
Jordan Journal of Mathematics and Statistics (JJMS), 16(4), 2023, pp 805 - 815

DOI: https://doi.org/10.47013/16.4.11

NEW MATRIX INTERPOLATING INEQUALITIES

M. ALAKHRASS(1) AND M. SABABHEH(2)

Abstract. The main goal of this article is to present new generalizations and new

forms of some well known matrix inequalities. These inequalities can be thought of

as interpolating inequalities between the arithmetic-geometric mean inequality and

Cauchy-Schwarz inequalities, generalizing some recent results in this direction.

1. Introduction

In the sequel, the algebra of all n×n complex matrices will be denoted by Mn, the

cone of positive semi-definite (or simply positive) matrices will be denoted by M
+
n

while M
++
n will stand for the cone of strictly positive matrices in Mn. The notations

X ≥ 0 or X > 0 will be used to mean that X ∈ M
+
n or M++

n , respectively.

For X ∈ Mn, the singular values {sj(X)} are the eigenvalues of |X| = (X∗X)1/2

arranged in a decreasing order. The following inequality for singular values is crucial

[3]

(1.1) sj(A
tB1−t) ≤ sj(tA+ (1− t)B) j = 1, 2, ..., n,

valid for the positive matrices A,B and for 0 ≤ t ≤ 1.

Clearly, the inequality (1.1) implies

(1.2) ‖AtB1−t‖ ≤ ‖tA+ (1− t)B‖, 0 ≤ t ≤ 1,

for any unitraily invariant norm ‖ ‖. We recall here that a unitarily invariant norm

‖ · ‖ on Mn is a matrix norm that satisfies ‖UAV ‖ = ‖A‖ for all A ∈ Mn and all

unitary matrices U, V ∈ Mn.
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The fact that (1.1) implies (1.2) follows immediately from the Fan dominance

theorem, which can be found in [7, Theorem IV.2.2].

On the other hand, the following Hölder inequality was proved in [10] for the

positive matrices A,B and any matrix X ∈ Mn,

(1.3) ‖AtXB1−t‖ ≤ ‖AX‖t‖XB‖1−t, 0 ≤ t ≤ 1.

The inequality (1.3) can be manipulated to show that the function t 7→ ‖AtXB1−t‖
is log-convex on [0, 1], see [5, 12]. But then, the function t 7→ ‖AtXB1−t‖ ‖A1−tXBt‖
can be shown to be log-convex too, [5, 12]. We should remark here that in [9], it is

proved that t 7→ ‖AtXB1−t‖ is convex. However, the proof given there in fact implies

log-convexity.

Letting g(t) = ‖(A∗A)tX(B∗B)1−t‖ ‖(A∗A)1−tX(B∗B)t‖, it is proved in [5] that

this log-convex function satisfies, for A,B,X ∈ Mn and t ∈ [0, 1],

||AXB∗||2 = g(1/2)

≤ g(t)

≤ ||tA∗AX + (1− t)XB∗B|| ||(1− t)A∗AX + tXB∗B||.(1.4)

So, in particular we have

(1.5) ||AXB∗||2 ≤ ‖(A∗A)tX(B∗B)1−t‖ ‖(A∗A)1−tX(B∗B)t‖.

This inequality was shown in [2] using a singular value argument. The inequalities

(1.4) were aimed to extend some inequalities from [2, 4, 20]. In [4], the inequality

(1.6) ‖AB∗‖2 ≤ ‖t A∗A+ (1− t)B∗B‖ ‖(1− t)A∗A+ t B∗B‖, 0 ≤ t ≤ 1,

was proved for A,B ∈ Mn and any unitarily invariant norm ‖ ‖. The significance

of this inequality is the way it interpolates between the Cauchy-Schwarz inequality,

when t = 0, and the arithmetic-geometric mean inequality when t = 1
2
.

A generalization of (1.6) was given in [20], where the inequality

(1.7) ‖AXB∗‖2 ≤ ‖t A∗AX + (1− t)XB∗B‖ ‖(1− t)A∗AX + t XB∗B‖, 0 ≤ t ≤ 1,

was proved for A,B,X ∈ Mn. Therefore, (1.4) provides a refinement of (1.7); by

inserting the function g.
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In the case of the Hilbert-Schmidt norm, the inequality (1.7) was refined in [2] as

follows.

‖AXB∗‖22 ≤
(

‖t A∗AX + (1− t)XB∗B‖22 − r20‖AX −XB‖22
)

1

2

×
(

‖(1− t) A∗AX + t XB∗B‖22 − r20‖AX −XB‖22
)

1

2 , 0 ≤ t ≤ 1,(1.8)

for A,B,X ∈ Mn and r0 = min{t, 1− t}.

