

β, p ≥ 1.
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Therefore, in view of condition (3.14), and the last two inequalities, we see that

ηδ =
∥

∥LgδH − qδ
∥

∥

0
≤ δ + µp











β
p+1

2 , p < 1,

β, p ≥ 1,

and consequently, this yields that

β ≥











(Cp)
2

p+1 δ
2

p+1 , p < 1,

Cpδ, p ≥ 1.

Hence, from the last inequality, Lemma 3.2, and Lemma 3.3, we get

∥

∥gδH − gH
∥

∥

0
≤ δ +

δ

2
√
β
≤ δ +

1

2











(Cp)
−1

p+1 δ
p

p+1 , p < 1,

(Cp)
−1

2 δ
1

2 , p ≥ 1,

which proves the result. �

Combining Lemma 3.6 and Lemma 3.7, we obtain the main convergence result

of the proposed scheme under the Morozov’s discrepancy principle given by condi-

tion (3.14).

Theorem 3.2. Assume that g ∈ Hp(0, l) for some p > 0. Then

∥

∥gδH − g
∥

∥

0
≤ ((η + 2)pµp)

1

p+1 δ
p

p+1 + δ +
1

2











(Cp)
−1

p+1 δ
p

p+1 , p < 1,

(Cp)
−1

2 δ
1

2 , p ≥ 1.

Remark 2. In view of Theorem 3.2, we see that under the Morozov’s discrepancy

principle (3.14), the proposed method is of order O(δ
p

p+1 ) if p < 1, with optimal

convergence rate O(δ
1

2 ) when p ≥ 1.

4. Numerical illustrations

Next, we will show how to implement the proposed scheme for a practical problem.

Since it is often the case that the final data is just a discrete noisy readings of the

exact final data, we will assume that the final data qδ is generated using the formula

qδ(xi) = q(xi) + riq(xi), i = 0, 1, . . . , N,
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where xi are uniform grid points of [0, l], and ri are uniform random real numbers in

[−1, 1]. The noise level δ is computed using the root-mean-square norm:

δ =

√

√

√

√

1

N + 1

N
∑

i=0

(qδ(xi)− q(xi))
2.

The computations of the Fourier coefficients qδn and fn(t) can be done extremely

quickly using the fast Fourier transform. To evaluate Fn(T ), we use the midpoint

quadrature rule over the grid tj = j(T/M), j = 0, 1, . . . ,M , and we utilize Corol-

lary 2.1, this yields the estimates

Fn(T )
.
=

M/2−1
∑

i=0

(

Eα(−λnt
α
2i)− Eα(−λnt

α
2i+2)

λn

)

fn(tM−2i−1), n = 1, 2, . . . , N − 1.

Then, the discretized solution by the homotopy regularization scheme (3.12)-(3.13)

is given by

gδ,βH (xi)
.
=

N−1
∑

n=1

{

Eα(−λnT
α) + β

Eα(−λnT α)2 + β

(

qδn − Fn(T )
)

}

Xn(xi), i = 1, 2, . . . , N − 1.

To assess the error in the computed solution, we use the relative root-mean-square

error denoted and given by

E(δ, β) =

√

∑N
i=0

(

gδ,βH (xi)− g(xi)
)2

√

∑N
i=0 (g(xi))

2
.

In the experiments below, we fix T = 1.0, N = 1000, M = 500, and for the a

posteriori rule we take η = 1.05. We utilize MATHEMATICA for the computations

of the Mittag-Leffler function and the FFT as well.

4.1. Example 1. In the first example, we consider the fractional diffusion equation























Dα
t u(x, t) = uxx(x, t) + f(x, t), 0 < x < π, 0 < t < 1,

u(0, t) = u(π, t) = 0, 0 < t < 1,

u(x, 0) = sin(2x) + sin(3x), 0 < x < π,

with

f(x, t) =

(

t1−α

Γ(2− α)
+ 4t+ 4

)

sin(2x) + 9 sin(3x).
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In this case, the forward solution to this problem is given by

u(x, t) = (t+ 1) sin(2x) + sin(3x).

Error results for several noise levels δ and orders α using a priori (βpri) and a

posteriori (βpos) choice rules of β are summarized in Table 1. Plots for the exact

and recovered initial condition for different noise levels when α = 0.5 are shown in

Figure 1. Plots for the solution error versus data error using a priori and a posteriori

choice rules are depicted in Figure 2.

From Figure 1, we see that the regularized solution via the proposed approach

converges to the exact initial condition g as the noise level δ → 0. It is evident from

Table 1 that the proposed method converges to the exact solution for diverse set of

values of the fractional order α. Moreover, since g ∈ Hp(0, l) for p ≥ 2, it follows

from Remark 1 that the theoretical optimal convergence rate with the a priori rule

β = βpri = Cδ2/3 is O(δ2/3), while from Remark 2, the theoretical convergence rate

under the a posteriori rule (3.14) is O(δ1/2). From Figure 2, we see that the observed

order of convergence is consistent with our theory and very close to the theoretical

a priori and a posteriori orders O(δ2/3) and O(δ1/2), respectively. We point out that

the value of the constant C in the a priori rule β = βpri = Cδ2/3 is taken in such a

way the equation E(0.01, βpri) = E(0.01, βpos) is satisfied.