The idea of log-convexity will be used to present a reverse of (1.8). See section 2.2

below.

The following lemma will be needed in our work [19].

Lemma 1.1. Let A,B,X ∈ Mn such that A,B > 0. For r ≥ 0, define the function

f(t) = || |AtXB1−t|r || || |A1−tXBt|r ||.

Then f is log-convex on the interval [0, 1]. Moreover, since f is symmetric about

t = 1
2
, it is decreasing on [0, 1/2], increasing on [1/2, 1] and attains its minimum at

1/2.

Another inequality that we will need in our proofs is the following inequality from

[6]

(1.9)
∥

∥X1/2(X + Y )Y 1/2
∥

∥ ≤ 1

2

∥

∥(X + Y )2
∥

∥ , X, Y ∈ M
+
n .

In this article, we present new forms that generalize some of the above inequalities.

For example, we prove that

|| |A1/2B1/2|r ||2 ≤ || |AtB1−t|r || || |A1−tBt|r ||

≤ ||(tA+ (1− t)B)r|| ||((1− t)A + tB)r||,

for positive A,B, 0 ≤ t ≤ 1 and r > 0. This provides a generalization of (1.6) for

positive matrices. Moreover, this will be a generalization of the Cauchy-Schwarz

inequality and a well known arithmetic-geometric mean inequality. See Theorem 2.1
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below and the comments following it.

Moreover, we prove the other generalization

||AB||2 ≤ g(t)

≤ 1

4t(1− t)
|| (tA+ (1− t)B)2 || || ((1− t)A+ tB)2 ||,

valid for the positive matrices A,B and 0 ≤ t ≤ 1, and for some log-convex function

g, refining the corresponding result from [20].

Further, the Hilbert-Schmidt norm inequality (1.8) will be manipulated to get a

refinement of the inequality [6]

4‖AB‖2 ≤ ‖(A+B)2‖2.

In the end, we present a refinement and a reverse of (1.8).

We refer the reader to [1, 2, 4, 5, 8, 11, 12, 13, 14, 20, 15, 16, 17, 18] as a list of

references that treat matrix inequalities, where refinements, reverses and interpolation

are emphasized.

2. Main Results

We present our results in two parts, where general unitarily invariant norms are

considered first. Then the Hilbert-Schmidt norm will be discussed, where some new

results will be found.

2.1. General Unitarily Invariant Norms. In this part we present some new re-

sults that can be thought of as interpolating inequalities between various inequalities.

We begin with a simple lemma.

Lemma 2.1. Let A,B ≥ 0 and ϕ : [0,∞) → [0,∞) be an increasing function. Then

‖ϕ(|AtB1−t|)‖ ≤ ‖ϕ (t A+ (1− t)B) ‖,

for any unitarily invariant norm ‖ ‖.
In particular, for any r ≥ 0,

(2.1) || |AtB1−t|r || ≤ ||(tA+ (1− t)B)r||.
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Proof. Since ϕ is increasing, it follows for each 1 ≤ j ≤ n,

sj(ϕ
(

|AtB1−t|
)

) = ϕ
(

sj(|AtB1−t|)
)

= ϕ
(

sj(A
tB1−t)

)

≤ ϕ (sj(tA+ (1− t)B))

= sj(ϕ(tA+ (1− t)B)).

This implies

‖ϕ(|AtB1−t|)‖ ≤ ‖ϕ (t A+ (1− t)B) ‖.

This completes the proof of the first inequality. For the second one, let ϕ(x) = xr, r >

0, then (2.1) follows.

�

Combining Lemmas 2.1 and 1.1 (with X = I) implies the following.

Theorem 2.1. Let A,B ∈ M
+
n and r ≥ 0. Then

|| |A1/2B1/2|r ||2 ≤ || |AtB1−t|r || || |A1−tBt|r ||

≤ ||(tA+ (1− t)B)r|| ||((1− t)A + tB)r||.

Proof. Let

gr(t) = || |AtB1−t|r || || |A1−tBt|r ||.

Then g is log-convex on the interval [0, 1], decreasing on [0, 1/2], increasing on [1/2, 1]

and attains its minimum at 1/2. This together with Lemma 2.1 imply the result. �

In Theorem 2.1, if t = 0 we have Cauchy-Schwarz inequality for positive matrices

|| |A1/2B1/2|r ||2 ≤ ||Ar|| ||Br||.

On the other hand, if t = 1/2 we have a generalization of the arithmetic-geometric

mean inequality for positive matrices,

|| |A1/2B1/2|r || ≤ 1

2r
||(A+B)r||.

Notice that the result is still valid for any increasing function ϕ to have

‖ϕ
(

|A1/2B1/2|
)

‖ ≤
∥

∥

∥

∥

ϕ

(

A+B

2

)
∥

∥

∥

∥

.
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Theorem 2.2. Let A,B ∈ M
+
n . Then a log-convex function g exists, such that, for

0 ≤ t ≤ 1,

||AB||2 = g

(

1

2

)

≤ g(t)

≤ 1

4t(1− t)
|| (tA + (1− t)B)2 || || ((1− t)A + tB)2 ||

≤ 1

4t(1− t)
||tA2 + (1− t)B2|| ||(1− t)A2 + tB2||.

Proof. Let g be as in [5], which satisfies (1.4), with X = A1/2B1/2. Then

||AB||2 = g(1/2)

≤ g(t)

≤ ||tA3/2B1/2 + (1− t)A1/2B3/2|| ||(1− t)A3/2B1/2 + tA1/2B3/2||

Now, noting (1.9),

||tA3/2B1/2 + (1− t)A1/2B3/2|| = ||A1/2(tA+ (1− t)B)B1/2||

=
1

√

t(1− t)
||(tA)1/2 (tA+ (1− t)B) ((1− t)B)1/2||

≤ 1

2
√

t(1− t)
|| (tA+ (1− t)B)2 ||.

Similarly,

||(1− t)A3/2B1/2 + tA1/2B3/2|| ≤ 1

2
√

t(1− t)
|| ((1− t)A + tB)2 ||.

Hence,

||AB||2 = g(1/2)

≤ g(t)

≤ 1

4t(1− t)
|| (tA+ (1− t)B)2 || || ((1− t)A+ tB)2 ||.

≤ 1

4t(1− t)
||tA2 + (1− t)B2|| ||(1− t)A2 + tB2||,
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where we have used the fact that the function f(x) = x2 is operator convex to obtain

the last inequality. This completes the proof. �

In particular, for t = 1/2 we have

(2.2) ||AB|| ≤ 1

4
|| (A +B)2 ||,

which is a celebrated result of Bhatia and Kittaneh [6].

2.2. The Hilbert-Schmidt Norm.

Theorem 2.3. Let A,B ≥ 0, t ∈ [0, 1], r0 = min{t, 1 − t} and C = ||A3/2B1/2 −
A1/2B3/2||2. Then

||AB||22 ≤ ||At+1/2B3/2−t||2 ||A3/2−tXBt+1/2||2 (it is a log-convex function)

≤ 1

4t(1− t)

(

||(tA+ (1− t)B)2||22 − r20t(1− t)C2
)1/2 ×

×
(

||((1− t)A + tB)2||22 − r20t(1− t)C2
)1/2

Proof. Let A,B ≥ 0, t ∈ [0, 1], r0 = min{t, 1− t} and C = ||A3/2B1/2 − A1/2B3/2||2.

h(t) = ||AtXB1−t||2 ||A1−tXBt||2, for t ∈ [0, 1].

It was proved in [5] that

||A1/2XB1/2||22 = h(1/2)

≤ h(t)

≤
(

||tAX + (1− t)XB||22 − r20||AX −XB||22
)1/2

×
(

||(1− t)AX + tXB||22 − r20||AX −XB||22
)1/2

,

where r0 = min{t, 1− t}.
Let X = A1/2B1/2 and C = ||A3/2B1/2 − A1/2B3/2||2. Using (1.9) we have
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||AB||22 ≤ ||At+1/2B3/2−t||2 ||A3/2−tXBt+1/2||2

≤
(

||tA3/2B1/2 + (1− t)A1/2B3/2||22 − r20||A3/2B1/2 − A1/2B3/2||22
)1/2

×
(

||(1− t)A3/2B1/2 + tA1/2B3/2||22 − r20||A3/2B1/2 − A1/2B3/2||22
)1/2

≤ 1

4t(1− t)

(

||(tA+ (1− t)B)2||22 − 4r20t(1− t)C2
)1/2×

×
(

||((1− t)A+ tB)2||22 − 4r20t(1− t)C2
)1/2

This completes the proof. �

In particular, if t = 1
2
in the above inequality we get the following refinement of the

inequality 4‖AB‖2 ≤ ‖(A+B)2‖2 proved in [6]. However, this inequality was shown

for any unitarily invariant norm in this reference. Here, we present a refinement for

the Hilbert-Schmidt norm.

Corollary 2.1. Let A,B ∈ Mn be positive. Then

(2.3) 16 ||AB||22 + ||A3/2B1/2 − A1/2B3/2||22 ≤ ||(A+B)2||22.