Table 1. Relative errors E(δ, β) in the computed initial condition for

Example 1 using a priori and a posteriori choice rules of the regular-

ization parameter β for several noise levels δ and fractional orders α.

α = 0.1 α = 0.5 α = 0.9

δ E(δ, βpri) E(δ, βpos) E(δ, βpri) E(δ, βpos) E(δ, βpri) E(δ, βpos)

0.01 0.0382 0.0382 0.0518 0.0518 0.1986 0.1986

0.001 0.0094 0.0102 0.0128 0.0123 0.0571 0.0254

0.0001 0.0021 0.0036 0.0030 0.0042 0.0134 0.0079
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(a) δ = 0.01
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(b) δ = 0.001
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(c) δ = 0.0001

Figure 1. Exact and recovered initial condition for Example 1 with

fractional order α = 0.5 for several noise levels δ using a posteriori

choice rule.
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Figure 2. Solution error versus data error in Example 1 using a priori

and a posteriori choice rules along with slope of linear fit. Plots are in

log-log scale.

4.2. Example 2. In this example, we consider the fractional diffusion equation






















Dα
t u(x, t) = uxx(x, t), 0 < x < 2 0 < t < 1,

u(0, t) = u(2, t) = 0, 0 < t < 1,

u(x, 0) = g(x), 0 < x < 2.

with

g(x) =











5x, 0 ≤ x ≤ 1,

10− 5x, 1 < x ≤ 2.
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The forward solution to this problem is given by

u(x, t) =

∞
∑

n=1

{

gnEα(−(nπ/2)2tα)
}

sin(nπx/2), gn =
40 sin(nπ/2)

π2n2
.

Error results for several noise levels δ and orders α using a priori (βpri) and a

posteriori (βpos) choice rules of β are summarized in Table 2. Plots for the exact

and recovered initial condition for different noise levels when α = 0.5 are shown in

Figure 3. Plots for the solution error versus data error using a priori and a posteriori

choice rules are depicted in Figure 4.

From Figure 3, we see that the regularized solution via the proposed approach

converges to the exact initial condition g as the noise level δ → 0. It is evident from

Table 2 that the proposed method converges to the exact solution for diverse set of

values of the fractional order α. Moreover, since g ∈ Hp(0, l) for all p < 3/4, it follows

from Remark 1 that the theoretical optimal convergence rate with the a priori rule

β = βpri = Cδ8/7 is at best O(δ3/7), while from Remark 2, the theoretical convergence

rate under the a posteriori rule (3.14) is also at best O(δ3/7). From Figure 4, we see

that the observed order of convergence is consistent with our theory and very close to

the theoretical a priori and a posteriori order O(δ3/7). We point out that the value

of the constant C in the a priori rule β = βpri = Cδ8/7 is taken in such a way the

equation E(0.01, βpri) = E(0.01, βpos) is satisfied.

Table 2. Relative errors E(δ, β) in the computed initial condition for

Example 2 using a priori and a posteriori choice rules of the regular-

ization parameter β for several noise levels δ and fractional orders α.

α = 0.1 α = 0.5 α = 0.9

δ E(δ, βpri) E(δ, βpos) E(δ, βpri) E(δ, βpos) E(δ, βpri) E(δ, βpos)

0.01 0.0424 0.0424 0.0540 0.0540 0.1104 0.1104

0.001 0.0159 0.0161 0.0202 0.0201 0.0532 0.0436

0.0001 0.0055 0.0056 0.0072 0.0071 0.0205 0.0159

The results of the last two examples show that the method is stable relative to

noise δ and order α. Moreover, the observed convergence rates coincides with our
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Figure 3. Exact and recovered initial condition for Example 2 with

fractional order α = 0.5 for several noise levels δ using a posteriori

choice rule.
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Figure 4. Solution error versus data error in Example 2 using a priori

and a posteriori choice rules along with slope of linear fit. Plots are in

log-log scale.

theoretical analysis. The convergence rate in the second example deteriorates since

the initial condition for the first example is smoother than the initial condition in the

second example; this has been predicted by our theoretical results.

5. Conclusion

We considered a new regularization scheme based on the homotopy analysis method

to solve the backward problem of identifying the initial data for a one-dimensional
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nonhomogeneous time-fractional diffusion equation from noisy final data. The pro-

posed method allows to tackle not only homogeneous problems, but also nonhomo-

geneous problems, which is a shortcoming of most existing methods. Moreover, we

proved the consistency and stability of the proposed method, and most importantly,

we gave optimal convergence rates under both a priori and a posteriori parameter

choice rules. Numerical realization is also given to elucidate and validate the proposed

method. Numerical experiments showed noteworthy results.

The results of the numerical examples are in excellent agreement with theoretical

ones. Moreover, the examples show that the method is robust with respect to the

order of fractional derivative and noise level. The provided analysis can be carried

out to problems in higher-spatial domains, which will be our emphasis in a future

work.
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