It should be remarked that in [6], the refinement

(2.4) 16 ||AB||22 + ||A2 +B2 − 2AB||22 ≤ ||(A+B)2||22

was proved. Numerical examples show that neither (2.3) nor (2.4) is uniformly better

than the other.

Our next result is the following refinement of (1.8). In this next theorem, we use

the notations r0 = min{t, 1−t}, r1 = min{t, 1−2t}, r2 = min{2t−1, 2−2t}. Moreover,

it has been shown in [13] that for 0 ≤ t ≤ 1
2
and a, b > 0 one has the inequality

(2.5) (a1−tbt)2 + r20(a− b)2 + r1(a−
√
ab)2 ≤ ((1− t)a+ tb)2.

On the other hand, if 1
2
≤ t ≤ 1,

(2.6) (a1−tbt)2 + r20(a− b)2 + r2(b−
√
ab)2 ≤ ((1− t)a+ tb)2.
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Theorem 2.4. Let A,B,X ∈ Mn. Let ‖A∗AX−XB∗B‖22 = T1, ‖(A∗A)1/2X(B∗B)1/2−
XB∗B‖22 = T2 and ‖(A∗A)1/2X(B∗B)1/2 −A∗AX‖22 = T3. Then for 0 ≤ t ≤ 1

2
,

‖AXB∗‖22

≤
(

‖t A∗AX + (1− t)XB∗B‖22 − r20T1 − r1T2

)
1

2

×
(

‖(1− t) A∗AX + t XB∗B‖22 − r20T1 − r1T3

)
1

2 .

On the other hand, if 1
2
≤ t ≤ 1,

‖AXB∗‖22

≤
(

‖t A∗AX + (1− t)XB∗B‖22 − r20T1 − r2T2

)
1

2

×
(

‖(1− t) A∗AX + t XB∗B‖22 − r20T1 − r2T3

)
1

2 .

Proof. For 0 ≤ t ≤ 1
2
, we have (2.5). It is a standard argument to obtain a corre-

sponding Hilbert-Schmidt norm inequality. For the positive matrices A,B and any

X , one can easily use (2.5) to prove, for positive A,B,

‖AtXB1−t‖22 + r20‖AX −XB‖22 + r1‖A1/2XB1/2 −XB‖22 ≤ ‖t AX + (1− t)XB‖22

(2.7)

and

‖A1−tXBt‖22 + r20‖AX −XB‖22 + r1‖AX −A1/2XB1/2‖22 ≤ ‖t AX + (1− t)XB‖22.
(2.8)

Replacing (A,B) with (A∗A,B∗B) in (2.7), (2.8), then using (1.5) we have the desired

inequality for 0 ≤ t ≤ 1
2
. Similar computations implies the desired inequality for

1
2
≤ t ≤ 1. �

Interestingly, we can present a reverse of (1.8), as follows. A well known reverse of

the Young inequality has the form [11, 14]

(2.9) ‖AtXB1−t‖22 +R2‖AX −XB‖22 ≥ ‖t AX + (1− t)XB‖22, 0 ≤ t ≤ 1,
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where R0 = max{t, 1 − t}. Before proceeding to the result, notice that a log convex

function f satisfies the following for 0 ≤ t ≤ 1
2
,

f(t) = f

(

2t · 1
2
+ (1− 2t) · 0

)

≤ f

(

1

2

)2t

f(0)1−2t ⇒ f

(

1

2

)2t

≥ f(0)2t−1f(t).

(2.10)

Therefore, if f is, in addition, symmetric about 1
2
, we have for 1

2
≤ t ≤ 1,

f(t) = f(1− t) ⇒ f

(

1

2

)2(1−t)

≥ f(0)1−2tf(t).(2.11)

We remark that the proof of (1.5) given in [2] does not permit us to get reversed

inequalities. This is the advantage of the new proof. The proof of the following

theorem is a standard computational application of (2.9), (2.10) and (2.11), hence

we omit it.

Theorem 2.5. Let A,B,X ∈ Mn. Then, for 0 ≤ t ≤ 1,

‖AXB∗‖4r02

≥ (‖A∗AX‖2‖XB∗B‖2)−|2t−1|

×
(

‖t A∗AX + (1− t)XB∗B‖22 − R2
0‖A∗AX −XB∗B‖22

)
1

2

×
(

‖(1− t) A∗AX + t XB∗B‖22 −R2
0‖A∗AX −XB∗B‖22

)
1

2 ,

where r0 = min{t, 1− t} and R0 = 1− r0.
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